Determining an application delivery server based on geo-location information

Information

  • Patent Grant
  • 10735267
  • Patent Number
    10,735,267
  • Date Filed
    Thursday, March 22, 2018
    6 years ago
  • Date Issued
    Tuesday, August 4, 2020
    4 years ago
Abstract
A method for web service load balancing may commence with receiving, from a local DNS server, a request for a web service. The local DNS server may be coupled to a web client requesting the web service. The request may include local DNS server information. The method may continue with determining a geographic location of the local DNS server based on the local DNS server information. The method may further include selecting a web server from a plurality of web servers based on the web service. The method may continue with determining a geographic location of the web server and determining that the geographic location of the local DNS server matches the geographic location of the web server. The method may further include selecting the web server based on the match. The method may continue with sending a response to the local DNS server.
Description
BACKGROUND OF THE INVENTION
Field

This invention relates generally to data communications, and more specifically, to a method and system to balance web server load based on global geographic location.


Background

Web sites are known to use many web servers to serve large numbers of web clients accessing the web sites. The web servers, or application delivery servers, deliver web applications such as web pages, videos, file transfers, photo transfers, office applications, email applications, enterprise web applications and many other consumer and enterprise applications using web technologies. In a typical deployment scenario, the web servers are behind a server load balancer (SLB). The SLB receives a web service request from a web client, selects a web server, and relays the web service request to the selected web server. The network architecture using a SLB and a plurality of web servers allows not only a web site to serve many web clients, but also provides fault resiliency to a web site in case one or more web servers fail, while the remaining web servers continue to provide web services. A web site may deploy a plurality of SLB's to provide fault tolerance to one or more SLB failures. However, as a web site grows in popularity, a single or a few SLB's with a plurality of web servers may not be sufficient. Large number of SLB's and a very large number of web servers are necessary to serve a large web site such as google.com or yahoo.com.


Moreover, the large number of web servers and SLB's are hosted in a plurality of data centers, so as to provide further fault tolerance in case of data center failure. The data centers are usually far apart, with at least tens or hundreds of miles apart. When a web client accesses the web site, the web service request is assigned to a web server in one of the data centers. The quality of the web service then depends on the chosen data center, where the service quality may depend on the distance between the data center and the web client, the load of the web servers in the data center, the network capacity of the web servers in the data center to the web client, and other network or computing factors between the data center and the web client. Thus, the location information of the web client becomes an important factor in selecting a data center, and in selecting a web server of the data center to serve the web service request from the web client.


It is common to use a Domain Name System (DNS) to deploy a plurality of web servers for a web service based on a Uniform Resource Locator (URL). In one embodiment, a web client sends an inquiry to a DNS server with a domain name, which is a part of the URL. A DNS server responds with a plurality of records, each of which refers to a web server. In various methods, the web client uses the plurality of records referencing the plurality of web servers to determine a particular web server, the web client selects a web server using a round robin scheme on the plurality of web servers, the web client selects a web server used in a previous web session on the same web service, or the web client selects a web server different from a previous web session on the same web service where the previous web session encountered an error.


In one method, a local DNS server assists the web client in selecting a web server. The local DNS server receives information for a plurality of web servers from a global DNS server. In one embodiment, the local DNS server selects a web server from the plurality of web servers. For example, the local DNS server selects a web server using a round robin scheme. In one method, the local DNS server selects the first web server from the plurality of web servers.


However, as mentioned above, there is no existing method to select a web server based on location information or to balance web server load based on location information, so as to provide a better web service, and to provide fault tolerance upon data center failure.


Therefore, there is a need for a system and method to balance web server load based on location information of a web client.


BRIEF SUMMARY OF THE INVENTION

Provided are computer-implemented methods and systems for web service load balancing. According to one example embodiment, a system for web service load balancing includes a plurality of web servers and a global load balancer coupled to a local DNS server. The global load balancer may be configured to receive, from the local DNS server, a request for a web service. The local DNS server may be coupled to a web client requesting the web service. The request may include local DNS server information. The global load balancer may be further configured to determine a geographic location of the local DNS server based on the local DNS server information. The global load balancer may be further configured to select a web server from a plurality of web servers based on the web service. The global load balancer may be further configured to determine a geographic location of the web server and determine that the geographic location of the local DNS server matches the geographic location of the web server. Based on the match, the global load balancer may select the web server and send a response comprising information for the web server to the local DNS server.


According to one example embodiment, a method for web service load balancing may commence with receiving, from a local DNS server, a request for a web service. The local DNS server may be coupled to a web client requesting the web service. The request may include local DNS server information. The method may continue with determining a geographic location of the local DNS server based on the local DNS server information. The method may further include selecting a web server from a plurality of web servers based on the web service. The method may continue with determining a geographic location of the web server and determining that the geographic location of the local DNS server matches the geographic location of the web server. The method may further include selecting the web server based on the match. The method may continue with sending a response to the local DNS server. The response may include information on the web server.


Other features, examples, and embodiments are described below. System and computer program products corresponding to the above-summarized methods are also described and claimed herein.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE FIGURES


FIG. 1 illustrates a global geographic location or geo-location based web service load balancing.



FIG. 1a illustrates embodiments of geo-locations.



FIG. 2 illustrates a process to determine geo-location of local DNS server.



FIG. 3 illustrates a process to obtain geo-location and web server using domain name.



FIG. 4 illustrates a process to compare geo-location of local DNS server and geo-location of web server.



FIG. 5 illustrates a process to select web server based on additional web service performance factors.



FIG. 5a illustrates several embodiments of performance factor.





DETAILED DESCRIPTION OF THE INVENTION

The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the embodiment will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.



FIG. 1 illustrates a global geographic location or geo-location based web service load balancing. Web service 132 is offered to web clients 112 and 113 in a global data network 100. Data network 100 includes the Internet. In one embodiment, data network 100 includes cellular data network, a General Packet Radio Service (GPRS) network, a third-generation cellular (3G) network, or a fourth-generation cellular (4G) network. In one embodiment, data network 100 includes an Internet service provider network. In one embodiment, data network 100 includes a wireless network, such as a Wi-Fi hotspot network. In one embodiment, data network 100 includes a wired network such as Ethernet. In one embodiment, data network 100 includes a corporate internal network or intranet, a virtual private network (VPN) or an extranet. In one embodiment, data network 100 includes a service provider internal network or a walled garden service network within the service provider network.


In one embodiment, web client 112 is a computing device with web access through data network 100. In one embodiment, web client 112 accesses data network 100 using Internet Protocol (IP), Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), Session Initiation Protocol (SIP), or any other web-based protocol. In one example, web client 112 includes a web browser, a web widget accessing data network 100, a web-based operating system accessing data network 100 using a web-based protocol. In one embodiment, web client 112 includes Google Android, Google Chrome™ or other web-based operating system. In one embodiment, web client 112 includes Microsoft Internet Explorer™, Google Chrome™ Firefox®, Apple Safari™, Opera or other web browser. In one embodiment, web client 112 is a personal computer, a notebook, a netbook, a mobile Internet device (MID), a personal digital assistant (PDA), a smartphone, a mobile phone, a media player, a mobile media player, a mobile television set, a television set, a set-top box, a net-top box, an Internet-enabled DVD player or other computing appliance with web access to data network 100.


In one embodiment, web service 132 includes a service offered by a web site or a web portal. In one embodiment, web service 132 includes a Uniform Resource Locator (URL), such as http://www.abc.com, ftp://ftp aaa.com, https://secure.online-banking.com, www.a-web-site.com, http://www.abc.com/banner.png, https://secure.online-banking.com/?user=jonny+password=0CB56D7104. In one embodiment, web service 132 comprises domain name 133. For example, domain name 133 can be www.abc.com, ftp.aaa.com, secure.online-banking.com, www.a-web-site.com, abc.com, a-web-site.com, on-line-banking.com. In one embodiment, domain name 133 relates to the type of web service 132. In one embodiment, www.abc.com relates to HTTP service; ftp.aaa.com relates to file transfer (FTP) services; secure.online-banking.com relates to secure services.


