Detecting high intensity light in photo sensor

Information

  • Patent Grant
  • 11927475
  • Patent Number
    11,927,475
  • Date Filed
    Monday, March 16, 2020
    4 years ago
  • Date Issued
    Tuesday, March 12, 2024
    a month ago
Abstract
In one example, an apparatus comprises: a photodiode configured to generate charge in response to incident light within an exposure period; and a quantizer configured to perform at least one of a first quantization operation to generate a first digital output or a second quantization to generate a second digital output, and output, based on a range of an intensity of the incident light, one of the first digital output or the second digital output to represent the intensity of the incident light. The first quantization operation comprises quantizing at least a first part of the charge during the exposure period to generate the first digital output. The second quantization operation comprises quantizing at least a second part of the charge after the exposure period to generate the second digital output.
Description
BACKGROUND

The present disclosure relates generally to optical sensors, and more particularly, to backside illumination optical sensors in stacked assembly.


Optical sensors are electronic detectors that convert light into an electronic signal. In photography, a shutter is a device that allows light to pass for a determined period of time, exposing the optical sensors to the light in order to capture an image of a scene. Rolling shutter is a method of image capture in which a still picture or each frame of a video is captured by scanning across the scene rapidly in a horizontal or vertical direction. That is, every pixel is not captured at the same time; pixels from different rows are captured at different times. Rolling shutter is mostly used in cell phone sensors. Machine vision, in contrast, uses global shutter where every pixel is captured at the same time.


Most optical sensors use backside illumination. A back-illuminated sensor is a type of digital optical sensor that uses a particular arrangement of imaging elements to increase the amount of light captured, improving low-light performance. A traditional front-illuminated digital camera is constructed similar to the human eye, with a lens at the front and photodetectors at the back. This orientation of the sensor places the active matrix of the digital camera sensor, a matrix of individual picture elements, on its front surface and simplifies manufacturing. The matrix and its wiring, however, reflect some of the light, reducing the signal that is available to be captured. A back-illuminated sensor contains the same elements, but arranges the wiring behind the photocathode layer by flipping the silicon wafer during manufacturing and then thinning its reverse side so that light can hit the photocathode layer without passing through the wiring layer, thereby improving the chance of an input photon being captured.


However, conventional back-illuminated sensors tends to have higher leakage when exposed to light. Also, the photodiode fill factor, or the ratio of light-sensitive area of a pixel to total pixel area, is relatively low. A large fill factor is beneficial because more of the pixel area is used for photocollection, which simultaneously improves signal-to-noise ratio (SNR) and dynamic range. The dynamic range of an image sensor measures how wide of a range of lighting the sensor can accurately capture. The wider the dynamic range of the image sensor, the more details can be shown under low light conditions and thus the more versatile the imaging system becomes. The SNR of an image sensor measures the ratio between the signal and its associated noise. An image sensor with low SNR will have a high amount of noise appearing in the captured image. An image sensor with high SNR can be used in low light conditions.


SUMMARY

Embodiments relate to a pixel in a photo sensor including a photo diode, a floating diffusion point, and a transistor between the photo diode and the floating diffusion point. A gate of the transistor is applied with an intermediate voltage between a turn-off voltage of the transistor and a turn-on voltage of the transistor to transfer charge from the photo diode to the floating diffusion point responsive to an intensity of light incident on the photo diode during an exposure phase exceeding a threshold intensity. The gate of the transistor is applied with the turn-on voltage in a sensing phase subsequent to the exposure phase to transfer the charge from the photo diode to the floating diffusion point.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a high-level block diagram illustrating an electronic device including a photo sensor, according to one embodiment.



FIG. 2 is a schematic view illustrating the photo sensor of FIG. 1, according to one embodiment.



FIG. 3 is a cross-sectional view the photo sensor in a stacked structure, according to one embodiment.



FIG. 4 is a circuit diagram illustrating a pixel of the photo sensor, according to one embodiment.



FIGS. 5 and 6 are graphs illustrating change in a voltage signal during an exposure phase when the pixel is exposed to high intensity light, according to one embodiment.



FIG. 7 is a graph illustrating change in the voltage signal in a sensing phase, according to one embodiment.



FIG. 8 is a flowchart illustrating a method of detecting light intensity in low light conditions and high light conditions, according to one embodiment.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the preferred embodiment, an example of which is illustrated in the accompanying drawings. Whenever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.


Embodiments relate to a stacked photo sensor assembly where two substrates are stacked vertically. The two substrates are connected via interconnects at a pixel level to provide a signal from a photodiode at a first substrate to circuitry on a second substrate. A voltage signal corresponding to the amount of charge in the first substrate is generated and processed in the second substrate. Two separate schemes are used for detecting light intensity in low light conditions and high light conditions. In high light conditions, two threshold voltages are set and the time between the crossing of a sensor voltage at the two threshold voltages is measured to determine the light intensity in the high light conditions. In low light conditions, a comparator is used to compare the voltage level of the sensor voltage relative to a reference voltage that increase over time. The time when the reference voltage reaches the sensor voltage level is detected to determine the light intensity in the low light conditions.


Example System Architecture


FIG. 1 is a high-level block diagram illustrating the electronic device 100, according to one embodiment. In one embodiment, the electronic device 100 includes, among other components, a processor 102 and a photo sensor 104 that are commutatively coupled. The electronic device 100 may include other components not illustrated in FIG. 1 such as memory and various other sensors.


The processor 102 is an electronic circuit that performs, among others, operations on a data source for providing images. The data source may include the photo sensor 104 that provides sensor data 108. The processor 102 also generates operation instructions 106 that are sent to the photo sensor 104 to cause the photo sensor 104 to perform certain operations. The processing performed by the processor 102 may include various digital signal processing to improve the quality of images or edit the images.


The photo sensor 104 is a circuit that measures intensity of light impinging on the photo sensor 104 on a pixel-by-pixel basis using photoconversion. Measuring light intensity may involve detecting light by a photodiode in a pixel. In response, the pixel performs photoconversion on the detected light into a voltage or current signal. The voltage or current signal representing the intensity of light detected at each pixel may be digitized into sensor data 108, and sent over to the processor 102.


Although not illustrated in FIG. 1, the electronic device 100 may include memory where the sensor data 108 is stored. The electronic device 100 may also include a display interface for sending the sensor data 108 for display on a display device (e.g., liquid crystal display (LCD) or organic light emitting diode (OLED) display).



FIG. 2 is a schematic view illustrating the photo sensor 104, according to one embodiment. The photo sensor 104 includes, among other components, a digital block 202, a global counter 203, a row drivers and global signal drivers module 204, Mobile Industry Processor Interface (MIPI) 205, counter buffers 206, a digital pixel array 207, sense amplifiers 208, a line memory 209, a power conditioner 210, a ramp generation and buffers module 211, and a sense amplification biasing module 212.


The digital block 202 is a circuit that processes digital signals associated with the operation of the photo sensor 104. In one or more embodiments, at least part of the digital block 202 may be provided as part of the digital pixel array 207 instead of being a circuit separate from the digital pixel array 207.


The global counter 203 is a digital sequential logic circuit constructed of cascading flip-flops, and provides counter signals to various components of the photo sensor 104.


The row drivers and global signal drivers module 204 is a circuit that provides signals to rows of pixels via scan lines (not shown). The signal provided to each row of pixels indicates sensing of image signal and/or resetting operations at each row of pixels.


MIPI 205 is a serial interface for transmitting the sensor data 108 from the photo sensor 104 to the processor 102. An MIPI interface typically has a single clock lane and two data lanes (not shown) that carry serial data. These three lanes carry signals on pairs of wires where the signals are often differential.


The counter buffers 206 is a circuit that receives counter signals from the global counter 203, and sends signals to columns of pixels in the digital pixel array 207 to coordinate sensing and resetting operations.


The digital pixel array 207 includes a plurality of pixels. In one embodiment, the digital pixel array is arranged in two dimensions, addressable by row and column. Each pixel is configured to sense light and output a signal corresponding to the intensity of the input light. Each pixel may include components as described below with reference to FIG. 3.


The sense amplifiers 208 are elements in the read circuitry that are used to the read out of the digital signals from the digital pixel array 207. The sense amplifiers 208 sense low power signals from a bitline that represents the intensity of light captured by the pixels in the digital pixel array 207. The sense amplifiers 208 may generate a digital output signal by utilizing an analog-to-digital converter (ADC). In one or more embodiments, at least part of the sense amplifiers 208 may be included in the digital pixel array 207.


The line memory 209 temporarily stores the sensed digital values of the light intensity detected at the digital pixel array 207, as sensed by the sense amplifiers 208 and processed by digital block 202 before sending the digital values to the processor 102 via MIPI 205 as the sensor data 108.


The power conditioner 210 is a circuit that improves the quality of the power that is delivered to components of the photo sensor 104. The power conditioner 210 may maintain and deliver a constant voltage that allows the components of the photo sensor 104 to function properly. In one embodiment, the power conditioner 210 is an AC power conditioner which smooths the sinusoidal AC waveform. In alternate embodiments, the power conditioner 210 is a power line conditioner which takes in power and modifies it based on the requirements of the components connected to the power line conditioner.


The ramp generator and buffers module 211 comprises a ramp generator and buffers. The ramp generator is a function generator that increases its voltage to a particular value. The ramp generator may be used to avoid jolts when changing a load. The buffers provide electrical impedance transformation from one circuit to another to prevent the ramp generator from being affected by the load.


The sense amplification biasing module 212 provides biasing voltage signal to the sense amplifiers 208. The biasing voltage signal is a predetermined voltage for the purpose of establishing proper operating conditions of the sense amplifiers 208 such as a steady DC voltage.


Example Stacked Photo Sensor Assembly


FIG. 3 is a cross-sectional view illustrating the stacked photo sensor assembly 300, according to one embodiment. In one embodiment, the stacked photo assembly includes a first substrate 310 coupled to a second substrate 340. The first substrate 310 may be a back-side illumination 302 sensor that is flipped over and includes, among other components, a first n+ diffusion well 312, a photodiode 314, a transistor AB 313, a transistor TX 316, and a second n+ diffusion well 320.


Each of transistor AB 313 and transistor TX 316 includes an active layer, a drain electrode coupled to the active layer, a photodiode 314 that serves as a source of both transistor AB and transistor TX, an insulation layer over the active layer, and a gate electrode (not shown). By controlling a voltage level at the gates of the transistors AB 313 and the transistor TX 316, the transistors AB 313 and the transistor TX 316 can be turned on or off. The gates of these transistors receive signals from circuits external to the digital pixel array 207.


