The invention relates generally to barrier detectors formed on gallium nitride and on aluminum gallium nitride for use in ultraviolet detection. The invention further relates to photodiode arrays and more specifically to gallium nitride barrier photodiode arrays for detecting the intensity of ultraviolet rays in a plurality of wave bands.
Ultraviolet (UV) light is an electromagnetic field with wavelength between 200 nm to 400 nm. Generally, UV is classified into three types, including, UVA (320 nm-400 nm), UVB (290 nm-320 nm), and UVC (200 nm-290 nm). There are various and diverse reasons for monitoring UV light. For example, to ascertain the intensity of UV rays since they can be linked to human skin cancer and photoaging, to sense the temperature of a flame, to ascertain the quality of air, to ascertain biosensing functions, and for counter-camouflage imaging. However, for this type of multiband UV monitoring application, multiple detectors and sophisticated optical filters are required.
For the reasons stated above, and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for an ultraviolet detector that can measure multiple bands without relying on any external optical filters. There is also a need for improved detector that can be dynamically set to an UV band.
The above-mentioned shortcomings, disadvantages and problems are addressed herein, which will be understood by reading and studying the following specification.
In accordance with a first aspect of the invention, there is provided a barrier detector capable of detecting electromagnetic radiation in the range of 200 nm to 400 nm. This detector has several layers grown over a sapphire substrates, including a buffer layer comprising AlN; a first band-edge comprising AlX Ga1-X N; a second band-edge comprising AlY Ga1-Y N; a third band-edge comprising AlZ Ga1-Z N. The detector also has ohmic contacts formed on the AlX Ga1-X N band-edge.
In accordance with a second aspect of the invention, there is provided a method for detecting selectable bands in the ultraviolet region with only a single photo detector; the method selects a first detector to detect a first band by applying a first voltage to a bias voltage input node; and selects a second detector to detect a second band by applying a second voltage to the at least one bias voltage input node.
In yet another aspect of the invention, a dual band ultraviolet photo detector has a substrate with N layers, with N being an integer greater than or equal to one, and each of the at least N layers having a barrier bandgap. The apparatus further comprises a first detector formed from the at least N layers capable of detecting a first range of wavelengths and a second detector formed from the at least N layers capable of detecting a second range of wavelengths. The range of wavelengths is selectable through a bias voltage input node coupled to the substrate for selecting the first detector or the second detector.
Apparatus, systems, and methods of varying scope are described herein. In addition to the aspects and advantages described in this summary, further aspects and advantages will become apparent by reference to the drawings and by reading the detailed description that follows.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments which may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the embodiments, and it is to be understood that other embodiments may be utilized and that logical, mechanical, electrical and other changes may be made without departing from the scope of the embodiments. The following detailed description is, therefore, not to be taken in a limiting sense.
The invention includes barrier detector 100 capable of detecting electromagnetic radiation in the range of 200 to 400 nm. The detector has several layers grown over sapphire substrates, including a buffer layer comprising AlN; an n+ doped layer comprising Al x Gal-x N 130. The detector further includes ohmic contact 190 formed on the Al x Gal-x N layer and ohmic contact formed on the Al z Gal-z N. In the formula AlxGal-xN, x can range from 0 to 1. As shown in
Generally, the first layer of the ultraviolet detector is a substrate 110 made from sapphire. The substrate 110 functions as a seed for the growth of further layers of the detector as well as a physical support for the detector. Any number of compositions can be used as the substrate, but sapphire is preferred. More preferable is the use of single crystal basal plane sapphire. This is available commercially in single crystal form and serves well as a template for the growth of further layers of the detector. Further, basal plane sapphire is generally transparent to ultraviolet energy.
In order to ease the lattice mismatch between the substrate 110 and the subsequent epitaxial layers, the ultraviolet detector 100 of the invention may also comprise an AlN Nucleation buffer layer 120. Generally, this buffer layer 120 comprises aluminum nitride and is about 10 to 50 nm thick.
A layer of n+ doped Al x Gal-x N is generally deposited over the AlN buffer layer 120. Preferably, this AlxGal-x N layer is single crystal and serves as a substrate for the active AlxGal-x N layer which can be deposited by atomic layer epitaxy.
In action 440, a determination is made as to whether a second band is desired. When the determination is yes control passes to action 450 for further processing. In action 450 a second voltage is applied to the detector to select a band other than the first. If a second band is not desired than control returns to the beginning of action 420.
A dual band photo detector is described. A technical effect of the dual band photo detector is a single detector for two designable wavelengths with designable bandwidths in UV without the need for optical filters. As a result, a very small UV monitoring package can be fabricated. Although specific embodiments are illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiments shown.
In particular, one of skill in the art will readily appreciate that the names of the methods and apparatus are not intended to limit embodiments. Furthermore, additional methods and apparatus can be added to the components, functions can be rearranged among the components, and new components to correspond to future enhancements and physical devices used in embodiments can be introduced without departing from the scope of embodiments.
This application is a continuation-in-part of application Ser. No. 12/176,717 filed Jul. 21, 2008.
The invention described herein was made by an employee of the United States Government and may be manufactured and used by or for the government for government purposes without payment of any royalties thereon or therefore.
Number | Date | Country | |
---|---|---|---|
Parent | 12176717 | Jul 2008 | US |
Child | 13092198 | US |