Web server 142 serves web service 132. In one embodiment, web server 142 is a computing device servicing web service 132. In one embodiment, web server 142 includes a web server software such as Apache HTTP Server, Websphere™, Weblogic™, Internet Information Services (IIS)™, or other web server software. In one embodiment, web server 142 is a server load balancer (SLB). In one embodiment, web server 142 includes a plurality of server computers serving web service 132. In one embodiment web server 142 includes geo-location 146. In one embodiment web server 142 serves web service 132 within geo-location 146. Web server 143 also serves web service 132. In one embodiment web server 143 includes geo-location 147 and serves web service 132 within geo-location 147. In one embodiment, web servers 142 and 143 serve web service 132 in their corresponding geo-location 146 and geo-location 147 respectively. By spreading the load for serving web service 132, web servers 142 and 143 provide better services for web service 132.


In order to select web server 142 for web service 132, web client 112 obtains domain name 133 and queries local domain name system (DNS) server 122 using domain name 133 for web server 142. Like-wise, web client 113 obtains domain name 133 and queries local DNS server 123. In one embodiment, local DNS server 122 sends domain name 133 to DNS server 125. In one embodiment, DNS server 125 determines web server 142, using domain name 133 and geo-location 126 of local DNS server 122.


In one embodiment, geo-location 126 indicates a geographic location of local DNS server 122. In one embodiment geo-location 126 includes a country such as United States, Japan, Luxemburg, or Egypt. In one embodiment geo-location 126 includes a state or province such as California of United States, or Guangzhou of China. In one embodiment geo-location 126 includes a region such as an island, a metropolitan, north-east region of United States, west coast, or a tri-city area. In one embodiment, geo-location 126 includes a city such as San Francisco, Tokyo, Beijing, Paris, or London. In one embodiment, geo-location 126 includes a district in a city such as down-town, up-town, Richmond district of San Francisco, or Chinatown of New York City. In one embodiment, geo-location 126 includes a street block, a building, a campus, or a street address. In one embodiment, geo-location 126 includes an area served by an Internet gateway, a hot-spot access point, a mobile Internet gateway, a wireless gateway, or a wireless or cellular base station. In one embodiment, geo-location 126 includes hierarchical information of locations, such as down-town district of San Francisco in California State of United States. In one embodiment, geo-location 126 includes global position information such as longitude and latitude information. In one embodiment, geo-location 126 includes height information or floor information in a building, such as 1000 feet above sea level, 3rd floor, or basement. In one embodiment, geo-location 126 includes a neighborhood or area around a location. For example, geo-location 126 indicates 3rd floor of a building and an area of two floors above and one floor below the 3rd floor. In another example, geo-location 126 indicates a 5 miles area from a building or a landmark.



FIG. 1a illustrates embodiments of geo-location 126 and geo-location 146. For example, NA.US.CA.SF indicates San Francisco (SF) city of California (CA) state in United States (US) country of North America (NA) continent; NA.US.CA indicates California state in United States of North America continent; CA.LA indicates Los Angeles (LA) city of California (CA); CA.PA.DN indicates Downtown (DN) district of Palo Alto (PA) of California; NY.NY.(−73.98592, 40.74831) indicates geo-physical location of longitude −73.98592, latitude 40.74831 in New York (NY) city of New York (NY) state; AS.JP indicates Japan (JP) country of Asia (AS) continent.


In one embodiment, geo-location 126 indicates a geographic location of web client 112, which is served by local DNS server 122 for DNS services. In one scenario, web client 112 is in New York City downtown and local DNS server 122 serves DNS services for New York City. In one embodiment, geo-location 126 indicates the location of local DNS server 122. In one scenario, local DNS server 122 is located in an office in New York City downtown area. In one embodiment, geo-location 126 indicates the location of an IP gateway connecting to web client 112. In one embodiment, the IP gateway is a Digital Subscriber Line Access Multiplexer (DSLAM) located in a Central Office (CO) in New York City downtown. In these embodiments, geo-location 126 indicates New York City downtown.


After selecting web server 142, DNS server 125 replies to local DNS server 122 information about web server 142. In one embodiment, the reply includes an IP address of web server 142. In one embodiment, the reply includes a host name of web server 142. In one embodiment, the reply includes an identity of web server 142. Local DNS server 122 replies to web client 112 of web server 142. Web client 112 then establishes a web session with web server 142 to process web service 132.


Since web clients 112 and 113 request web service 132 from possibly different geo-locations, it is important for the web service 132 to be served in the most efficient manner. For example, web service 132 desires to be served with the best response time. Web service 132 uses web server 142 with lower network latency to web client 112. In one embodiment, the network latency is directly correlated to the distance between web server 142 and web client 112. If web server 142 is geographically closer to web client 112 than from web server 143 to web client 112, web server 142 would have lower network latency to web client 112 than the network latency between web server 143 to web client 112. In one embodiment, web service 132 is to serve with the most security. Web service 132 will use web server 142 with better security to server web client 112. In one embodiment, web service 132 is to be served with the most bandwidth or computing resource. In one embodiment web server 142 is has more CPU capability and more network capacity, and serves web client 112 better than web server 143.


Global load balancer 127 comprises the necessary geo-location information to determine if web server 142 best serves web service 132 to web client 112. In one embodiment, global load balancer 127 includes geo-location 146 of web server 142. In one embodiment, geo-location 146 is a location where web server 142 resides. In one embodiment, web server 142 serves web client 112 in geo-location 146. In another embodiment, web server 142 may not be where it resides, but the web server 142 serves web client 112 served by local DNS server 122 in geo-location 146. In one embodiment, web server 142 has more network capacity to geo-location 146 and would serve web client 112 better. In one embodiment, web server 132 indicates a secure web service. Web server 142 has strong secure connection to geo-location 146 and would better serve web client 112.


In one embodiment, geo-location 146 relates to the country of origin of domain name 133. For example, domain name 133 being www.abc.com.cn has a country of origin of China; ftp.aaa.com.de has a country of origin of Denmark and indicates a file transfer service.


In one embodiment, DNS server 125 obtains domain name 133 from local DNS server 122. In one embodiment, DNS server 125 sends domain name 133 and information about local DNS server 122 to global load balancer 127. In one embodiment, DNS server 125 sends the IP address 124 of local DNS server 122 to global load balancer 127. In one embodiment, web server 142 comprises a plurality of servers, and the global load balancer 127 is a server load balancer balancing the load of these servers. In one embodiment, global load balancer 127 is a network device residing in data network 100. In one embodiment, global load balancer 127 is a computer or a computing server. In one embodiment, global load balancer 127 includes a software running in a network device or a computer. In one embodiment, global load balancer 127 includes storage and memory to be used in selecting a web server. In one embodiment, global load balancer 127 includes a network appliance or a network gateway.


Global load balancer 127 determines geo-location 126 based on IP address 124. In one embodiment, global load balancer 127 determines geo-location 126 based on domain name 133. FIG. 2 will illustrate a process to determine geo-location 126.


In one embodiment, global load balancer 127 obtains web server 142 based on domain name 133 such that web server 142 can serve web service 132, the web service 132 including domain name 133. Global load balancer 127 obtains geo-location 146 based on web server 142. In a later section in this specification, FIG. 3 illustrates a process to obtain web server 142 and geo-location 146. After obtaining geo-location 146, global load balancer 127 compares geo-location 146 and geo-location 126 to determine if web server 142 provides optimal service to domain name 133. FIG. 4 will illustrate a process to compare geo-location 126 and geo-location 146. If there is a match, global load balancer 127 selects web server 142. In one embodiment, global load balancer 127 responds to DNS server 125 with web server 142 to serve the web service 132. In one embodiment, global load balancer 127 responds to local DNS server 123 with web server 142.


In one embodiment, the global load balancer 127 determines there is no match between geo-location 126 and geo-location 146 and selects web server 142 using other methods. In one embodiment, global DNS server 125 selects web server 142, and the global load balancer 127 determines there is no match between geo-location 126 and geo-location 146. Global load balancer 127 then responds with web server 142 to local DNS server 123.


In one embodiment, DNS server 125 includes functionality of global load balancer 127. DNS server 125 responds to local DNS server 123 with web server 142. In one embodiment, global load balancer 127 includes functionality of DNS server 125 and responds to local DNS server 123 with web server 142. In one embodiment, global load balancer 127 intercepts the response from DNS server 125 to local DNS server 122, and alters the response to indicate web server 142 to serve domain name 133. In one embodiment, global load balancer 127 determines there is no match between geo-location 126 and geo-location 146, and does not alter the response.