The first n+ diffusion well 312 is an N doped implant region formed in the first substrate 310. The first n+ diffusion well 312 receives photoelectrons that are transferred from the photodiode 314 when transistor AB 313 is turned on during non-exposure times. This is equivalent to a closed shutter mode in a traditional film camera. The transfer of photoelectrons from the photodiode 314 to the first n+ diffusion well 312 ensures that no photoelectrons are accumulated on the photodiode 314, as the non-exposure times are periods when no signal is generated. The first n+ diffusion well 312 is typically connected to a positive voltage source, for example VDD, so the photoelectrons are drained away. During an exposure time, which is equivalent to the shutter open mode in a film camera, both transistor AB 313 and transistor TX 316 are turned off and the photoelectrons are initially stored inside the photodiode 314. At the end of exposure, transistor TX 316 is turned on. As a result, the charge stored in the photodiode 314 is transferred to the second n+ diffusion well 320.


The photodiode 314 is a semiconductor device that converts light into an electric current. Current is generated when photons are absorbed in the photodiode 314. The photodiode 314 may be a p-n junction or PIN structure. When the intensity of light through back-side illumination 302 is higher, the amount of charge accumulated on the photodiode 314 is high. Similarly, when the intensity of light through back-side illumination 302 is lower, the amount of charge accumulated on the photodiode 314 is low.


The interconnect 350 may be a pixel level direct interconnect from the second n+ diffusion well 320 to a circuit 342 in the second substrate 340. In some embodiments, the interconnect 350 may be a pixel level direct interconnect from the output of an amplifier (not shown in FIG. 3) in the first substrate 310 to the circuit 342 in the second substrate 340. The amplifier acts as a buffer and isolates a floating diffusion point from the interconnect 350, as there is high leakage current and parasitic capacitance associated with the interconnect 350. The amplifier and floating diffusion point are described below with reference to FIG. 4 in detail. In one embodiment, the interconnect 350 transmits a voltage signal that reflects the amount of charge transferred from the photodiode 314 to the second n+ diffusion well 320. In alternative embodiments, the interconnect 350 transmits a current signal that reflects the amount of charge transferred from the photodiode 314 to the second n+ diffusion well 320. The interconnect 350 carries the voltage signal to the circuit 342 for further processing such as sampling and analog-to-digital conversion. In still other embodiments, the stacked photo sensor assembly 300 may include additional interconnects that also transmit signals from the circuit 342 of the second substrate 340 to the first substrate 310. For example, signals for controlling transistor AB 313 and transistor TX 316 may be transmitted from the circuit 342 via these additional interconnects.


Embodiments move various circuit components provided on the first substrate 310 in conventional photo sensors to the second substrate 340, and connect the circuits of the second substrate 340 to the components in the first substrate 310 via the pixel level interconnect 350. The various circuit components moved to the second substrate 340 may include, among others, switches, amplifiers and current source. In this way, the area occupied by components in the first substrate 310 can be beneficially reduced and the fill factor can be increased.


Example Circuitry of a Pixel of the Photo Sensor


FIG. 4 is a circuit diagram illustrating a pixel 400 of the photo sensor 104, according to one embodiment. In the embodiment of FIG. 4, the first substrate 310 includes, among other components, the photodiode 314, a transistor TX, a first reset transistor TRST10, and an amplifier TS. Parasitic capacitance is present in a first capacitor Cs1 in the first substrate 310 between the transistor TX and the first reset transistor TRST1. The operation of photodiode 314 and transistor TX is described above with reference to FIG. 3.


During the exposure phase of the operation, the gate voltage of the transistor TX is maintained at an intermediate voltage that neither turns on nor turns off the transistor TX. Specifically, the intermediate voltage herein refers to 0.3V to 0.7V. In this range, the charge accumulated in the photodiode 314 may move to the floating diffusion point FD. The intermediate voltage refers to a voltage that is between an active voltage and inactive voltage of the transistor TX. The potential underneath the transistor TX gate serves as a barrier between the photodiode 314 and the floating diffusion point FD. If the transistor TX gate is connected to zero or negative voltage, the barrier is high, and more charge is accumulated inside the photodiode 314. If the transistor TX gate is connected to a very positive voltage (e.g., 2.5V to 3.3V), the transistor TX gate is fully turned on, and there is no barrier. The intermediate voltage results in a medium barrier where all charge generated by a low level light is accumulated inside the photodiode 314 while for bright light, charge flows over the barrier to accumulate on the floating diffusion point FD once the photodiode 314 is filled up.


By placing the gate voltage at the intermediate voltage, the charge moves from the photodiode 314 to the second n+ diffusion well 320 when the light intensity of the back side illumination 302 exceeds a certain threshold. If the light intensity of the back side illumination 302 does not exceed a threshold, the charge accumulates within the photodiode 314 without transferring over to the second n+ diffusion well 320. Conversely, in a sensing phase after the exposure phase, the transistor TX is fully turned on to transfer the charge accumulated in the photodiode 314 to the second n+ diffusion well 320.


The voltage level at the floating diffusion point FD serves as a proxy that indicates the duration and/or intensity of light exposure of the photodiode 314 during an exposure phase. The floating diffusion point FD is connected to the second n+ diffusion well 320. As the charge is transferred from the photodiode 314 to the floating diffusion point FD via the transistor TX, the voltage level at the floating diffusion point FD is decreased. When the duration and/or intensity of light exposure of the photodiode 314 during the exposure phase is increased, the voltage level at the floating diffusion point FD is also decreased. If the duration and/or intensity of light exposure of the photodiode 314 is below a certain level that is set by the transistor TX gate intermediate voltage, the voltage level at the floating diffusion point FD will not change as there is no charge transferred from photodiode 314 to the floating diffusion point FD.


The first reset transistor TRST1 functions to reset the voltage at floating diffusion point FD when the first reset transistor TRST1 is turned on. The first reset transistor TRST1 is turned on when a reset signal RST1 is received at the gate of the first reset transistor TRST1 after each cycle of exposure and sensing. The drain of the first reset transistor TRST1 is connected to a voltage source VDD. The source of the first reset transistor TRST1 is connected to the floating diffusion point FD.


The amplifier TS is a source follower amplifier that amplifies its gate signal to generate a voltage signal VSIG that is transmitted to the circuit 342. The gate of the amplifier TS is connected to the floating diffusion point FD. The drain of the amplifier TS is connected to a voltage source VDD. The source of the amplifier TS is connected to the interconnect 350. The voltage signal VSIG corresponds to a voltage level at the source terminal of the amplifier TS as defined by the voltage level at the floating diffusion point FD.


The circuit 342 is provided in the second substrate 340. The circuit receives the voltage signal VSIG via the interconnect 350, processes the voltage signal VSIG, and generates a digital output 432 indicating the intensity and/or duration of the light to which the photodiode 314 was exposed.


The circuit 342 may include, among other components, transistor TCS, a comparator 410, and a counter 418. The transistor TCS operates as a current source when turned on. In one embodiment, the gate of the current source TCS is applied with a pulse of bias voltage VBIAS throughout exposure phases and sensing phases of the pixel operation. The drain of the current source TCS is connected to the interconnect 305 and the source of the current source TCS is grounded. Parasitic capacitance is present in a second capacitor Cs2 in the second substrate 340 between the current source TCS and the comparator 410.


When the light intensity received at the photodiode 314 is above the threshold, the charge transfers over to the floating diffusion point FD during the exposure phase because the transistor Tx is placed at the intermediate voltage. As a result, the gate voltage at the amplifier TS gradually drops, causing the voltage signal VSIG at the interconnect 305 to gradually drop.


The comparator 410 and the counter 418 in combination function as a single-slope analog-to-digital converter (ADC) that produces the digital output 432 that represents the rate of decline in the voltage signal VSIG, which in turn, indicates the intensity and/or duration of light incident on the photodiode 314, as described below in detail with reference to FIGS. 5 and 6. After its operation, the comparator 410 may be reset by providing reset signal RST2 to the counter 418. Providing the reset signal RST2 to the counter 418 resets the counted value at the counter 418 back to zero.


The comparator 410 detects times at which the voltage signal VSIG reaches two reference voltages. For this purpose, the comparator 410 receives the voltage signal VSIG at a first terminal via the interconnect 350, first reference voltage VREF1 at a second terminal and a second reference voltage VREF2 at a third terminal. After the comparator 410 detects that the voltage signal VSIG reached VREF1 or VREF2, the comparator 410 sends a triggering signal over line 428 to the counter 418.


The counter 418 counts the number of clock cycles for the voltage signal VSIG to reach the second reference voltage VREF2 starting from the first reference voltage VREF1. The counter 418 is commutatively coupled to the comparator 410 by line 428, receives a clock signal 434 and a reset signal RST2, and outputs a digital output 432. In one embodiment, the counter 418 starts counting responsive to receiving a first triggering signal and stops counting responsive to receiving a second triggering signal. The digital output provided by the counter 418 may be a binary value. The digital output may be used to compute the slope of VSIG, which directly corresponds to the intensity of light incident on the photodiode.


Example Pixel Operation

The pixel structure of the present disclosure is configured to measure high intensity light and low intensity light using different mechanisms during different phases (i.e. exposure phase and sensing phase). During the exposure phase, the pixel structure measures high intensity light while the same pixel structure measure lower intensity light.



FIGS. 5 and 6 are graphs illustrating measuring of the high light intensity when during the exposure phase, according to one embodiment. In the exposure phase, as the voltage signal VSIG drops, the comparator 410 compares the voltage signal VSIG relative to two reference voltages, first reference voltage VREF1 and second reference voltage VREF2. When the voltage VSIG reaches the first reference voltage VREF1, the comparator 410 sends a starting trigger signal to counter 418 over line 428 so that the counter 418 can start counting based on clock signal 434 received at the counter 418. Conversely, when the voltage signal VSIG reaches the second reference voltage VREF2, the comparator 410 sends a stop signal to the counter 418 over line 428 to stop the counting. Based on the number of clock cycles between the two signals sent by the comparator 410 (as indicated by a counted value at the counter 418), the slope of the voltage signal VSIG line can be determined.


Taking the example of FIG. 5, the voltage signal VSIG gradually drops and reaches the first reference voltage VREF1 at time T1 and then reaches the second reference voltage VREF2 at time T2. Subsequently, the voltage signal VSIG further drops at time T3 to saturation voltage VSAT indicating that the first capacitor Cs1 at the floating diffusion point FD is fully saturated and the voltage signal VSIG is too low to be read out by the amplifier TS). The period Tp indicates the time difference between T1 and T2.


