1. Field of the Invention
The present invention relates to a detecting device and a method for detecting an edge of a transparent material, and more specifically, to a detecting device and a method for detecting an edge of a transparent material by level changes of an optical intensity signal.
2. Description of the Prior Art
Because a transparent material has a property of transparency, a light sensor cannot sense the transparent material passing by. Generally speaking, in order to sense the transparent material by the light sensor, an opaque material can be stuck on a side of the transparent material, a shading pattern can be printed in advance, or some special transparent ink capable of shading infrared light can be printed on the transparent material, so as to detect a relative position of the transparent material by the light sensor inside a machine. However, above-mentioned mechanisms need additional process for the transparent material resulting in increase of manufacturing cost and difficulty, so that products with the transparent material as a substrate can not be widely applied in identification.
The present invention is to provide a detecting device and a method for detecting an edge of a transparent material to solve above problems.
According to the disclosure, a detecting device includes an actuating unit, a light source, a light sensor, a transforming circuit and a processing unit. The actuating unit is for driving a transparent material. The light source is for emitting light to the transparent material driven by the actuating unit. The light sensor is for sensing the light emitted from the light source as an edge of the transparent material is moved to different positions relative to the light source so as to generate a corresponding optical intensity signal. The transforming circuit is coupled to the light sensor for transforming the optical intensity signal into a transforming signal. The processing unit is coupled to the transforming circuit for determining whether the edge of the transparent material is moved to a position between the light source and the light sensor according to the transforming signal transmitted from the transforming circuit.
According to the disclosure, the light source is a light emitting diode, and the light sensor is an optical interrupter sensor.
According to the disclosure, the light source and the light sensor are disposed at opposite sides of the transparent material.
According to the disclosure, the light emitted from the light source is scattered by the edge of the transparent material as the edge of the transparent material is moved to the position between the light source and the light sensor so as to generate the minimum optical intensity signal by the light sensor.
According to the disclosure, the light source is a light emitting diode, and the light sensor is an optical reflective sensor.
According to the disclosure, the light source and the light sensor are disposed at the same side of the transparent material.
According to the disclosure, the light emitted from the light source is scattered by the edge of the transparent material as the edge of the transparent material is moved to the position between the light source and the light sensor so as to generate the maximum optical intensity signal by the light sensor.
According to the disclosure, the transforming circuit is for amplifying level changes of the optical intensity signal so as to generate the transforming signal.
According to the disclosure, a direction of movement of the transparent material driven by the actuating unit is substantially vertical to a direction of the light emitted from the light source.
According to the disclosure, a method for detecting an edge of a transparent material includes following steps: driving the transparent material, a light source emitting light to the transparent material, a light sensor sensing the light emitted from the light source as the transparent material is moved to different positions relative to the light source so as to generate a corresponding optical intensity signal, transforming the optical intensity signal generated by the light sensor into a transforming signal, and determining whether the edge of the transparent material is moved to a position between the light source and the light sensor according to the transforming signal.
The detecting device and the detecting method of the present invention can utilize the light sensor and the transforming circuit to detect and locate the edge of the transparent material directly for following locating procedure. There is no need to execute additional process on the transparent material to achieve the purpose of sensing the transparent material by the light sensor. As a result, the manufacturing cost and difficulty can be reduced, and products with the transparent material as a substrate can be widely applied in identification.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
The detecting device 50 further includes alight sensor 58 for sensing the light emitted from the light source 56 as the edge 521 of the transparent material 521 is moved to different positions relative to the light source 56, so as to generate a corresponding optical intensity signal. The light sensor 58 can be an optical interrupter sensor or an optical reflective sensor. In addition, the detecting device 50 further includes a transforming circuit 60 coupled to the light sensor 58 for transforming the optical intensity signal generated by the light sensor 58 into a transforming signal, such as transforming an analog signal into a recognizable digital signal. For example, level changes of the optical intensity signal generated by the light sensor 58 are weak, so the transforming circuit 60 can be utilized for amplifying the level changes of the optical intensity signal so as to generate the transforming signal. Furthermore, the detecting device 50 further includes a processing unit 62 coupled to the transforming circuit 60 for determining whether the edge 521 of the transparent material 52 is moved to a position between the light source 56 and the light sensor 58 according to the transforming signal transmitted from the transforming circuit 60.
Please refer to
Step 100: The actuating unit 54 drives the transparent material 52 to move in the X direction.
Step 102: The light source 56 emits the light in the Y direction to the transparent material 52 driven by the actuating unit 54.
Step 104: The light sensor 58 senses the light emitted from the light source 56 as the edge 521 of the transparent material 52 is moved to different positions relative to the light source 56 so as to generate the corresponding optical intensity signal.
Step 106: The transforming circuit 60 transforms the optical intensity signal generated by the light sensor 58 into the transforming signal.
Step 108: The processing unit 62 determines whether the edge 521 of the transparent material 52 is moved to the position between the light source 56 and the light sensor 58 according to the transforming signal transmitted from the transforming circuit 60.
Step 110: The end.
Detail description of above procedure is described herein. As the light sensor 58 is an optical interrupter sensor, the light source 56 and the light sensor 58 can be disposed at opposite sides of the transparent material 52. Please refer to
Please refer to
Moreover, the light sensor 58 of the present invention can selectively be an optical reflective sensor. Please refer to
In contrast to the prior art, the detecting device and the detecting method of the present invention can utilize the light sensor and the transforming circuit to detect and locate the edge of the transparent material directly for following locating procedure. There is no need to execute additional process on the transparent material to achieve the purpose of sensing the transparent material by the light sensor. As a result, the manufacturing cost and difficulty can be reduced, and products with the transparent material as a substrate can be widely applied in identification.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
101109843 | Mar 2012 | TW | national |