In one embodiment, DNS server 125 obtains geo-location 146 of web server 142, and sends geo-location 146 to global load balancer 127. Global load balancer 127 uses geo-location 146 and domain name 133 to select web server 142. Global load balancer 127 responds to DNS server 125 with web server 142. DNS server 125 then responds to local DNS server 123 with web server 142.



FIG. 2 illustrates a process to determine geo-location 126 of local DNS server 122.


Local DNS server 122 sends a DNS request 157 to DNS server 125. In one embodiment global load balancer 127 includes the functionality of DNS server 125, and obtains DNS request 157. In one embodiment, global load balancer 127 is a network appliance between DNS server 125 and local DNS server 122. Global load balancer 127 receives DNS request 157 from data network 100. Local DNS server 122 includes IP address 124. In one embodiment IP address 124 is the host IP address of local DNS server 122 in data network 100. In one embodiment, DNS request 157 is based on Internet protocol (IP), and DNS request 157 includes IP address 124 in the IP packet header. In one embodiment, DNS request 157 includes IP address 124 in the DNS request 157 packet payload. In one embodiment, DNS request 157 includes domain name 133.


Global load balancer 127 receives DNS request 157 and obtains IP address 124. Global load balancer 127 connects to a DNS server location database 173. In one embodiment, server location database 173 is a database and global load balancer 127 uses IP address 124 to query server location database 173. DNS server location database 173 includes location entry 161 consisting of IP address 184 and geo-location 126. Server location database 173 matches IP address 124 against location entry 161 by matching IP address 124 against IP address 184. In one embodiment, IP address 184 is the same as IP address 124. For example, IP address 124 is 75.105.78.235, and IP address 184 is 75.105.78.235. In one embodiment, IP address 184 includes a range of IP addresses wherein the range of IP addresses includes IP address 124. For example IP address 184 is 75.105.78.224-255. Server location database 173 determines that IP address 124 matches IP address 184, and determines location entry 161 matches IP address 124. Global load balancer 127 obtains geo-location 126 from location entry 161. In one embodiment, DNS server location database 173 includes a storage containing location entry 161. Global load balancer 127 obtains location entry 161 from DNS server location database 173.


In one embodiment, server location database 173 includes a storage for storing location entry 161. Global load balancer 127 retrieves location entry 161 and matches IP address 124 against location entry 161. In one embodiment server location database 173 is a computing server connecting to global load balancer 127 over a data network such as data network 100. Global load balancer 127 sends a request comprising IP address 124 to server location database 173. Server location database 173 matches IP address 124 against location entry 161, and sends a response comprising location entry 161 or geo-location 126 to global load balancer 127.



FIG. 3 illustrates a process to obtain geo-location 146 and web server 142 using domain name 133.


In one embodiment, DNS server 125 sends domain name 133 to global load balancer 127. In one embodiment, global load balancer 127 obtains domain name 133 from DNS request 157.


In one embodiment, global load balancer 127 connects to a web server location database 175. Web server location database 175 includes web server location entry 165. Web server location entry 165 includes domain name 135. In one embodiment, web server location database 175 includes a storage which comprises web server location entry 165. Global load balancer 127 obtains web server location entry 165 from web server location database 175 and compares domain name 133 against domain name 135. In one embodiment, domain name 133 is www.abc.com and domain name 135 is www.abc.com and the two domain names are the same. Global load balancer 127 determines there is a match between domain name 133 and domain name 135. In one embodiment, domain name 133 is www.abc.com and domain name 135 is abc.com. Domain name 133 is a sub-domain of domain name 135. Global load balancer 127 determines that there is a match between the two domain name 133 and domain name 135. In one embodiment, domain name 135 includes all domain names from www.a.com to www.i.com, where domain name 135 indicates including all domain names within the alphabetical order from www.a.com to www.i.com. Global load balancer 127 determines there is a match between domain name 133 and domain name 135. In one embodiment, web server location entry 165 includes web server 142. Global load balancer 127 obtains web server 142 from web server location entry 165.


In one embodiment, domain name 135 is www.abc.*, indicating domain name 135 includes any domain name with prefix www.abc. Global load balancer 127 determines domain name 133, being www.abc.com, has a prefix www.abc, and determines domain name 133 matches domain name 135.


In one embodiment, web server location database 175 is a computer server, and connects to global load balancer 127 via data network 100. In one embodiment, global load balancer 127 sends a request comprising domain name 133 to web server location database 175. In one embodiment web server location database 175 includes web server location entry 165. Web server location database 175 matches domain name 133 against web server location entry 165, and determines there is a match. Web server location database 175 sends web server location entry 165 to global load balancer 127. In one embodiment, web server location database 175 sends web server 142 to global load balancer 127.


In one embodiment, web server location entry 165 includes geo-location 146. Global load balancer 127 obtains geo-location 146 from web server location entry 165. In one embodiment, web server location database 175 sends geo-location 146 to global load balancer 127. In one embodiment, after global load balancer 127 receives web server 142 from web server location database 175, global load balancer 127 sends a request comprising web server 142 to web server location database 175. Web server location database 175 responds with geo-location 146. In one embodiment, after global load balancer 127 obtains web server 142, global load balancer 127 looks up web server location database 175 storage, and retrieves geo-location 146.



FIG. 4 illustrates a process to compare geo-location 126 of local DNS server 122 and geo-location 146 of web server 142.


In one embodiment, global load balancer 127 compares geo-location 126 and geo-location 146 and determines if there is a match. In one embodiment, geo-location 126 is a sub-location or sub-area of geo-location 146. In one scenario, geo-location 126 is NA.US.CA.SF and geo-location 146 is NA.US.CA. Geo-location 126 is the San Francisco city sub-area of geo-location 146 of California State. Global load balancer 127 determines there is a match. In another scenario, geo-location 126 is CA.PA.DN, or downtown district of Palo Alto city of California, and geo-location 126 is CA.PA or Palo Alto city of California. Global load balancer 127 determines there is a match. In one scenario, geo-location 126 is CA.PA.DN and geo-location 146 is CA.LA or Los Angeles city of California. Global load balancer 127 determines there is no match. In one embodiment, geo-location 126 is NY.NY,(−73.98592, 40.74831) and geo-location 146 is NY.NY.DN or downtown of New York city of New York State. Global load balancer 127 calculates the distance between the geo-location 126 and downtown of New York City, and determines that geo-location 126 is in the downtown area. Global load balancer 127 determines there is a match. In another scenario, geo-location 126 is NY.NY.(−73.98592, 40.74831) and geo-location 146 is NY.NY.(−73.994167, 40.751667; 10 miles). Global load balancer 127 calculates the distance between global positions (−73.98592, 40.74831) and (−73.994167, 40.751667) is less than 10 miles. Global load balancer 127 determines there is a match between geo-location 126 and geo-location 146.


Upon determination of a match between geo-location 126 and geo-location 146, global load balancer 127 selects web server 142 to serve web service 132, and responds to DNS server 125, or local DNS server 122.



FIG. 5 illustrates a process to select web server 142 based on additional web service performance factors.


In one embodiment, global load balancer 127 further selects web server 142 based on performance factor 192. FIG. 5a illustrates several embodiments of performance factor 192. In one embodiment performance factor 192 includes latency. In one embodiment web server location entry 165 includes latency 185. Latency 185 indicates a summary latency of previous web sessions between web server 142 and other web clients within geo-location 146. In one embodiment, the web sessions are related to web service 132. In one embodiment, latency 185 indicates a summary latency of previous web sessions within a period of time, such as within a week, a month, a day or last hour. In one embodiment, the period of time is the morning hours within a month.


In one embodiment web server location database 175 includes web server location entry 167 for web server 143. Web server location entry 167 includes geo-location 147 and latency 186. In one embodiment, global load balancer 127 determines there is a match between geo-location 126 and geo-location 146, and between geo-location 126 and geo-location 147. Global load balancer 127 compares latency 185 and latency 186. In one embodiment, latency 185 is smaller than latency 186. Global load balancer 127 selects web server 142. In one embodiment, web server location database 175 compares latency 185 and latency 186, and selects web server 142.