If the slope of the voltage signal VSIG line is steeper as shown in FIG. 6 (i.e., the intensity of light incident on the photo diode is greater), the voltage signal VSIG reaches the first reference voltage VREF1 and the second reference voltage VREF2 at times T1′ and T2′, respectively. T1′ and T2′ are faster than T1 and T2 of FIG. 5. Further, the time period Tp′ between T1′ and T2′ is shorter than the time period Tp between T1 and T2 of FIG. 5.


Therefore, by measuring the time difference between the time at which the voltage signal VSIG drops to the first reference voltage VREF1 and the time at which the voltage signal VSIG drops to the second reference voltage VREF2, the intensity of light incident on the photodiode 314 can be determined even if the photodiode 314 is saturated before the end of the exposure phase.


Although embodiments are primarily described above with reference to using a comparator 410 and a counter 418, various other types of circuits may be used to measure the slope of voltage signal VSIG.


When the intensity of light incident on the photodiode 314 does not exceed the threshold, the charge accumulated remains in the photodiode 314 and is not transferred to the second n+ diffusion well 320 during the exposure phase. Therefore, there is no change left in the voltage at the floating diffusion point FD and no decrease in the voltage signal VSIG is detected during the exposure phase. In this case, the voltage signal VSIG changes only after the transistor TX is fully turned on at a sensing phase subsequent to the exposure phase. When the transistor TX is turned on, the voltage at the floating diffusion point FD decreases to a certain level from its initial reset voltage level and sets the gate voltage of the amplifier TS to a certain voltage. In response, the source terminal of the amplifier TS also reaches a certain voltage level.



FIG. 7 is a graph illustrating measuring of the voltage signal VSIG level after the amplifier TS is turned on in the sensing phase, according to one embodiment. Contrary to FIGS. 5 and 6, the voltage signal VSIG at interconnect 350 remains relatively stable throughout the sensing phase subsequent to the exposure phase.


In the sensing phase, the comparator 410 is provided with the signal voltage VSIG at the first terminal and third reference voltage VREF3 signal at a second terminal. In the embodiment of FIG. 7, VREF3 is a ramp signal that sweeps from the minimum expected VSIG value to the maximum VSIG value. The third terminal of the comparator 410 is not used and placed in a high impedance state. At the start of the sensing phase, the counter 418 is turned on. While the counter 418 is running based on the clock signal 434, the third reference voltage VREF3 signal is gradually increased. When the third reference voltage VREF3 signal reaches the voltage signal VSIG at time T4, the counter 418 produces a stop signal over line 428 that stops the counter 418. The counter value of the counter 418 represents time period TPU between the starting time of the sensing phase and a time at which the third reference voltage VREF3 signal to reach the voltage signal VSIG voltage level. If the voltage signal VSIG is higher, the higher the counter value would be. Hence, by detecting the counter value in the sensing phase, the voltage level of the voltage signal VSIG can be determined, which in turn enables the measuring of the light intensity below the threshold level.


The reference voltage VREF3 may be provide by a signal generator (not shown). Although the embodiment of FIG. 7 uses the reference voltage VREF3 that increase linearly, the reference voltage VREF3 may increase in a non-linear manner in other embodiments.



FIG. 8 is a diagram illustrating a method of detecting light intensity in low light conditions and high light conditions, according to one embodiment. An intermediate voltage is applied 800 to the gate of a transistor TX in an exposure phase that neither turns on nor turns off the transistor TX.


By placing the gate voltage at the intermediate voltage, charge moves from the photodiode to the second n+ diffusion well when the light intensity of the back side illumination exceeds a certain threshold. In high light conditions, the light intensity received at the photodiode is above the threshold. As a result, charge from the photodiode is transferred 812 to a floating diffusion point FD in a first substrate.


A pixel level interconnect transmits 816 a voltage signal VSIG from the first substrate to the second substrate. The voltage signal VSIG represents an amplified version of a voltage at the floating diffusion point FD. The circuit receives the voltage signal VSIG via the pixel level interconnect, processes the voltage signal VSIG, and generates a digital output indicating the intensity and/or duration of the light to which the photodiode was exposed, as described in detail below.


The circuit in the second substrate detects 820 a time difference Tp between a first time T1 when the voltage signal VSIG reaches a first threshold and a second time T2 when the voltage signal VSIG reaches a second threshold different from the first threshold. The comparator in the second substrate generates a first output at the first time T1 at which the voltage signal VSIG corresponds to a first reference voltage VREF1 and transmits the first output to the counter at the first time T1. The comparator also generates a second output at the second time T2 at which the voltage signal VSIG corresponds to the second reference voltage VREF2 which is higher than the first reference voltage VREF1 and transmits the second output to the counter at the second time T2. The counter counts a number of clock pulses between the first time T1 and the second time T2.


In a sensing phase subsequent to the exposure phase, a turn-on voltage is applied 824 to the gate of the transistor TX to place the transistor TX in a saturation state.


Charge from the photodiode is transferred 828 to the floating diffusion point FD in the first substrate when the intensity of light incident on the photodiode during the exposure phase exceeds a threshold intensity. If the light intensity does not exceed the threshold intensity, the charge accumulates within the photodiode without transferring over to the floating diffusion point FD.


The pixel level interconnect transmits 830 the voltage signal VSIG from the first substrate to the second substrate. The circuit detects 850 a time at which a reference voltage VREF1 increasing over time reaches the voltage signal VSIG during the sensing phase. The voltage signal VSIG remains relatively stable in the sensing phase subsequent to the exposure phase. The comparator is provided with the voltage signal VSIG and the first reference voltage VREF1. At the start of the sensing phase, the counter is turned on. While the counter is running based on the clock signal, the first reference voltage VREF1 is gradually increased. When the first reference voltage VREF1 reaches the voltage signal VSIG at time T4, the counter produces a latch signal over line that stops the counter.


The language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the patent rights be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments is intended to be illustrative, but not limiting, of the scope of the patent rights, which is set forth in the following claims.

Claims
  • 1. An apparatus, comprising: a photodiode configured to generate charge in response to incident light within an exposure period; anda quantizer comprising a comparator and a memory configured to: perform at least one of a first quantization operation to generate a first digital output or a second quantization operation to generate a second digital output; andoutput, based on a range of an intensity of the incident light, one of the first digital output or the second digital output to represent the intensity of the incident light,wherein the first quantization operation comprises comparing, using the comparator, a first voltage representing at least a first part of the charge during the exposure period against one or more threshold voltages to generate one or more first comparison results, and storing the first digital output in the memory based on the one or more first comparison results; andwherein the second quantization operation comprises comparing, using the comparator, a second voltage representing at least a second part of the charge after the exposure period against a ramping threshold voltage to generate a second comparison result, and storing the second digital output in the memory based on the second comparison result.
  • 2. The apparatus of claim 1, wherein the photodiode is configured to: store the second part of the charge until the photodiode saturates; andoutput the first part of the charge after the photodiode saturates.
  • 3. The apparatus of claim 2, further comprising a capacitor; wherein the capacitor is configured to store the first part of the charge during the exposure period; andwherein the quantizer is configured to perform the first quantization operation on the first part of the charge stored in the capacitor during the exposure period.
  • 4. The apparatus of claim 3, wherein the capacitor is configured to store the second part of the charge after the exposure period; and wherein the quantizer is configured to perform the second quantization operation on the second part of the charge stored in the capacitor after the exposure period.
  • 5. The apparatus of claim 4, further comprising a first transistor coupled between the photodiode and the capacitor; wherein during the exposure period, a gate of the first transistor is configured to receive a first voltage to enable the photodiode to store the second part of the charge; andwherein after the exposure period, the gate of the first transistor is configured to receive a second voltage to enable the photodiode to output the second part of the charge to the capacitor.
  • 6. The apparatus of claim 5, wherein the first voltage sets a capacity of the photodiode for storing the second part of the charge.
  • 7. The apparatus of claim 5, wherein the first voltage corresponds to an upper limit of the intensity of the incident light to be measured by the second quantization operation.
  • 8. The apparatus of claim 5, wherein the first voltage is set based on a duration of the exposure period.
  • 9. The apparatus of claim 5, wherein the first voltage is between an active voltage and inactive voltage of the first transistor.
  • 10. The apparatus of claim 5, wherein the capacitor is implemented as a first diffusion region of the first transistor.
  • 11. The apparatus of claim 4, further comprising a second transistor coupled between the photodiode and a charge sink, the charge sink being coupled with a second drain region of the second transistor; wherein a duration of the exposure period is set based on enabling and disabling of the second transistor.
  • 12. The apparatus of claim 1, wherein the first quantization operation comprises determining a time when the first voltage intersects with a threshold voltage of the one or more threshold voltages, and generating the first digital output based on the time.
  • 13. The apparatus of claim 1, wherein the first quantization operation comprises determining a time elapsed between when the first voltage intersects with a first threshold voltage of the one or more threshold voltages and when the first voltage intersects with a second threshold voltage of the one or more threshold voltages, and generating the first digital output based on the time.
  • 14. The apparatus of claim 1, wherein the first quantization operation comprises measuring a physical quantity indicative of a rate of change of a quantity of the first part of the charge within the exposure period, and generating the first digital output based on the measured physical quantity.
  • 15. The apparatus of claim 1, wherein the second quantization operation comprises measuring a quantity of the second part of the charge.
  • 16. The apparatus of claim 1, wherein the first digital output is provided to represent the intensity of the incident light based on a light condition of an environment the apparatus operates in, the light condition being indicative of the range of the intensity of the incident light received by the photodiode.
  • 17. The apparatus of claim 1, wherein the photodiode is formed in a first semiconductor substrate; wherein the quantizer is formed in a second semiconductor substrate; andwherein the first semiconductor substrate and the second semiconductor substrate forms a stack.
  • 18. A method comprising: generating, a photodiode, charge in response to incident light within an exposure period;performing, by a quantizer comprising a comparator and a memory, at least one of a first quantization operation to generate a first digital output or a second quantization operation to generate a second digital output; andoutputting, by the quantizer and based on a range of an intensity of the incident light, one of the first digital output or the second digital output to represent the intensity of the incident light,wherein the first quantization operation comprises comparing, using the comparator, a first voltage representing at least a first part of the charge during the exposure period against one or more threshold voltages to generate one or more first comparison results, and storing the first digital output in the memory based on the one or more first comparison results; andwherein the second quantization operation comprises comparing, using the comparator, a second voltage representing at least a second part of the charge after the exposure period against a ramping threshold voltage to generate a second comparison result, and storing the second digital output in the memory based on the second comparison result.
  • 19. The method of claim 18, wherein the photodiode stores the second part of the charge until the photodiode saturates and outputs the first part of the charge after the photodiode saturates.
  • 20. The method of claim 18, wherein the first quantization operation comprises determining a time when the first voltage intersects with a threshold voltage of the one or more threshold voltages, and generating the first digital output based on the time; and wherein the second quantization operation comprises measuring a quantity of the second part of the charge.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Non-Provisional application Ser. No. 15/983,379 filed May 18, 2018 which claims the benefit and priority of U.S. Provisional Application No. 62/546,993 filed Aug. 17, 2017, which are incorporated by reference in their entirety for all purposes.

US Referenced Citations (340)
Number Name Date Kind
4596977 Bauman et al. Jun 1986 A
5053771 McDermott Oct 1991 A
5650643 Konuma Jul 1997 A
5844512 Gorin et al. Dec 1998 A
5963369 Steinthal et al. Oct 1999 A
6181822 Miller et al. Jan 2001 B1
6384905 Barrows May 2002 B1
6522395 Bamji et al. Feb 2003 B1
6529241 Clark Mar 2003 B1
6864817 Salvi et al. Mar 2005 B1
6963369 Olding Nov 2005 B1
7326903 Ackland Feb 2008 B2
7362365 Reyneri et al. Apr 2008 B1
7659772 Nomura et al. Feb 2010 B2
7659925 Krymski Feb 2010 B2
7719589 Turchetta et al. May 2010 B2
7880779 Storm Feb 2011 B2
7956914 Xu Jun 2011 B2
8134623 Purcell et al. Mar 2012 B2
8144227 Kobayashi Mar 2012 B2
8369458 Wong et al. Feb 2013 B2
8426793 Barrows Apr 2013 B1
8754798 Lin Jun 2014 B2
8773562 Fan Jul 2014 B1
8779346 Fowler et al. Jul 2014 B2
8946610 Iwabuchi et al. Feb 2015 B2
9001251 Smith et al. Apr 2015 B2
9094629 Ishibashi Jul 2015 B2
9185273 Beck et al. Nov 2015 B2
9274151 Lee et al. Mar 2016 B2
9282264 Park et al. Mar 2016 B2
9332200 Hseih et al. May 2016 B1
9343497 Cho May 2016 B2
9363454 Ito et al. Jun 2016 B2
9478579 Dai et al. Oct 2016 B2
9497396 Choi Nov 2016 B2
9531990 Wilkins et al. Dec 2016 B1
9800260 Banerjee Oct 2017 B1
9819885 Furukawa Nov 2017 B2
9832370 Cho et al. Nov 2017 B2
9909922 Schweickert et al. Mar 2018 B2
9948316 Yun et al. Apr 2018 B1
9955091 Dai et al. Apr 2018 B1
9967496 Ayers et al. May 2018 B2
10003759 Fan Jun 2018 B2
10015416 Borthakur et al. Jul 2018 B2
10090342 Gambino et al. Oct 2018 B1
10096631 Ishizu Oct 2018 B2
10154221 Ogino et al. Dec 2018 B2
10157951 Kim et al. Dec 2018 B2
10321081 Watanabe et al. Jun 2019 B2
10345447 Hicks Jul 2019 B1
10419701 Liu Sep 2019 B2
10574925 Otaka Feb 2020 B2
10594974 Ivarsson et al. Mar 2020 B2
10598546 Liu Mar 2020 B2
10608101 Liu Mar 2020 B2
10686996 Liu Jun 2020 B2
10726627 Liu Jul 2020 B2
10750097 Liu Aug 2020 B2
10764526 Liu et al. Sep 2020 B1
10804926 Gao et al. Oct 2020 B2
10812742 Chen et al. Oct 2020 B2
10825854 Liu Nov 2020 B2
10834344 Chen et al. Nov 2020 B2
10897586 Liu et al. Jan 2021 B2
10903260 Chen et al. Jan 2021 B2
10917589 Liu Feb 2021 B2
10951849 Liu Mar 2021 B2
10969273 Berkovich et al. Apr 2021 B2
11004881 Liu et al. May 2021 B2
11057581 Liu Jul 2021 B2
11089210 Berkovich et al. Aug 2021 B2
11595598 Liu et al. Feb 2023 B2
11595602 Gao et al. Feb 2023 B2
11729525 Liu Aug 2023 B2
20020067303 Lee et al. Jun 2002 A1
20020113886 Hynecek Aug 2002 A1
20020118289 Choi Aug 2002 A1
20030001080 Kummaraguntla et al. Jan 2003 A1
20030020100 Guidash Jan 2003 A1
20030049925 Layman et al. Mar 2003 A1
20040095495 Inokuma et al. May 2004 A1
20040118994 Mizuno Jun 2004 A1
20040251483 Ko et al. Dec 2004 A1
20050046715 Lim et al. Mar 2005 A1
20050057389 Krymski Mar 2005 A1
20050104983 Raynor May 2005 A1
20050206414 Cottin et al. Sep 2005 A1
20050237380 Kakii et al. Oct 2005 A1
20050280727 Sato et al. Dec 2005 A1
20060023109 Mabuchi et al. Feb 2006 A1
20060146159 Farrier Jul 2006 A1
20060157759 Okita et al. Jul 2006 A1
20060158541 Ichikawa Jul 2006 A1
20070013983 Kitamura et al. Jan 2007 A1
20070076109 Krymski Apr 2007 A1
20070076481 Tennant Apr 2007 A1
20070092244 Pertsel et al. Apr 2007 A1
20070102740 Ellis-Monaghan et al. May 2007 A1
20070131991 Sugawa Jun 2007 A1
20070208526 Staudt et al. Sep 2007 A1
20070222881 Mentzer Sep 2007 A1
20080001065 Ackland Jan 2008 A1
20080007731 Botchway et al. Jan 2008 A1
20080042888 Danesh Feb 2008 A1
20080068478 Watanabe Mar 2008 A1
20080088014 Adkisson et al. Apr 2008 A1
20080191791 Nomura et al. Aug 2008 A1
20080226170 Sonoda Sep 2008 A1
20080226183 Lei et al. Sep 2008 A1
20080266434 Sugawa et al. Oct 2008 A1
20090002528 Manabe et al. Jan 2009 A1
20090033588 Kajita et al. Feb 2009 A1
20090040364 Rubner Feb 2009 A1
20090091645 Trimeche et al. Apr 2009 A1
20090128640 Yumiki May 2009 A1
20090140305 Sugawa Jun 2009 A1
20090219266 Lim et al. Sep 2009 A1
20090224139 Buettgen et al. Sep 2009 A1
20090237536 Purcell et al. Sep 2009 A1
20090244346 Funaki Oct 2009 A1
20090245637 Barman et al. Oct 2009 A1
20090261235 Lahav et al. Oct 2009 A1
20090321615 Sugiyama et al. Dec 2009 A1
20100013969 Ui Jan 2010 A1
20100140732 Eminoglu et al. Jun 2010 A1
20100194956 Yuan et al. Aug 2010 A1
20100232227 Lee Sep 2010 A1
20100276572 Iwabuchi et al. Nov 2010 A1
20110049589 Chuang et al. Mar 2011 A1
20110122304 Sedelnikov May 2011 A1
20110149116 Kim Jun 2011 A1
20110155892 Neter et al. Jun 2011 A1
20110254986 Nishimura et al. Oct 2011 A1
20120016817 Smith et al. Jan 2012 A1
20120039548 Wang et al. Feb 2012 A1
20120068051 Ahn et al. Mar 2012 A1
20120092677 Suehira et al. Apr 2012 A1
20120105475 Tseng May 2012 A1
20120105668 Velarde et al. May 2012 A1
20120113119 Massie May 2012 A1
20120127284 Bar-Zeev et al. May 2012 A1
20120133807 Wu et al. May 2012 A1
20120138775 Cheon et al. Jun 2012 A1
20120153123 Mao et al. Jun 2012 A1
20120188420 Black et al. Jul 2012 A1
20120200499 Osterhout et al. Aug 2012 A1
20120205520 Hsieh et al. Aug 2012 A1
20120212465 White et al. Aug 2012 A1
20120241591 Wan et al. Sep 2012 A1
20120262616 Sa et al. Oct 2012 A1
20120267511 Kozlowski Oct 2012 A1
20120273654 Hynecek et al. Nov 2012 A1
20120305751 Kusuda Dec 2012 A1
20130020466 Ayers et al. Jan 2013 A1
20130056809 Mao et al. Mar 2013 A1
20130057742 Nakamura et al. Mar 2013 A1
20130068929 Solhusvik et al. Mar 2013 A1
20130069787 Petrou Mar 2013 A1
20130082313 Manabe Apr 2013 A1
20130113969 Manabe et al. May 2013 A1
20130126710 Kondo May 2013 A1
20130141619 Lim et al. Jun 2013 A1
20130187027 Qiao et al. Jul 2013 A1
20130207219 Ahn Aug 2013 A1
20130214127 Ohya et al. Aug 2013 A1
20130214371 Asatsuma et al. Aug 2013 A1
20130218728 Hashop et al. Aug 2013 A1
20130221194 Manabe Aug 2013 A1
20130229543 Hashimoto et al. Sep 2013 A1
20130229560 Kondo Sep 2013 A1
20130234029 Bikumandla Sep 2013 A1
20130293752 Peng et al. Nov 2013 A1
20130299674 Fowler et al. Nov 2013 A1
20140021574 Egawa Jan 2014 A1
20140042299 Wan et al. Feb 2014 A1
20140042582 Kondo Feb 2014 A1
20140070974 Park et al. Mar 2014 A1
20140078336 Beck et al. Mar 2014 A1
20140085523 Hynecek Mar 2014 A1
20140176770 Kondo Jun 2014 A1
20140211052 Choi Jul 2014 A1
20140232890 Yoo et al. Aug 2014 A1
20140247382 Moldovan et al. Sep 2014 A1
20140306276 Yamaguchi Oct 2014 A1
20140368687 Yu et al. Dec 2014 A1
20150070544 Smith et al. Mar 2015 A1
20150077611 Yamashita et al. Mar 2015 A1
20150083895 Hashimoto et al. Mar 2015 A1
20150085134 Novotny et al. Mar 2015 A1
20150090863 Mansoorian et al. Apr 2015 A1
20150172574 Honda et al. Jun 2015 A1
20150179696 Kurokawa et al. Jun 2015 A1
20150189209 Yang et al. Jul 2015 A1
20150201142 Smith et al. Jul 2015 A1
20150208009 Oh et al. Jul 2015 A1
20150229859 Guidash et al. Aug 2015 A1
20150237274 Yang et al. Aug 2015 A1
20150279884 Kusumoto Oct 2015 A1
20150281613 Vogelsang et al. Oct 2015 A1
20150287766 Kim et al. Oct 2015 A1
20150309311 Cho Oct 2015 A1
20150309316 Osterhout et al. Oct 2015 A1
20150312461 Kim et al. Oct 2015 A1
20150312502 Borremans Oct 2015 A1
20150312557 Kim Oct 2015 A1
20150350582 Korobov et al. Dec 2015 A1
20150358569 Egawa Dec 2015 A1
20150358571 Dominguez Castro et al. Dec 2015 A1
20150358593 Sato Dec 2015 A1
20150381907 Boettiger et al. Dec 2015 A1
20150381911 Shen et al. Dec 2015 A1
20160011422 Thurber et al. Jan 2016 A1
20160018645 Haddick et al. Jan 2016 A1
20160021302 Cho et al. Jan 2016 A1
20160028974 Guidash et al. Jan 2016 A1
20160028980 Kameyama et al. Jan 2016 A1
20160037111 Dai et al. Feb 2016 A1
20160078614 Ryu et al. Mar 2016 A1
20160088253 Tezuka Mar 2016 A1
20160100113 Oh et al. Apr 2016 A1
20160100115 Kusano Apr 2016 A1
20160111457 Sekine Apr 2016 A1
20160112626 Shimada Apr 2016 A1
20160118992 Milkov Apr 2016 A1
20160165160 Hseih et al. Jun 2016 A1
20160197117 Nakata et al. Jul 2016 A1
20160204150 Oh et al. Jul 2016 A1
20160210785 Balachandreswaran et al. Jul 2016 A1
20160240570 Barna et al. Aug 2016 A1