In one embodiment, web server 142 is selected to serve web service 132 to web client 112. During the web session, web server 142 determines a latency of the web session, and updates latency 185. In one embodiment, web server 142 measures the web session latency by measuring a round trip time of a network packet from web server 142 to web client 112.


In one embodiment, web server 142 measures a latency between web server 142 and local DNS server 122, by measuring a round trip time of a packet from web server 142 to local DNS server 122. In one embodiment, web server 142 obtains IP address 124 of local DNS server 122 from global load balancer 127, uses IP address 124 to communicate with local DNS server 122, and measures the round trip time.


In one embodiment, performance factor 192 includes a bandwidth or network capacity. In one embodiment, web server location entry 165 includes network capacity 187, which indicates the network capacity or bandwidth between web server 142 and data network 100. In one embodiment, network capacity 187 is based on the connection capacity between web server 142 and geo-location 146. In one embodiment, network capacity 187 is based on certain time of the day. In one example, network capacity 187 in the business hours is higher than network capacity 187 in the evening hours. In one example, network capacity 187 during lunch hours is higher than network capacity 187 during mid morning.


In one embodiment, web server location entry 167 includes network capacity 188. In one embodiment, global load balancer 127 compares network capacity 187 and network capacity 188, and determines that network capacity 187 is larger than network capacity 188. Global load balancer 127 selects web server 142. In one embodiment, web server location database lxx compares network capacity 187 and network capacity 188 and selects web server 142.


In one embodiment, performance factor 192 includes processing capability. In one embodiment, web server location entry 165 includes processing capability 191. In various embodiments, processing capability 191 indicates the computing capability of web server 142, such as, for example a processing speed, a number of processors web server 142 has, a memory capacity, other processing capabilities, or a combination of such processing capabilities. In one embodiment, processing capability 191 is related to geo-location 146. In one embodiment, processing capability 191 is related to a time of the day. For example, processing capability 191 is lower during business hours than during evening hours. In one example, processing capability 191 is higher in the weekend than during weekdays.


In one embodiment, web server location entry 167 includes processing capability 193. Global load balancer 127 compares processing capability 191 and processing capability 193, and selects web server 142 when processing capability 191 is better than processing capability 193. In one embodiment, processing capability 191 indicates an average processing time to serve a web session for web service 132 by web server 142. In one embodiment, processing capability 191 indicates the worst or best processing time to serve a web session for web service 132 by web server 142.


The invention can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment containing both hardware and software elements. In a preferred embodiment, the invention is implemented in software, which includes but is not limited to firmware, resident software, microcode, etc.


Furthermore, the invention can take the form of a computer program product accessible from a computer-usable or computer-readable medium providing program code for use by or in connection with a computer or any instruction execution system. For the purposes of this description, a computer-usable or computer readable medium can be any apparatus that can contain, store, communicate, propagate, or transport eh program for use by or in connection with the instruction execution system, apparatus, or device.


The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk—read only memory (CD-ROM), compact disk—read/write (CD-R/W) and DVD.


Although the invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.

Claims
  • 1. A system for web service load balancing, the system comprising: a plurality of web servers;a global load balancer coupled to a local domain name system (DNS) server, wherein the global load balancer is configured to: receive, from the local DNS server, a request for a web service, the local DNS server being coupled to a web client requesting the web service, the request including local DNS server information and a requested domain name;based on the local DNS server information, determine a local DNS server geographic location associated with the local DNS server;based on the web service, select one or more web servers from the plurality of web servers;based on the requested domain name, query a web server location database, wherein the web server location database includes a plurality of entries, each entry of the plurality of entries including a domain name, a network address of one of the plurality of web servers, a geographic location of the one of the plurality of web servers, and a performance factor associated with the one of the plurality of web servers;based on the querying, identify, in the web server location database, one or more entries including the domain name that matches the requested domain name;based on the identified one or more entries and the one or more web servers selected based on the web service, receive, from the web server location database, network addresses of the one or more web servers, geographic locations of the one or more web servers, and performance factors associated with the one or more web servers:determine if any of the geographic locations of the one or more web servers matches the local DNS server geographic location;based on the match, select, from the one or more web servers, a web server based on the performance factors of the one or more web servers, wherein the performance factor of each of the one or more web servers includes a processing capability, wherein the selecting the web server includes determining the web server with a best processing capability, the web server being associated with a network address; andsend a response to the local DNS server, the response including at least the network address of the web server.
  • 2. The system of claim 1, wherein the local DNS server geographic location includes one of the following: a geographic location of the web client;a geographic location at which the local DNS server resides; anda geographic location of an Internet Protocol (IP) gateway connected to the web client.
  • 3. The system of claim 1, wherein the geographic location of the one or more web servers includes one of the following: a geographic location at which the one or more web servers reside;the local DNS server geographic location serviced by the one or more web servers; anda web client geographic location serviced by the one or more web servers.
  • 4. The system of claim 1, further comprising a server location database, wherein the local DNS server information includes an IP address of the local DNS server, the determining the local DNS server geographic location including: querying the server location database using the IP address of the local DNS server, wherein the server location database includes a plurality of entries, each entry including an IP address and a corresponding geographic location, the server location database identifying one or more entries including an IP address matching the IP address for the local DNS server; andreceiving, from the server location database, the corresponding geographic location from the identified entry as the local DNS server geographic location.
  • 5. The system of claim 4, wherein the IP address in the identified entry matches the IP address of the local DNS server when: the IP address in the identified entry is an exact match to the IP address of the local DNS server; orthe IP address of the local DNS server is within a range of IP addresses in the identified entry.
  • 6. The system of claim 1, wherein the domain name in the identified entry matches the requested domain name when: the domain name in the identified entry is an exact match to the requested domain name;the requested domain name is within a range of domain names in the identified entry;the identified entry contains a domain name prefix and the requested domain name contains the domain name prefix; orthe requested domain name is a sub-domain of the domain name in the identified entry.
  • 7. The system of claim 1, wherein the global load balancer is further configured to: compare the performance factors for the geographic locations of one or more web servers that match the local DNS server geographic location.
  • 8. The system of claim 1, wherein the performance factor further includes one of the following: a latency, wherein the determining of the web server includes determining the web server with a smallest latency; anda network capacity, wherein the determining of the web server includes determining the web server with a largest network capacity.
  • 9. The system of claim 1, wherein the local DNS server geographic location matches the geographic location of the one or more web servers when: the local DNS server geographic location is an exact match to the geographic location of the one or more web servers;the local DNS server geographic location is a sub-area of the geographic location of the one or more web servers;the local DNS server geographic location is within the geographic location of the one or more web servers; orthe local DNS server geographic location is within a predetermine distance from the geographic location of the one or more web servers.
  • 10. The system of claim 1, wherein each of the plurality of web servers includes a plurality of server computers servicing the web service requested in the request.
  • 11. The system of claim 1, wherein the global load balancer is configured to send the response to the local DNS server by: intercepting the response to the request sent by a global DNS server to the local DNS server;modifying the response by adding at least the network address of the web server to obtain a modified response; andsending the modified response including at least the network address of the web server to the local DNS server.
  • 12. A method for web service load balancing, the method comprising: receiving, by a global load balancer, from a local domain name system (DNS) server, a request for a web service, the local DNS server being coupled to a web client requesting the web service, the request including local DNS server information and a requested domain name;based on the local DNS server information, determining, by the global load balancer, a local DNS server geographic location associated with the local DNS server;based on the web service, determining, by the global load balancer, one or more web servers from a plurality of web servers;based on the requested domain name, querying a web server location database, wherein the web server location database includes a plurality of entries, each entry of the plurality of entries including a domain name, a network address of one of the plurality of web servers, a geographic location of the one of the plurality of web servers, and a performance factor associated with the one of the plurality of web servers;based on the querying, identifying, in the web server location database, one or more entries including the domain name that matches the requested domain name;based on the identified one or more entries and the one or more web servers selected based on the web service, receiving, from the web server location database, network addresses of the one or more web servers, geographic locations of the one or more web servers, and performance factors associated with the one or more web servers;determining, by the global load balancer, if any of the geographic locations of the one or more web servers matches the local DNS server geographic location;based on the matching, selecting, by the global load balancer, from the one or more web servers, a web server based on the performance factors of the one or more web servers wherein the performance factor of each of the one or more web servers includes a processing capability, wherein the selecting the web server includes determining the web server with a best processing capability, the web server being associated with a network address; andsending, by the global load balancer, a response to the local DNS server, the response including at least the network address of the web server.
  • 13. The method of claim 12, wherein the local DNS server information includes an IP address of the local DNS server, wherein the determining the local DNS server geographic location includes: querying a server location database using the IP address of the local DNS server, wherein the server location database includes a plurality of entries, each entry including an IP address and a corresponding geographic location, wherein the server location database identifies one or more entries including the IP address matching the IP address for the local DNS server; andreceiving, from the server location database, the corresponding geographic location from the identified entry as the local DNS server geographic location.
  • 14. The method of claim 13, wherein the IP address in the identified entry matches the IP address of the local DNS server when: the IP address in the identified entry is an exact match to the IP address of the local DNS server; orthe IP address of the local DNS server is within a range of IP addresses in the identified entry.
  • 15. The method of claim 12, further comprising: comparing the performance factors for the geographic locations of one or more web servers that match the local DNS server geographic location.
  • 16. The method of claim 12, wherein the performance factor further includes one of the following: a latency, wherein the determining of the web server includes determining the web server with a smallest latency; anda network capacity, wherein the determining of the web server includes determining the web server with a largest network capacity.
  • 17. The method of claim 12, wherein the sending the response to the local DNS server includes: intercepting the response to the request sent by a global DNS server to the local DNS server;modifying the response by adding at least the network address of the web server to obtain a modified response; andsending the modified response including at least the network address of the web server to the local DNS server.
  • 18. A system for web service load balancing, the system comprising: a plurality of web servers;a web server location database; anda global load balancer coupled to a local domain name system (DNS) server, wherein the global load balancer is configured to: receive, from the local DNS server, a request for a web service, the local DNS server being coupled to a web client requesting the web service, the request including local DNS server information, wherein the request further includes a requested domain name;based on the local DNS server information, determine a local DNS server geographic location associated with the local DNS server;based on the web service, select one or more web servers from the plurality of web servers;determine a geographic location of the one or more web servers, wherein the determining the geographic location of the one or more web servers includes: querying the web server location database using the requested domain name, wherein the web server location database includes a plurality of entries, each entry of the plurality of entries including a domain name, a network address of one of the plurality of web servers, a geographic location of the one of the plurality of web servers, and a performance factor associated with the one of the plurality of web servers, wherein the web server location database identifies one or more entries including the domain name that matches the requested domain name; andreceiving, from the web server location database, network addresses of the one or more web servers, geographic locations of the one or more web servers, and performance factors associated with the one or more web servers;determine if any of the geographic locations of the one or more web servers matches the local DNS server geographic location;based on the match, select, from the one or more web servers, a web server based on the performance factors of the one or more web servers, wherein the performance factor of each of the one or more web servers includes a processing capability, wherein the selecting the web server includes determining the web server with a best processing capability, the web server being associated with a network address; andsend a response to the local DNS server, the response including at least the network address of the web server.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims the priority benefit of U.S. patent application Ser. No. 12/603,471 filed on Oct. 21, 2009, entitled “Determining an Application Delivery Server Based on Geo-Location Information,” the disclosure of which is incorporated herein by reference in its entirety.