20160249004 Saeki et al. Aug 2016 A1
20160255293 Gesset Sep 2016 A1
20160277010 Park et al. Sep 2016 A1
20160307945 Madurawe Oct 2016 A1
20160307949 Madurawe Oct 2016 A1
20160337605 Ito Nov 2016 A1
20160353045 Kawahito et al. Dec 2016 A1
20160360127 Dierickx et al. Dec 2016 A1
20170013215 McCarten Jan 2017 A1
20170039906 Jepsen Feb 2017 A1
20170041571 Tyrrell et al. Feb 2017 A1
20170053962 Oh et al. Feb 2017 A1
20170059399 Suh et al. Mar 2017 A1
20170062501 Velichko et al. Mar 2017 A1
20170069363 Baker Mar 2017 A1
20170070691 Nishikido Mar 2017 A1
20170099422 Goma Apr 2017 A1
20170099446 Cremers et al. Apr 2017 A1
20170104021 Park et al. Apr 2017 A1
20170104946 Hong Apr 2017 A1
20170111600 Wang et al. Apr 2017 A1
20170141147 Raynor May 2017 A1
20170154909 Ishizu Jun 2017 A1
20170170223 Hynecek et al. Jun 2017 A1
20170195602 Iwabuchi et al. Jul 2017 A1
20170201693 Sugizaki et al. Jul 2017 A1
20170207268 Kurokawa Jul 2017 A1
20170228345 Gupta et al. Aug 2017 A1
20170251151 Hicks Aug 2017 A1
20170270664 Hoogi et al. Sep 2017 A1
20170272667 Hynecek Sep 2017 A1
20170272768 Tall et al. Sep 2017 A1
20170280031 Price et al. Sep 2017 A1
20170293799 Skogo et al. Oct 2017 A1
20170310910 Smith et al. Oct 2017 A1
20170318250 Sakakibara et al. Nov 2017 A1
20170324917 Mlinar et al. Nov 2017 A1
20170338262 Hirata Nov 2017 A1
20170339327 Koshkin et al. Nov 2017 A1
20170346579 Barghi Nov 2017 A1
20170350755 Geurts Dec 2017 A1
20170359497 Mandelli et al. Dec 2017 A1
20170366766 Geurts et al. Dec 2017 A1
20180019269 Klipstein Jan 2018 A1
20180077368 Suzuki Mar 2018 A1
20180115725 Zhang et al. Apr 2018 A1
20180136471 Miller et al. May 2018 A1
20180143701 Suh et al. May 2018 A1
20180152650 Sakakibara et al. May 2018 A1
20180167575 Watanabe et al. Jun 2018 A1
20180175083 Takahashi Jun 2018 A1
20180176545 Aflaki Beni Jun 2018 A1
20180204867 Kim et al. Jul 2018 A1
20180220093 Murao et al. Aug 2018 A1
20180224658 Teller Aug 2018 A1
20180227516 Mo et al. Aug 2018 A1
20180241953 Johnson Aug 2018 A1
20180270436 Ivarsson et al. Sep 2018 A1
20180276841 Krishnaswamy et al. Sep 2018 A1
20180376046 Liu Dec 2018 A1
20180376090 Liu Dec 2018 A1
20190035154 Liu Jan 2019 A1
20190046044 Tzvieli et al. Feb 2019 A1
20190052788 Liu Feb 2019 A1
20190052821 Berner et al. Feb 2019 A1
20190056264 Liu Feb 2019 A1
20190057995 Liu Feb 2019 A1
20190058058 Liu Feb 2019 A1
20190098232 Mori et al. Mar 2019 A1
20190104263 Ochiai et al. Apr 2019 A1
20190104265 Totsuka et al. Apr 2019 A1
20190110039 Linde et al. Apr 2019 A1
20190123088 Kwon Apr 2019 A1
20190141270 Otaka et al. May 2019 A1
20190149751 Wise May 2019 A1
20190157330 Sato et al. May 2019 A1
20190172227 Kasahara Jun 2019 A1
20190172868 Chen et al. Jun 2019 A1
20190191116 Madurawe Jun 2019 A1
20190246036 Wu et al. Aug 2019 A1
20190253650 Kim Aug 2019 A1
20190327439 Chen et al. Oct 2019 A1
20190331914 Lee et al. Oct 2019 A1
20190335151 Rivard et al. Oct 2019 A1
20190348460 Chen et al. Nov 2019 A1
20190355782 Do et al. Nov 2019 A1
20190363118 Berkovich et al. Nov 2019 A1
20190371845 Chen et al. Dec 2019 A1
20190376845 Liu et al. Dec 2019 A1
20190379388 Gao et al. Dec 2019 A1
20190379827 Berkovich et al. Dec 2019 A1
20190379846 Chen et al. Dec 2019 A1
20200007800 Berkovich et al. Jan 2020 A1
20200053299 Zhang et al. Feb 2020 A1
20200059589 Liu et al. Feb 2020 A1
20200068189 Chen et al. Feb 2020 A1
20200186731 Chen et al. Jun 2020 A1
20200195875 Berkovich et al. Jun 2020 A1
20200217714 Liu Jul 2020 A1
20200228745 Otaka Jul 2020 A1
20200374475 Fukuoka et al. Nov 2020 A1
20210026796 Graif et al. Jan 2021 A1
20210099659 Miyauchi et al. Apr 2021 A1
20210185264 Wong et al. Jun 2021 A1
20210227159 Sambonsugi Jul 2021 A1
20210368124 Berkovich et al. Nov 2021 A1
20230080288 Berkovich et al. Mar 2023 A1
20230092325 Tsai et al. Mar 2023 A1
20230239582 Berkovich et al. Jul 2023 A1
Foreign Referenced Citations (100)
Number Date Country
1490878 Apr 2004 CN
1728397 Feb 2006 CN
1812506 Aug 2006 CN
101753866 Jun 2010 CN
103002228 Mar 2013 CN
103207716 Jul 2013 CN
104125418 Oct 2014 CN
104204904 Dec 2014 CN
104469195 Mar 2015 CN
104704812 Jun 2015 CN
104733485 Jun 2015 CN
104754255 Jul 2015 CN
204633945 Sep 2015 CN
105144699 Dec 2015 CN
105529342 Apr 2016 CN
105706439 Jun 2016 CN
205666884 Oct 2016 CN
106255978 Dec 2016 CN
106791504 May 2017 CN
107852473 Mar 2018 CN
109298528 Feb 2019 CN
202016105510 Oct 2016 DE
0675345 Oct 1995 EP
1681856 Jul 2006 EP
1732134 Dec 2006 EP
1746820 Jan 2007 EP
1788802 May 2007 EP
2037505 Mar 2009 EP
2063630 May 2009 EP
2538664 Dec 2012 EP
2804074 Nov 2014 EP
2833619 Feb 2015 EP
3032822 Jun 2016 EP
3229457 Oct 2017 EP
3258683 Dec 2017 EP
3425352 Jan 2019 EP
3439039 Feb 2019 EP
3744085 Dec 2020 EP
H08195906 Jul 1996 JP
2001008101 Jan 2001 JP
2002199292 Jul 2002 JP
2003319262 Nov 2003 JP
2005328493 Nov 2005 JP
2006197382 Jul 2006 JP
2006203736 Aug 2006 JP
2007074447 Mar 2007 JP
2011216966 Oct 2011 JP
2012054495 Mar 2012 JP
2012054876 Mar 2012 JP
2012095349 May 2012 JP
2013009087 Jan 2013 JP
2013055581 Mar 2013 JP
2013172203 Sep 2013 JP
2013225774 Oct 2013 JP
2014107596 Jun 2014 JP
2014165733 Sep 2014 JP
2014236183 Dec 2014 JP
2015065524 Apr 2015 JP
2015126043 Jul 2015 JP
2015530855 Oct 2015 JP
2015211259 Nov 2015 JP
2016092661 May 2016 JP
2016513942 May 2016 JP
2017509251 Mar 2017 JP
100574959 Apr 2006 KR
20080019652 Mar 2008 KR
20090023549 Mar 2009 KR
20110050351 May 2011 KR
20110134941 Dec 2011 KR
20120058337 Jun 2012 KR
20120117953 Oct 2012 KR
20150095841 Aug 2015 KR
20160008267 Jan 2016 KR
20160008287 Jan 2016 KR
201448184 Dec 2014 TW
201719874 Jun 2017 TW
201728161 Aug 2017 TW
624694 May 2018 TW
2006124592 Nov 2006 WO
2006129762 Dec 2006 WO
2010117462 Oct 2010 WO
2013099723 Jul 2013 WO
WO-2014055391 Apr 2014 WO
2014144391 Sep 2014 WO
2015135836 Sep 2015 WO
2015182390 Dec 2015 WO
2016014860 Jan 2016 WO
WO-2016095057 Jun 2016 WO
2016194653 Dec 2016 WO
WO-2017003477 Jan 2017 WO
WO-2017013806 Jan 2017 WO
WO-2017047010 Mar 2017 WO
2017058488 Apr 2017 WO
2017069706 Apr 2017 WO
2017169882 Oct 2017 WO
WO-2017169446 Oct 2017 WO
WO-2019018084 Jan 2019 WO
WO-2019111528 Jun 2019 WO
WO-2019145578 Aug 2019 WO
2019168929 Sep 2019 WO
Non-Patent Literature Citations (243)
Entry
U.S. Appl. No. 16/436,137, “Non-Final Office Action”, dated Dec. 4, 2020, 12 pages.
U.S. Appl. No. 16/566,583, “Corrected Notice of Allowability”, dated Dec. 11, 2020, 2 pages.
U.S. Appl. No. 15/983,379, “Notice of Allowance”, dated Oct. 18, 2019, 9 pages.
European Application No. EP18189100.3, “Extended European Search Report”, dated Oct. 9, 2018, 9 pages.
International Search Report and Written Opinion—PCT/US2018/046131—ISA/KR—dated Dec. 3, 2018, 12 pages.
Xu, et al., “A New Digital-Pixel Architecture for CMOS Image Sensor With Pixel-Level ADC and Pulse Width Modulation using A 0.18 Mu M CMOS Technology”, IEEE Conference on Electron Devices and Solid-State Circuits, Dec. 16-18, 2003, pp. 365-368.
U.S. Appl. No. 15/668,241 , Advisory Action, dated Oct. 23, 2019, 5 pages.
U.S. Appl. No. 15/668,241 , Final Office Action, dated Jun. 17, 2019, 19 pages.
U.S. Appl. No. 15/668,241 , Non-Final Office Action, dated Dec. 21, 2018, 3 pages.
U.S. Appl. No. 15/668,241 , Notice of Allowance, dated Jun. 29, 2020, 8 pages.
U.S. Appl. No. 15/668,241 , Notice of Allowance, dated Mar. 5, 2020, 8 pages.
U.S. Appl. No. 15/668,241 , “Supplemental Notice of Allowability”, dated Apr. 29, 2020, 5 pages.
U.S. Appl. No. 15/719,345 , Final Office Action, dated Apr. 29, 2020, 14 pages.
U.S. Appl. No. 15/719,345 , Non- Final Office Action, dated Nov. 25, 2019, 14 pages.
U.S. Appl. No. 15/719,345 , Notice of Allowance, dated Aug. 12, 2020, 11 pages.
U.S. Appl. No. 15/801,216 , Advisory Action, dated Apr. 7, 2020, 3 pages.
U.S. Appl. No. 15/801,216 , Final Office Action, dated Dec. 26, 2019, 5 pages.
U.S. Appl. No. 15/801,216 , Non-Final Office Action, dated Jun. 27, 2019, 13 pages.