US Referenced Citations (436)
Number Name Date Kind
5218602 Grant et al. Jun 1993 A
5774660 Brendel et al. Jun 1998 A
5862339 Bonnaure et al. Jan 1999 A
5875185 Wang et al. Feb 1999 A
5935207 Logue et al. Aug 1999 A
5958053 Denker Sep 1999 A
5995981 Wikstrom Nov 1999 A
6003069 Cavill Dec 1999 A
6047268 Bartoli et al. Apr 2000 A
6075783 Voit Jun 2000 A
6131163 Wiegel Oct 2000 A
6219706 Fan et al. Apr 2001 B1
6259705 Takahashi et al. Jul 2001 B1
6321338 Porras et al. Nov 2001 B1
6374300 Masters Apr 2002 B2
6456617 Oda et al. Sep 2002 B1
6459682 Ellesson et al. Oct 2002 B1
6483600 Schuster et al. Nov 2002 B1
6535516 Leu et al. Mar 2003 B1
6578066 Logan Jun 2003 B1
6587866 Modi et al. Jul 2003 B1
6600738 Alperovich et al. Jul 2003 B1
6658114 Farn et al. Dec 2003 B1
6748414 Bournas Jun 2004 B1
6772205 Lavian et al. Aug 2004 B1
6772334 Glawitsch Aug 2004 B1
6779017 Lamberton et al. Aug 2004 B1
6779033 Watson et al. Aug 2004 B1
6804224 Schuster et al. Oct 2004 B1
6952728 Alles et al. Oct 2005 B1
7010605 Dharmarajan Mar 2006 B1
7013482 Krumel Mar 2006 B1
7058718 Fontes et al. Jun 2006 B2
7069438 Balabine et al. Jun 2006 B2
7076555 Orman et al. Jul 2006 B1
7143087 Fairweather Nov 2006 B2
7167927 Philbrick et al. Jan 2007 B2
7181524 Lele Feb 2007 B1
7218722 Turner et al. May 2007 B1
7228359 Monteiro Jun 2007 B1
7234161 Maufer et al. Jun 2007 B1
7236457 Joe Jun 2007 B2
7254133 Govindarajan et al. Aug 2007 B2
7269850 Govindarajan et al. Sep 2007 B2
7277963 Dolson et al. Oct 2007 B2
7301899 Goldstone Nov 2007 B2
7308499 Chavez Dec 2007 B2
7310686 Uysal Dec 2007 B2
7328267 Bashyam et al. Feb 2008 B1
7334232 Jacobs et al. Feb 2008 B2
7337241 Boucher et al. Feb 2008 B2
7343399 Hayball et al. Mar 2008 B2
7349970 Clement et al. Mar 2008 B2
7370353 Yang May 2008 B2
7373500 Ramelson et al. May 2008 B2
7391725 Huitema et al. Jun 2008 B2
7398317 Chen et al. Jul 2008 B2
7423977 Joshi Sep 2008 B1
7430755 Hughes et al. Sep 2008 B1
7463648 Eppstein et al. Dec 2008 B1
7467202 Savchuk Dec 2008 B2
7472190 Robinson Dec 2008 B2
7492766 Cabeca et al. Feb 2009 B2
7496651 Joshi Feb 2009 B1
7506360 Wilkinson et al. Mar 2009 B1
7509369 Tormasov Mar 2009 B1
7512980 Copeland et al. Mar 2009 B2
7533409 Keane et al. May 2009 B2
7552323 Shay Jun 2009 B2
7584262 Wang et al. Sep 2009 B1
7584301 Joshi Sep 2009 B1
7590736 Hydrie et al. Sep 2009 B2
7610622 Touitou et al. Oct 2009 B2
7613193 Swami et al. Nov 2009 B2
7613822 Joy et al. Nov 2009 B2
7673072 Boucher et al. Mar 2010 B2
7675854 Chen et al. Mar 2010 B2
7703102 Eppstein et al. Apr 2010 B1
7707295 Szeto et al. Apr 2010 B1
7711790 Barrett et al. May 2010 B1
7733866 Mishra et al. Jun 2010 B2
7747748 Allen Jun 2010 B2
7756965 Joshi Jul 2010 B2
7765328 Bryers et al. Jul 2010 B2
7792113 Foschiano et al. Sep 2010 B1
7808994 Vinokour et al. Oct 2010 B1
7826487 Mukerji et al. Nov 2010 B1
7881215 Daigle et al. Feb 2011 B1
7948952 Hurtta et al. May 2011 B2
7965727 Sakata et al. Jun 2011 B2
7970934 Patel Jun 2011 B1
7979585 Chen et al. Jul 2011 B2
7979694 Touitou et al. Jul 2011 B2
7983258 Ruben et al. Jul 2011 B1
7990847 Leroy et al. Aug 2011 B1
7991859 Miller et al. Aug 2011 B1
7992201 Aldridge et al. Aug 2011 B2
8019870 Eppstein et al. Sep 2011 B1
8032634 Eppstein et al. Oct 2011 B1
8081640 Ozawa et al. Dec 2011 B2
8090866 Bashyam et al. Jan 2012 B1
8099492 Dahlin et al. Jan 2012 B2
8116312 Riddoch et al. Feb 2012 B2
8122116 Matsunaga et al. Feb 2012 B2
8151019 Le et al. Apr 2012 B1
8179809 Eppstein et al. May 2012 B1
8185651 Moran et al. May 2012 B2
8191106 Choyi et al. May 2012 B2
8224971 Miller et al. Jul 2012 B1
8261339 Aldridge et al. Sep 2012 B2
8266235 Jalan et al. Sep 2012 B2
8296434 Miller et al. Oct 2012 B1
8312507 Chen et al. Nov 2012 B2
8379515 Mukerji Feb 2013 B1
8499093 Grosser et al. Jul 2013 B2
8539075 Bali et al. Sep 2013 B2
8554929 Szeto et al. Oct 2013 B1
8559437 Mishra et al. Oct 2013 B2
8560693 Wang et al. Oct 2013 B1
8584199 Chen et al. Nov 2013 B1
8595791 Chen et al. Nov 2013 B1
RE44701 Chen et al. Jan 2014 E
8675488 Sidebottom et al. Mar 2014 B1
8681610 Mukerji Mar 2014 B1
8750164 Casado et al. Jun 2014 B2
8782221 Plan Jul 2014 B2
8813180 Chen et al. Aug 2014 B1
8826372 Chen et al. Sep 2014 B1
8879427 Krumel Nov 2014 B2
8885463 Medved et al. Nov 2014 B1
8897154 Jalan et al. Nov 2014 B2
8965957 Barros Feb 2015 B2
8977749 Han Mar 2015 B1
8990262 Chen et al. Mar 2015 B2
8996670 Kupinsky et al. Mar 2015 B2
9094364 Jalan et al. Jul 2015 B2
9106561 Jalan et al. Aug 2015 B2
9137301 Dunlap et al. Sep 2015 B1
9154577 Jalan et al. Oct 2015 B2
9154584 Han Oct 2015 B1
9215275 Kannan et al. Dec 2015 B2
9219751 Chen et al. Dec 2015 B1
9253152 Chen et al. Feb 2016 B1
9270705 Chen et al. Feb 2016 B1
9270774 Jalan et al. Feb 2016 B2
9338225 Jalan et al. May 2016 B2
9350744 Chen et al. May 2016 B2
9356910 Chen et al. May 2016 B2
9386088 Zheng et al. Jul 2016 B2
9497201 Chen et al. Nov 2016 B2
9531846 Han et al. Dec 2016 B2
9544364 Jalan et al. Jan 2017 B2
9602442 Han Mar 2017 B2
9609052 Jalan et al. Mar 2017 B2
9705800 Sankar et al. Jul 2017 B2
9806943 Golshan et al. Oct 2017 B2
9843484 Sankar et al. Dec 2017 B2
9900252 Chiong Feb 2018 B2
9906422 Jalan et al. Feb 2018 B2
9906591 Jalan et al. Feb 2018 B2
9942152 Jalan et al. Apr 2018 B2
9942162 Golshan Apr 2018 B2
20010042200 Lamberton et al. Nov 2001 A1
20010049741 Skene et al. Dec 2001 A1
20020026515 Michielsens et al. Feb 2002 A1
20020032777 Kawata et al. Mar 2002 A1
20020032799 Wiedeman et al. Mar 2002 A1
20020078164 Reinschmidt Jun 2002 A1
20020091844 Craft et al. Jul 2002 A1
20020103916 Chen et al. Aug 2002 A1
20020133491 Sim et al. Sep 2002 A1
20020138618 Szabo Sep 2002 A1
20020141386 Minert et al. Oct 2002 A1
20020143991 Chow et al. Oct 2002 A1
20020178259 Doyle et al. Nov 2002 A1
20020188678 Edecker et al. Dec 2002 A1
20020191575 Kalavade et al. Dec 2002 A1
20020194335 Maynard Dec 2002 A1
20020194350 Lu et al. Dec 2002 A1
20030014544 Pettey Jan 2003 A1
20030023711 Parmar et al. Jan 2003 A1
20030023873 Ben-Itzhak Jan 2003 A1
20030035409 Wang et al. Feb 2003 A1
20030035420 Niu Feb 2003 A1
20030061506 Cooper et al. Mar 2003 A1
20030074471 Anderson Apr 2003 A1
20030091028 Chang et al. May 2003 A1
20030131245 Linderman Jul 2003 A1
20030135625 Fontes et al. Jul 2003 A1
20030195962 Kikuchi et al. Oct 2003 A1
20040010545 Pandya Jan 2004 A1
20040062246 Boucher et al. Apr 2004 A1
20040073703 Boucher et al. Apr 2004 A1
20040078419 Ferrari et al. Apr 2004 A1
20040078480 Boucher et al. Apr 2004 A1
20040103315 Cooper et al. May 2004 A1
20040111516 Cain Jun 2004 A1
20040128312 Shalabi et al. Jul 2004 A1
20040139057 Hirata et al. Jul 2004 A1
20040139108 Tang et al. Jul 2004 A1
20040141005 Banatwala et al. Jul 2004 A1
20040143599 Shalabi et al. Jul 2004 A1
20040187032 Gels et al. Sep 2004 A1
20040199616 Karhu Oct 2004 A1
20040199646 Susai et al. Oct 2004 A1
20040202182 Lund et al. Oct 2004 A1
20040210623 Hydrie et al. Oct 2004 A1
20040210663 Phillips et al. Oct 2004 A1
20040213158 Collett et al. Oct 2004 A1
20040250059 Ramelson et al. Dec 2004 A1
20040268358 Darling et al. Dec 2004 A1
20050005207 Herneque Jan 2005 A1
20050009520 Herrero et al. Jan 2005 A1
20050021848 Jorgenson Jan 2005 A1
20050027862 Nguyen et al. Feb 2005 A1
20050036501 Chung et al. Feb 2005 A1
20050036511 Baratakke et al. Feb 2005 A1
20050039033 Meyers et al. Feb 2005 A1
20050044270 Grove et al. Feb 2005 A1
20050074013 Hershey et al. Apr 2005 A1
20050080890 Yang et al. Apr 2005 A1
20050102400 Nakahara et al. May 2005 A1
20050125276 Rusu Jun 2005 A1
20050163073 Heller et al. Jul 2005 A1
20050198335 Brown et al. Sep 2005 A1
20050213586 Cyganski et al. Sep 2005 A1
20050240989 Kim et al. Oct 2005 A1
20050249225 Singhal Nov 2005 A1
20050259586 Hafid et al. Nov 2005 A1
20050281190 McGee et al. Dec 2005 A1
20060023721 Miyake et al. Feb 2006 A1
20060036610 Wang Feb 2006 A1
20060036733 Fujimoto et al. Feb 2006 A1
20060041745 Parnes Feb 2006 A1
20060064478 Sirkin Mar 2006 A1
20060069774 Chen et al. Mar 2006 A1
20060069804 Miyake et al. Mar 2006 A1
20060077926 Rune Apr 2006 A1
20060092950 Arregoces et al. May 2006 A1
20060098645 Walkin May 2006 A1
20060112170 Sirkin May 2006 A1
20060164978 Werner et al. Jul 2006 A1
20060168319 Trossen Jul 2006 A1
20060187901 Cortes et al. Aug 2006 A1
20060190997 Mahajani et al. Aug 2006 A1
20060209789 Gupta et al. Sep 2006 A1
20060230129 Swami et al. Oct 2006 A1
20060233100 Luft et al. Oct 2006 A1
20060251057 Kwon et al. Nov 2006 A1
20060277303 Hegde et al. Dec 2006 A1
20060280121 Matoba Dec 2006 A1
20070019543 Wei et al. Jan 2007 A1
20070022479 Sikdar et al. Jan 2007 A1
20070076653 Park et al. Apr 2007 A1
20070086382 Narayanan et al. Apr 2007 A1
20070094396 Takano et al. Apr 2007 A1
20070118881 Mitchell et al. May 2007 A1
20070124502 Li May 2007 A1
20070156919 Potti et al. Jul 2007 A1
20070165622 O'Rourke et al. Jul 2007 A1
20070180119 Khivesara et al. Aug 2007 A1
20070185998 Touitou et al. Aug 2007 A1
20070230337 Igarashi et al. Oct 2007 A1
20070242738 Park et al. Oct 2007 A1
20070243879 Park et al. Oct 2007 A1
20070245090 King et al. Oct 2007 A1
20070248009 Petersen Oct 2007 A1
20070259673 Willars et al. Nov 2007 A1
20070283429 Chen et al. Dec 2007 A1
20070286077 Wu Dec 2007 A1
20070288247 Mackay Dec 2007 A1
20070294209 Strub et al. Dec 2007 A1
20080016161 Tsirtsis et al. Jan 2008 A1
20080031263 Ervin et al. Feb 2008 A1
20080076432 Senarath et al. Mar 2008 A1
20080101396 Miyata May 2008 A1
20080109452 Patterson May 2008 A1
20080109870 Sherlock et al. May 2008 A1
20080120129 Seubert et al. May 2008 A1
20080134332 Keohane et al. Jun 2008 A1
20080162679 Maher et al. Jul 2008 A1
20080225722 Khemani et al. Sep 2008 A1
20080228781 Chen et al. Sep 2008 A1
20080250099 Shen et al. Oct 2008 A1
20080253390 Das et al. Oct 2008 A1
20080263209 Pisharody et al. Oct 2008 A1
20080271130 Ramamoorthy Oct 2008 A1
20080282254 Blander et al. Nov 2008 A1
20080291911 Lee et al. Nov 2008 A1
20080298303 Tsirtsis Dec 2008 A1
20090024722 Sethuraman et al. Jan 2009 A1
20090031415 Aldridge et al. Jan 2009 A1
20090049198 Blinn et al. Feb 2009 A1
20090070470 Bauman et al. Mar 2009 A1
20090077651 Poeluev Mar 2009 A1
20090092124 Singhal et al. Apr 2009 A1
20090106830 Maher Apr 2009 A1