U.S. Appl. No. 15/801,216 , Notice of Allowance, dated Jun. 23, 2020, 5 pages.
U.S. Appl. No. 15/847,517 , Non-Final Office Action, dated Nov. 23, 2018, 21 pages.
U.S. Appl. No. 15/847,517 , Notice of Allowance, dated May 1, 2019, 11 pages.
U.S. Appl. No. 15/861,588 , Non-Final Office Action, dated Jul. 10, 2019, 11 pages.
U.S. Appl. No. 15/861,588 , Notice of Allowance, dated Nov. 26, 2019, 9 pages.
U.S. Appl. No. 15/876,061 , “Corrected Notice of Allowability”, dated Apr. 28, 2020, 3 pages.
U.S. Appl. No. 15/876,061 , Non-Final Office Action, dated Sep. 18, 2019, 23 pages.
U.S. Appl. No. 15/876,061 , “Notice of Allowability”, dated May 6, 2020, 2 pages.
U.S. Appl. No. 15/876,061 , Notice of Allowance, dated Feb. 4, 2020, 13 pages.
U.S. Appl. No. 15/927,896 , Non-Final Office Action, dated May 1, 2019, 10 pages.
U.S. Appl. No. 15/983,391 , Non-Final Office Action, dated Aug. 29, 2019, 12 pages.
U.S. Appl. No. 15/983,391 , Notice of Allowance, dated Apr. 8, 2020, 8 pages.
U.S. Appl. No. 16/177,971 , Final Office Action, dated Feb. 27, 2020, 9 pages.
U.S. Appl. No. 16/177,971 , Non-Final Office Action, dated Sep. 25, 2019, 9 pages.
U.S. Appl. No. 16/177,971 , Notice of Allowance, dated Apr. 24, 2020, 6 pages.
U.S. Appl. No. 16/210,748 , Final Office Action, dated Jul. 7, 2020, 11 pages.
U.S. Appl. No. 16/210,748 , Non-Final Office Action, dated Jan. 31, 2020, 11 pages.
U.S. Appl. No. 16/249,420 , Non-Final Office Action, dated Jul. 22, 2020, 9 pages.
U.S. Appl. No. 16/286,355 , Non-Final Office Action, dated Oct. 1, 2019, 6 pages.
U.S. Appl. No. 16/286,355 , Notice of Allowance, dated Feb. 12, 2020, 7 pages.
U.S. Appl. No. 16/286,355 , Notice of Allowance, dated Jun. 4, 2020, 7 pages.
U.S. Appl. No. 16/369,763 , Non-Final Office Action, dated Jul. 22, 2020, 15 pages.
U.S. Appl. No. 16/382,015 , Notice of Allowance, dated Jun. 11, 2020, 11 pages.
U.S. Appl. No. 16/384,720 , Non-Final Office Action, dated May 1, 2020, 6 pages.
U.S. Appl. No. 16/431,693 , Non-Final Office Action, dated Jan. 30, 2020, 6 pages.
U.S. Appl. No. 16/431,693 , Notice of Allowance, dated Jun. 24, 2020, 7 pages.
U.S. Appl. No. 16/435,449 , Notice of Allowance, dated Jul. 27, 2020, 8 pages.
U.S. Appl. No. 16/436,049 , Non-Final Office Action, dated Jun. 30, 2020, 11 pages.
U.S. Appl. No. 16/436,049 , Non-Final Office Action, dated Mar. 4, 2020, 9 pages.
U.S. Appl. No. 16/454,787 , Notice of Allowance, dated Apr. 22, 2020, 10 pages.
U.S. Appl. No. 16/454,787 , Notice of Allowance, dated Jul. 9, 2020, 9 pages.
U.S. Appl. No. 16/566,583 , Final Office Action, dated Apr. 15, 2020, 24 pages.
U.S. Appl. No. 16/566,583 , Non-Final Office Action, dated Oct. 1, 2019, 10 pages.
U.S. Appl. No. 16/566,583 , Non-Final Office Action, dated Jul. 27, 2020, 11 pages.
Cho et al., “A Low Power Dual CDS for a Column-Parallel CMOS Image Sensor”, Journal of Semiconductor Technology and Science, vol. 12, No. 4, Dec. 30, 2012, pp. 388-396.
Application No. EP18179838.0 , Extended European Search Report, dated May 24, 2019, 17 pages.
EP18179838.0 , “Partial European Search Report”, dated Dec. 5, 2018, 14 pages.
Application No. EP18179846.3 , Extended European Search Report, dated Dec. 7, 2018, 10 pages.
Application No. EP18179851.3 , Extended European Search Report, dated Dec. 7, 2018, 8 pages.
Application No. EP18188684.7 , Extended European Search Report, dated Jan. 16, 2019, 10 pages.
Application No. EP18188684.7 , Office Action, dated Nov. 26, 2019, 9 pages.
Application No. EP18188962.7 , Extended European Search Report, dated Oct. 23, 2018, 8 pages.
Application No. EP18188962.7 , Office Action, dated Aug. 28, 2019, 6 pages.
Application No. EP18188968.4 , Extended European Search Report, dated Oct. 23, 2018, 8 pages.
Application No. EP18188968.4 , Office Action, dated Aug. 14, 2019, 5 pages.
Kavusi et al., “Quantitative Study of High-Dynamic-Range Image Sensor Architectures”, Proceedings of Society of Photo-Optical Instrumentation Engineers—The International Society for Optical Engineering, vol. 5301, Jun. 2004, pp. 264-275.
Application No. PCT/US2018/039350 , International Preliminary Report on Patentability, dated Jan. 9, 2020, 10 pages.
Application No. PCT/US2018/039350 , International Search Report and Written Opinion, dated Nov. 15, 2018, 13 pages.
Application No. PCT/US2018/039352 , International Search Report and Written Opinion, dated Oct. 26, 2018, 10 pages.
Application No. PCT/US2018/039431 , International Search Report and Written Opinion, dated Nov. 7, 2018, 14 pages.
Application No. PCT/US2018/045661 , International Search Report and Written Opinion, dated Nov. 30, 2018, 11 Pages.
Application No. PCT/US2018/045666 , International Preliminary Report on Patentability, dated Feb. 27, 2020, 11 pages.
Application No. PCT/US2018/045666 , International Search Report and Written Opinion, dated Dec. 3, 2018, 13 pages.
Application No. PCT/US2018/045673 , International Search Report and Written Opinion, dated Dec. 4, 2018, 13 pages.
Application No. PCT/US2018/064181 , International Preliminary Report on Patentability, dated Jun. 18, 2020, 9 pages.
Application No. PCT/US2018/064181 , International Search Report and Written Opinion, dated Mar. 29, 2019, 12 pages.
Application No. PCT/US2019/014044 , International Search Report and Written Opinion, dated May 8, 2019, 11 pages.
Application No. PCT/US2019/019756 , International Search Report and Written Opinion, dated Jun. 13, 2019, 11 pages.
Application No. PCT/US2019/025170 , International Search Report and Written Opinion, dated Jul. 9, 2019, 11 pages.
Application No. PCT/US2019/027727 , International Search Report and Written Opinion, dated Jun. 27, 2019, 11 pages.
Application No. PCT/US2019/027729 , International Search Report and Written Opinion, dated Jun. 27, 2019, 10 pages.
Application No. PCT/US2019/031521 , International Search Report and Written Opinion, dated Jul. 11, 2019, 11 pages.
Application No. PCT/US2019/035724 , International Search Report and Written Opinion, dated Sep. 10, 2019, 12 pages.
Application No. PCT/US2019/036484 , International Search Report and Written Opinion, dated Sep. 19, 2019, 10 pages.
Application No. PCT/US2019/036492 , International Search Report and Written Opinion, dated Sep. 25, 2019, 9 pages.
Application No. PCT/US2019/036536 , International Search Report and Written Opinion, dated Sep. 26, 2019, 14 pages.
Application No. PCT/US2019/036575 , International Search Report and Written Opinion, dated Sep. 30, 2019, 16 pages.
Application No. PCT/US2019/039410 , International Search Report and Written Opinion, dated Sep. 30, 2019, 11 pages.
Application No. PCT/US2019/039758 , International Search Report and Written Opinion, dated Oct. 11, 2019, 13 pages.
Application No. PCT/US2019/047156 , International Search Report and Written Opinion, dated Oct. 23, 2019, 9 pages.
Application No. PCT/US2019/048241 , International Search Report and Written Opinion, dated Jan. 28, 2020, 16 pages.
Application No. PCT/US2019/049756 , International Search Report and Written Opinion, dated Dec. 16, 2019, 8 pages.
Application No. PCT/US2019/059754 , International Search Report and Written Opinion, dated Mar. 24, 2020, 15 pages.
Application No. PCT/US2019/065430 , International Search Report and Written Opinion, dated Mar. 6, 2020, 15 pages.
Snoeij , “A Low Power Column-Parallel 12-Bit ADC for CMOS Imagers”, Institute of Electrical and Electronics Engineers Workshop on Charge-Coupled Devices And Advanced Image Sensors, Jun. 2005, pp. 169-172.
Tanner et al., “Low-Power Digital Image Sensor for Still Picture Image Acquisition”, Visual Communications and Image Processing, vol. 4306, May 2001, 8 pages.
U.S. Appl. No. 15/719,345, “Notice of Allowance”, dated Sep. 3, 2020, 12 pages.
U.S. Appl. No. 16/454,787, “Notice of Allowance”, dated Sep. 9, 2020, 9 pages.
U.S. Appl. No. 16/707,988, “Non-Final Office Action”, dated Sep. 22, 2020, 15 pages.
U.S. Appl. No. 16/435,451, “Non-Final Office Action”, dated Feb. 1, 2021, 14 pages.
U.S. Appl. No. 16/566,583, “Corrected Notice of Allowability”, dated Feb. 3, 2021, 2 pages.
U.S. Appl. No. 16/896,130, “Non-Final Office Action”, dated Mar. 15, 2021, 16 pages.
U.S. Appl. No. 16/707,988, “Notice of Allowance”, dated May 5, 2021, 14 pages.
U.S. Appl. No. 17/072,840, “Non-Final Office Action”, dated Jun. 8, 2021, 7 pages.
U.S. Appl. No. 17/150,925, “Notice of Allowance”, dated Jul. 8, 2021, 10 pages.
European Application No. 19737299.8, Office Action dated Jul. 7, 2021, 5 pages.
U.S. Appl. No. 16/435,451, Final Office Action dated Jul. 12, 2021, 13 pages.
U.S. Appl. No. 16/436,049, Notice of Allowance dated Oct. 21, 2020, 8 pages.
U.S. Appl. No. 16/896,130, Notice of Allowance dated Jul. 13, 2021, 8 pages.
U.S. Appl. No. 16/707,988, Corrected Notice of Allowability dated Jul. 26, 2021, 2 pages.
U.S. Appl. No. 16/899,908, Notice of Allowance dated Sep. 17, 2021, 11 pages.
Taiwan Application No. 107124385, Office Action dated Sep. 30, 2021, 17 pages (8 pages of Original Document and 9 pages of English Translation).
International Search Report and Written Opinion for International Application No. PCT/US2021/054327, dated Feb. 14, 2022, 8 pages.
Corrected Notice of Allowance dated Mar. 7, 2022 for U.S. Appl. No. 17/150,925, filed Jan. 15, 2021, 2 Pages.
Non-Final Office Action dated Mar. 2, 2022 for U.S. Appl. No. 17/127,670, filed Dec. 18, 2020, 18 pages.
Notice of Allowance dated Mar. 2, 2022 for U.S. Appl. No. 16/453,538, filed Jun. 26, 2019, 8 pages.
Notice of Allowance dated Mar. 7, 2022 for U.S. Appl. No. 16/421,441, filed May 23, 2019, 18 pages.
Notice of Allowance dated Mar. 11, 2022 for U.S. Appl. No. 16/716,050, filed Dec. 16, 2019, 13 pages.
Notification of the First Office Action dated Oct. 28, 2021 for Chinese Application No. 2019800218483, filed Jan. 24, 2019, 17 pages.
International Search Report and Written Opinion for International Application No. PCT/US2021/065174 dated Mar. 28, 2022, 10 pages.
Office Action dated Mar. 15, 2022 for Japanese Patent Application No. 2020505830, filed on Aug. 9, 2018, 12 pages.
International Search Report and Written Opinion for International Application No. PCT/US2021/057966, dated Feb. 22, 2022, 15 pages.
Advisory Action dated Oct. 8, 2020 for U.S. Appl. No. 16/210,748, filed Dec. 5, 2018, 4 Pages.
Amir M.F., et al., “3-D Stacked Image Sensor With Deep Neural Network Computation,” IEEE Sensors Journal, IEEE Service Center, New York, NY, US, May 15, 2018, vol. 18 (10), pp. 4187-4199, XP011681876.
Chuxi L., et al., “A Memristor-Based Processing-in-Memory Architechture for Deep Convolutional Neural Networks Approximate Computation,” Journal of Computer Research and Development, Jun. 30, 2017, vol. 54 (6), pp. 1367-1380.
Communication Pursuant Article 94(3) dated Dec. 23, 2021 for European Application No. 19744961.4, filed Jun. 28, 2019, 8 pages.
Communication Pursuant Article 94(3) dated Jan. 5, 2022 for European Application No. 19740456.9, filed Jun. 27, 2019, 12 pages.
Corrected Notice of Allowability dated Apr. 9, 2021 for U.S. Appl. No. 16/255,528, filed Jan. 23, 2019, 5 Pages.
Extended European Search Report for European Application No. 19743908.6, dated Sep. 30, 2020, 9 Pages.
Final Office Action dated Dec. 3, 2021 for U.S. Appl. No. 17/072,840, filed Oct. 16, 2020, 23 pages.
Final Office Action dated Oct. 18, 2021 for U.S. Appl. No. 16/716,050, filed Dec. 16, 2019, 18 Pages.
Final Office Action dated Oct. 21, 2021 for U.S. Appl. No. 16/421,441, filed May 23, 2019, 23 Pages.
Final Office Action dated Jan. 27, 2021 for U.S. Appl. No. 16/255,528, filed Jan. 23, 2019, 31 Pages.
Final Office Action dated Jul. 28, 2021 for U.S. Appl. No. 17/083,920, filed Oct. 29, 2020, 19 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2019/014904, dated Aug. 5, 2019, 7 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2019/019765, dated Jun. 14, 2019, 9 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2019/034007, dated Oct. 28, 2019, 18 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2019/066805, dated Mar. 6, 2020, 9 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2019/066831, dated Feb. 27, 2020, 11 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/044807, dated Sep. 30, 2020, 12 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/058097, dated Feb. 12, 2021, 09 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/059636, dated Feb. 11, 2021, 18 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2021/031201, dated Aug. 2, 2021, 13 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2021/033321, dated Sep. 6, 2021, 11 pages.
International Search Report and Written Opinion for International Application No. PCT/US2021/041775, dated Nov. 29, 2021, 14 pages.
Millet L., et al., “A 5500-Frames/s 85-GOPS/W 3-D Stacked BSI Vision Chip Based on Parallel In-Focal-Plane Acquisition and Processing,” IEEE Journal of Solid-State Circuits, USA, Apr. 1, 2019, vol. 54 (4), pp. 1096-1105, XP011716786.
Non-Final Office Action dated Jan. 1, 2021 for U.S. Appl. No. 16/715,792, filed Dec. 16, 2019, 15 Pages.
Non-Final Office Action dated Sep. 2, 2021 for U.S. Appl. No. 16/910,844, filed Jun. 24, 2020, 7 Pages.
Non-Final Office Action dated May 7, 2021 for U.S. Appl. No. 16/421,441, filed May 23, 2019, 17 Pages.
Non-Final Office Action dated Jul. 10, 2020 for U.S. Appl. No. 16/255,528, filed Jan. 23, 2019, 27 Pages.
Non-Final Office Action dated May 14, 2021 for U.S. Appl. No. 16/716,050, filed Dec. 16, 2019, 16 Pages.
Non-Final Office Action dated Apr. 21, 2021 for U.S. Appl. No. 16/453,538, filed Jun. 26, 2019, 16 Pages.
Non-Final Office Action dated Apr. 21, 2021 for U.S. Appl. No. 17/083,920, filed Oct. 29, 2020, 17 Pages.
Non-Final Office Action dated Oct. 21, 2021 for U.S. Appl. No. 17/083,920, filed Oct. 29, 2020, 19 Pages.
Non-Final Office Action dated Jul. 25, 2019 for U.S. Appl. No. 15/909,162, filed Mar. 1, 2018, 20 Pages.
Non-Final Office Action dated Apr. 27, 2021 for U.S. Appl. No. 16/829,249, filed Mar. 25, 2020, 9 Pages.
Notice of Allowance dated Apr. 1, 2021 for U.S. Appl. No. 16/255,528, filed Jan. 23, 2019, 7 Pages.
Notice of Allowance dated Nov. 2, 2021 for U.S. Appl. No. 16/453,538, filed Jun. 26, 2019, 8 Pages.
Notice of Allowance dated Nov. 3, 2020 for U.S. Appl. No. 16/566,583, filed Sep. 10, 2019, 11 Pages.
Notice of Allowance dated Jan. 7, 2022 for U.S. Appl. No. 16/899,908, filed Jun. 12, 2020, 10 pages.
Notice of Allowance dated Dec. 8, 2021 for U.S. Appl. No. 16/829,249, filed Mar. 25, 2020, 6 pages.
Notice of Allowance dated Oct. 14, 2020 for U.S. Appl. No. 16/384,720, filed Apr. 15, 2019, 8 Pages.
Notice of Allowance dated Oct. 15, 2020 for U.S. Application No. 16/544, 136, filed Aug. 19, 2019, 11 Pages.
Notice of Allowance dated Apr. 16, 2021 for U.S. Appl. No. 16/715,792, filed Dec. 16, 2019, 10 Pages.
Notice of Allowance dated Sep. 16, 2020 for U.S. Appl. No. 16/435,449, filed Jun. 7, 2019, 7 Pages.
Notice of Allowance dated Nov. 17, 2021 for U.S. Appl. No. 16/899,908, filed Jun. 12, 2020, 7 Pages.
Notice of Allowance dated Mar. 18, 2020 for U.S. Application No. 15/909, 162, filed Mar. 1, 2018, 9 Pages.
Notice of Allowance dated Nov. 18, 2020 for U.S. Appl. No. 16/249,420, filed Jan. 16, 2019, 8 Pages.
Notice of Allowance dated Dec. 21, 2021 for U.S. Appl. No. 16/550,851, filed Aug. 26, 2019, 10 pages.
Notice of Allowance dated Dec. 22, 2021 for U.S. Appl. No. 16/910,844, filed Jun. 24, 2020, 7 pages.
Notice of Allowance dated Jan. 22, 2021 for U.S. Appl. No. 16/369,763, filed Mar. 29, 2019, 8 Pages.
Notice of Allowance dated Nov. 24, 2021 for U.S. Appl. No. 16/910,844, filed Jun. 24, 2020, 8 pages.
Notice of Allowance dated Aug. 25, 2021 for U.S. Appl. No. 16/715,792, filed Dec. 16, 2019, 9 Pages.
Notice of Allowance dated Oct. 25, 2021 for U.S. Appl. No. 16/435,451, filed Jun. 7, 2019, 8 Pages.