20090138606 Moran et al. May 2009 A1
20090138945 Savchuk May 2009 A1
20090141634 Rothstein et al. Jun 2009 A1
20090164614 Christian Jun 2009 A1
20090172093 Matsubara Jul 2009 A1
20090213858 Dolganow et al. Aug 2009 A1
20090222583 Josefsberg et al. Sep 2009 A1
20090227228 Hu et al. Sep 2009 A1
20090228547 Miyaoka et al. Sep 2009 A1
20090262741 Jungck et al. Oct 2009 A1
20090271472 Scheifler et al. Oct 2009 A1
20090285196 Lee et al. Nov 2009 A1
20090288134 Foottit et al. Nov 2009 A1
20090313379 Rydnell et al. Dec 2009 A1
20100008229 Bi et al. Jan 2010 A1
20100023621 Ezolt et al. Jan 2010 A1
20100036952 Hazlewood et al. Feb 2010 A1
20100036954 Sakata Feb 2010 A1
20100042869 Szabo et al. Feb 2010 A1
20100054139 Chun et al. Mar 2010 A1
20100061319 Aso et al. Mar 2010 A1
20100064008 Yan et al. Mar 2010 A1
20100082787 Kommula et al. Apr 2010 A1
20100083076 Ushiyama Apr 2010 A1
20100094985 Abu-Samaha et al. Apr 2010 A1
20100095018 Khemani et al. Apr 2010 A1
20100098417 Tse-Au Apr 2010 A1
20100106833 Banerjee et al. Apr 2010 A1
20100106854 Kim et al. Apr 2010 A1
20100128606 Patel et al. May 2010 A1
20100162378 Jayawardena et al. Jun 2010 A1
20100205310 Altshuler et al. Aug 2010 A1
20100210265 Borzsei et al. Aug 2010 A1
20100217793 Preiss Aug 2010 A1
20100223630 Degenkolb et al. Sep 2010 A1
20100228819 Wei Sep 2010 A1
20100235507 Szeto et al. Sep 2010 A1
20100235522 Chen et al. Sep 2010 A1
20100238828 Russell Sep 2010 A1
20100262819 Yang et al. Oct 2010 A1
20100265824 Chao et al. Oct 2010 A1
20100268814 Cross et al. Oct 2010 A1
20100293296 Hsu et al. Nov 2010 A1
20100312740 Clemm et al. Dec 2010 A1
20100318631 Shukla Dec 2010 A1
20100322252 Suganthi et al. Dec 2010 A1
20100330971 Selitser et al. Dec 2010 A1
20100333101 Pope et al. Dec 2010 A1
20110007652 Bai Jan 2011 A1
20110010463 Christenson Jan 2011 A1
20110019550 Bryers et al. Jan 2011 A1
20110023071 Li et al. Jan 2011 A1
20110029599 Pulleyn et al. Feb 2011 A1
20110032941 Quach et al. Feb 2011 A1
20110040826 Chadzelek et al. Feb 2011 A1
20110047294 Singh et al. Feb 2011 A1
20110060831 Ishii et al. Mar 2011 A1
20110083174 Aldridge et al. Apr 2011 A1
20110093522 Chen et al. Apr 2011 A1
20110099403 Miyata et al. Apr 2011 A1
20110099623 Garrard et al. Apr 2011 A1
20110110294 Valluri et al. May 2011 A1
20110145324 Reinart et al. Jun 2011 A1
20110149879 Noriega et al. Jun 2011 A1
20110153723 Mutnuru Jun 2011 A1
20110153834 Bharrat Jun 2011 A1
20110153938 Verzunov Jun 2011 A1
20110178985 San Martin Arribas et al. Jul 2011 A1
20110185073 Jagadeeswaran et al. Jul 2011 A1
20110191773 Pavel et al. Aug 2011 A1
20110196971 Reguraman et al. Aug 2011 A1
20110209157 Sumida et al. Aug 2011 A1
20110276695 Maldaner Nov 2011 A1
20110276982 Nakayama et al. Nov 2011 A1
20110289496 Steer Nov 2011 A1
20110292939 Subramaian et al. Dec 2011 A1
20110302256 Sureshehandra et al. Dec 2011 A1
20110307541 Walsh et al. Dec 2011 A1
20120008495 Shen et al. Jan 2012 A1
20120023231 Ueno Jan 2012 A1
20120026897 Guichard et al. Feb 2012 A1
20120030341 Jensen et al. Feb 2012 A1
20120039175 Sridhar et al. Feb 2012 A1
20120066371 Patel et al. Mar 2012 A1
20120084460 McGinnity et al. Apr 2012 A1
20120106355 Ludwig May 2012 A1
20120117382 Larson et al. May 2012 A1
20120117571 Davis et al. May 2012 A1
20120144014 Natham et al. Jun 2012 A1
20120151353 Joanny Jun 2012 A1
20120170548 Rajagopalan et al. Jul 2012 A1
20120173759 Agarwal et al. Jul 2012 A1
20120191839 Maynard Jul 2012 A1
20120215910 Wada Aug 2012 A1
20120239792 Banerjee et al. Sep 2012 A1
20120240185 Kapoor et al. Sep 2012 A1
20120290727 Tivig Nov 2012 A1
20120297046 Raja et al. Nov 2012 A1
20130046876 Narayana et al. Feb 2013 A1
20130058335 Koponen et al. Mar 2013 A1
20130074177 Varadhan et al. Mar 2013 A1
20130083725 Mallya et al. Apr 2013 A1
20130124713 Feinberg et al. May 2013 A1
20130135996 Torres et al. May 2013 A1
20130148500 Sonoda et al. Jun 2013 A1
20130173795 McPherson Jul 2013 A1
20130176854 Chisu et al. Jul 2013 A1
20130176908 Baniel et al. Jul 2013 A1
20130191486 Someya et al. Jul 2013 A1
20130198385 Han et al. Aug 2013 A1
20130250765 Ehsan et al. Sep 2013 A1
20130258846 Damola Oct 2013 A1
20130282791 Kruglick Oct 2013 A1
20140086052 Cai et al. Mar 2014 A1
20140254367 Jeong et al. Sep 2014 A1
20140258465 Li Sep 2014 A1
20140269728 Jalan et al. Sep 2014 A1
20140286313 Fu et al. Sep 2014 A1
20140298091 Carlen et al. Oct 2014 A1
20140304412 Prakash Oct 2014 A1
20140330982 Jalan et al. Nov 2014 A1
20140334485 Jain et al. Nov 2014 A1
20140359052 Joachimpillai et al. Dec 2014 A1
20150026794 Zuk et al. Jan 2015 A1
20150156223 Xu et al. Jun 2015 A1
20150215436 Kancherla Jul 2015 A1
20150237173 Virkki et al. Aug 2015 A1
20150244566 Puimedon Aug 2015 A1
20150296058 Jalan et al. Oct 2015 A1
20150312268 Ray Oct 2015 A1
20150350048 Sampat et al. Dec 2015 A1
20150350379 Jalan et al. Dec 2015 A1
20160014126 Jalan et al. Jan 2016 A1
20160042014 Jalan et al. Feb 2016 A1
20160044095 Sankar et al. Feb 2016 A1
20160088074 Kannan et al. Mar 2016 A1
20170048107 Dosovitsky et al. Feb 2017 A1
20170048356 Thompson et al. Feb 2017 A1
20180212835 Chen Jul 2018 A1