Notice of Allowance dated Aug. 26, 2020 for U.S. Appl. No. 16/384,720, filed Apr. 15, 2019, 8 Pages.
Notice of Allowance dated Oct. 26, 2021 for U.S. Appl. No. 16/896,130, filed Jun. 8, 2020, 8 Pages.
Notice of Allowance dated Aug. 30, 2021 for U.S. Appl. No. 16/829,249, filed Mar. 25, 2020, 8 pages.
Notice of Reason for Rejection dated Nov. 16, 2021 for Japanese Application No. 2019-571699, filed Jun. 25, 2018, 13 pages.
Office Action dated Jul. 3, 2020 for Chinese Application No. 201810821296, filed Jul. 24, 2018, 17 Pages.
Office Action dated Jul. 7, 2021 for European Application No. 19723902.3, filed Apr. 1, 2019, 3 Pages.
Office Action dated Mar. 9, 2021 for Chinese Application No. 201810821296, filed Jul. 24, 2018, 10 Pages.
Office Action dated Dec. 14, 2021 for Japanese Application No. 2019571598, filed Jun. 26, 2018, 12 pages.
Office Action dated Jun. 28, 2020 for Chinese Application No. 201810821296, filed Jul. 24, 2018, 2 Pages.
Partial International Search Report and Provisional Opinion for International Application No. PCT/US2021/041775, dated Oct. 8, 2021, 12 pages.
Restriction Requirement dated Feb. 2, 2021 for U.S. Appl. No. 16/716,050, filed Dec. 16, 2019, 7 Pages.
Sebastian A., et al., “Memory Devices and Applications for In-memory Computing,” Nature Nanotechnology, Nature Publication Group, Inc, London, Mar. 30, 2020, vol. 15 (7), pp. 529-544, XP037194929.
Shi C., et al., “A 1000fps Vision Chip Based on a Dynamically Reconfigurable Hybrid Architecture Comprising a PE Array and Self-Organizing Map Neural Network,” International Solid-State Circuits Conference, Session 7, Image Sensors, Feb. 10, 2014, pp. 128-130, XP055826878.
Snoeij M.F., et al., “A low Power col. Parallel 12-bit ADC for CMOS Imagers,” XP007908033, Jun. 1, 2005, pp. 169-172.
Office Action dated Sep. 26, 2022 for Korean Patent Application No. 10-2020-7002496, filed on Jun. 26, 2018, 17 pages.
Office Action dated Aug. 30, 2022 for Japanese Patent Application No. 2020505830, filed on Aug. 9, 2018, 5 pages.
Notice of Allowance dated Oct. 21, 2022 for U.S. Appl. No. 16/899,908, filed Jun. 12, 2020, 10 pages.
Office Action dated Sep. 29, 2022 for Taiwan Application No. 108122878, filed Jun. 28, 2019, 9 pages.
Corrected Notice of Allowance dated Mar. 29, 2022 for U.S. Appl. No. 17/150,925, filed Jan. 15, 2021, 2 Pages.
Non-Final Office Action dated Mar. 28, 2022 for U.S. Appl. No. 17/072,840, filed Oct. 16, 2020, 8 Pages.
Office Action dated Mar. 17, 2022 for Taiwan Application No. 20180124384, 26 pages.
Office Action dated Mar. 29, 2022 for Japanese Patent Application No. 2020520431, filed on Jun. 25, 2018, 10 pages.
Notice of Allowance dated Jul. 5, 2022 for U.S. Appl. No. 16/899,908, filed Jun. 12, 2020, 10 pages.
Notice of Allowance dated Apr. 19, 2022 for U.S. Appl. No. 16/899,908, filed Jun. 12, 2020, 10 pages.
Notice of Allowance dated Apr. 27, 2022 for U.S. Appl. No. 16/896,130, filed Jun. 8, 2020, 08 pages.
Notice of Allowance dated Apr. 28, 2022 for U.S. Appl. No. 16/435,451, filed Jun. 7, 2019, 09 pages.
Notice of Allowance dated Jun. 8, 2022 for U.S. Appl. No. 17/150,925, filed Jan. 15, 2021, 10 pages.
Office Action for European Application No. 18179851.3, dated May 19, 2022, 7 pages.
Office Action dated Jul. 5, 2022 for Korean Application No. 10-2020-7002533, filed Jun. 25, 2018, 13 pages.
Office Action dated May 18, 2022 for Taiwan Application No. 108122878, 24 pages.
Office Action dated Jul. 12, 2022 for Japanese Application No. 2019-571699, filed Jun. 25, 2018, 5 pages.
Office Action dated Jul. 19, 2022 for Japanese Application No. 2019571598, filed Jun. 26, 2018, 10 pages.
Corrected Notice of Allowability dated Jan. 9, 2023 for U.S. Appl. No. 17/150,925, filed Jan. 15, 2021, 8 pages.
Final Office Action dated Dec. 2, 2022 for U.S. Appl. No. 17/072,840, filed Oct. 16, 2020, 9 pages.
Notice of Allowance dated Dec. 6, 2022 for U.S. Appl. No. 16/896,130, filed Jun. 8, 2020, 8 pages.
Notice of Allowance dated Apr. 7, 2021 for U.S. Appl. No. 16/436,137, filed Jun. 10, 2019, 9 pages.
Notice of Allowance dated Dec. 9, 2022 for U.S. Appl. No. 16/435,451, filed Jun. 7, 2019, 8 pages.
Notice of Allowance dated Feb. 10, 2023 for U.S. Appl. No. 16/899,908, filed Jun. 12, 2020, 9 pages.
Notice of Allowance dated Nov. 21, 2022 for U.S. Appl. No. 17/242,152, filed Apr. 27, 2021, 10pages.
Notice of Allowance dated Dec. 22, 2022 for U.S. Appl. No. 17/496,712, filed Oct. 7, 2021, 13 pages.
Office Action dated Nov. 2, 2022 for Taiwan Application No. 107128759, filed Aug. 17, 2018, 16 pages.
Office Action dated Dec. 1, 2022 for Korean Application No. 10-2020-7002306, filed Jun. 25, 2018, 13 pages.
Office Action dated Nov. 1, 2022 for Japanese Patent Application No. 2020-520431, filed on Jun. 25, 2018, 11 pages.
Office Action dated Nov. 15, 2022 for Taiwan Application No. 108120143, filed Jun. 11, 2019, 8 pages.
Office Action dated Jan. 5, 2023 for Chinese Application No. 201980043907.7, filed Jun. 28, 2019, 14 pages.
Office Action dated Feb. 7, 2023 for Japanese Application No. 2019-571699, filed Jun. 25, 2018, 5 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2021/054327, dated Apr. 20, 2023, 7 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2021/057966, dated May 19, 2023, 12 pages.
Notice of Allowance dated Jun. 1, 2023 for U.S. Appl. No. 16/899,908, filed Jun. 12, 2020, 9 pages.
Notice of Allowance dated Mar. 1, 2023 for U.S. Appl. No. 17/242,152, filed Apr. 27, 2021, 9 pages.
Notice of Allowance dated Apr. 13, 2023 for U.S. Appl. No. 17/072,840, filed Oct. 16, 2020, 6 pages.
Notice of Allowance dated Jun. 16, 2023 for U.S. Appl. No. 17/242,152, filed Apr. 27, 2021, 9 pages.
Notice of Allowance dated Mar. 17, 2023 for U.S. Appl. No. 16/896,130, filed Jun. 8, 2020, 8 pages.
Notice of Allowance dated Apr. 24, 2023 for U.S. Appl. No. 17/496,712, filed Oct. 7, 2021, 12 pages.
Office Action dated Jun. 1, 2023 for Korean Application No. 10-2020-7002306, filed Jun. 25, 2018, 3 pages.
Office Action dated Mar. 10, 2023 for Chinese Application No. 201880053600.0, filed Jun. 25, 2018, 10 pages.
Office Action dated Feb. 15, 2023 for Chinese Application No. 201980049477.X, filed Jun. 11, 2019, 19 pages.
Office Action dated Mar. 16, 2023 for Korean Patent Application No. 10-2020-7002496, filed on Jun. 26, 2018, 3 pages.
Office Action dated May 9, 2023 for Japanese Patent Application No. 2020-5204312, filed on Jun. 25, 2018, 6 pages.
Office Action dated May 9, 2023 for Japanese Patent Application No. 2020-563959, filed on Nov. 12, 2020, 5 pages.
Corrected Notice of Allowance dated Aug. 9, 2023 for U.S. Appl. No. 17/072,840, filed Oct. 16, 2020, 3 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2021/065174 dated Jul. 13, 2023, 9 pages.
Notice of Allowance dated Oct. 2, 2023 for U.S. Appl. No. 16/435,451, filed Jun. 7, 2019, 10 pages.
Notice of Allowance dated Oct. 4, 2023 for U.S. Appl. No. 17/242,152, filed Apr. 27, 2021, 9 pages.
Notice of Allowance dated Jul. 7, 2023 for U.S. Appl. No. 16/896,130, filed Jun. 8, 2020, 8 pages.
Notice of Allowance dated Sep. 13, 2023 for U.S. Appl. No. 16/899,908, filed Jun. 12, 2020, 9 pages.
Notice of Allowance dated Aug. 18, 2023 for U.S. Appl. No. 17/496,712, filed Oct. 7, 2021, 12 pages.
Notice of Allowance dated Jun. 22, 2023 for U.S. Appl. No. 16/435,451, filed Jun. 7, 2019, 10 pages.
Notice of Allowance dated Jul. 31, 2023 for U.S. Appl. No. 17/072,840, filed Oct. 16, 2020, 6 pages.
Office Action dated Jul. 4, 2023 for Korean Application No. 10-2020-7002533, filed Jun. 25, 2018, 3 pages.
Office Action dated Jul. 4, 2023 for Japanese Application No. 2019571598, filed Jun. 26, 2018, 34 pages.
Related Publications (1)
Number Date Country
20200217714 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
62546993 Aug 2017 US
Continuations (1)
Number Date Country
Parent 15983379 May 2018 US
Child 16820594 US