Foreign Referenced Citations (112)
Number Date Country
1372662 Oct 2002 CN
1449618 Oct 2003 CN
1473300 Feb 2004 CN
1529460 Sep 2004 CN
1575582 Feb 2005 CN
1714545 Dec 2005 CN
1725702 Jan 2006 CN
1910869 Feb 2007 CN
101004740 Jul 2007 CN
101094225 Dec 2007 CN
101163336 Apr 2008 CN
101169785 Apr 2008 CN
101189598 May 2008 CN
101193089 Jun 2008 CN
101247349 Aug 2008 CN
101261644 Sep 2008 CN
101442425 May 2009 CN
101495993 Jul 2009 CN
101682532 Mar 2010 CN
101878663 Nov 2010 CN
102123156 Jul 2011 CN
102143075 Aug 2011 CN
102546590 Jul 2012 CN
102571742 Jul 2012 CN
102577252 Jul 2012 CN
102918801 Feb 2013 CN
103533018 Jan 2014 CN
103944954 Jul 2014 CN
104040990 Sep 2014 CN
104067569 Sep 2014 CN
104106241 Oct 2014 CN
104137491 Nov 2014 CN
104796396 Jul 2015 CN
102577252 Mar 2016 CN
102918801 May 2016 CN
1209876 May 2002 EP
1770915 Apr 2007 EP
1885096 Feb 2008 EP
2296313 Mar 2011 EP
2577910 Apr 2013 EP
2622795 Aug 2013 EP
2647174 Oct 2013 EP
2760170 Jul 2014 EP
2772026 Sep 2014 EP
2901308 Aug 2015 EP
2760170 Dec 2015 EP
1182560 Nov 2013 HK
1183569 Dec 2013 HK
1183996 Jan 2014 HK
1189468 Jan 2014 HK
1198565 May 2015 HK
1198848 Jun 2015 HK
1199153 Jun 2015 HK
1199779 Jul 2015 HK
1200617 Aug 2015 HK
3764CHN2014 Sep 2015 IN
261CHE2014 Jul 2016 IN
H0997233 Apr 1997 JP
H1196128 Apr 1999 JP
H11338836 Dec 1999 JP
2000276432 Oct 2000 JP
2000307634 Nov 2000 JP
2001051859 Feb 2001 JP
2001298449 Oct 2001 JP
2002091936 Mar 2002 JP
2003141068 May 2003 JP
2003186776 Jul 2003 JP
2005141441 Jun 2005 JP
2006332825 Dec 2006 JP
2008040718 Feb 2008 JP
2009500731 Jan 2009 JP
2013528330 Jul 2013 JP
2014504484 Feb 2014 JP
2014143686 Aug 2014 JP
2015507380 Mar 2015 JP
5855663 Feb 2016 JP
5906263 Apr 2016 JP
5913609 Apr 2016 JP
100830413 May 2008 KR
20130096624 Aug 2013 KR
101576585 Dec 2015 KR
269763 Feb 1996 TW
425821 Mar 2001 TW
444478 Jul 2001 TW
WO2001013228 Feb 2001 WO
WO2001014990 Mar 2001 WO
WO2001045349 Jun 2001 WO
WO2003103237 Dec 2003 WO
WO2004084085 Sep 2004 WO
WO2006098033 Sep 2006 WO
WO2008053954 May 2008 WO
WO2008078593 Jul 2008 WO
WO2011049770 Apr 2011 WO
WO2011079381 Jul 2011 WO
WO2011149796 Dec 2011 WO
WO2012050747 Apr 2012 WO
WO2012075237 Jun 2012 WO
WO2012083264 Jun 2012 WO
WO2012097015 Jul 2012 WO
WO2013070391 May 2013 WO
WO2013081952 Jun 2013 WO
WO2013096019 Jun 2013 WO
WO2013112492 Aug 2013 WO
WO2014031046 Feb 2014 WO
WO2014052099 Apr 2014 WO
WO2014088741 Jun 2014 WO
WO2014093829 Jun 2014 WO
WO2014138483 Sep 2014 WO
WO2014144837 Sep 2014 WO
WO2014179753 Nov 2014 WO
WO2015153020 Oct 2015 WO
WO2015164026 Oct 2015 WO
Non-Patent Literature Citations (16)
Entry
Abe, et al., “Adaptive Split Connection Schemes in Advanced Relay Nodes,” IEICE Technical Report, 2010, vol. 109 (438), pp. 25-30.
Cardellini, et al., “Dynamic Load Balancing on Web-Server Systems,” IEEE Internet Computing, 1999, vol. 3 (3), pp. 28-39.
Chen, et al., “SSL/TLS-based Secure Tunnel Gateway System Design and Implementation,” IEEE International Workshop on Anti-counterfeiting, Security, Identification, 2007, pp. 258-261.
Crotti, et al., “Detecting HTTP Tunnels with Statistical Mechanisms,” IEEE International Conference on Communications, 2007, pp. 6162-6168.
EIGRP MPLS VPN PE-CE Site of Origin (SoO), Cisco, https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/s_mvesoo.html, 2006, pp. 14.
Enhanced Interior Gateway Routing Protocol, Cisco, Document ID 16406, 2005, https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/16406-eigrp-toc.html, pp. 43.
FreeBSD, “tcp—TCP Protocol,” Linux Programme□ s Manual [online], 2007, [retrieved on Apr. 13, 2016], Retreived from the Internet: <https://www.freebsd.org/cgi/man.cgi?query=tcp&apropos=0&sektion=7&manpath=SuSe+Linux%2Fi386+11.0&format=asci>.
Gite, “Linux Tune Network Stack (Buffers Size) to Increase Networking Performance,” nixCraft [online], 2009, [retreived on Apr. 13, 2016], Retreived from the Internet: <URL:http://www.cyberciti.biz/faq/linux-tcp-tuning/>.
Goldszmidt, et al., “NetDispatcher: A TCP Connection Router,” IBM Researc Report, RC 20853, 1997, pp. 1-31.
Haruyama, et al., “Dial-to-Connect VPN System for Remote DLNA Communication,” IEEE Consumer Communications and Networking Conference, 2008, pp. 1224-1225.
Kjaer, et al., “Resource Allocation and Disturbance Rejection in Web Servers Using SLAs and Virtualized Servers,” IEEE Transactions on Network Service Management, 2009, vol. 6 (4), pp. 226-239.
Koike, et al., “Transport Middleware for Network-Based Control,” IEICE Technical Report, 2000, vol. 100 (53), pp. 13-18.
Sharifian, et al., “An Approximation-Based Load-Balancing Algorithm with Admission Control for Cluster Web Servers with Dynamic Workloads,” The Journal of Supercomputing, 2010, vol. 53 (3), pp. 440-463.
Spatscheck, et al., “Optimizing TCP Forwarder Performance,” IEEE/ACM Transactions on Networking, 2000, vol. 8 (2), pp. 146-157.
Search Report and Written Opinion dated Jun. 21, 2011 for PCT Application No. PCT/US2010/052209.
Yamamoto, et al., “Performance Evaluation of Window Size in Proxy-Based TCP for Multi-Flop Wireless Networks,” IPSJ SIG Technical Reports, 2008, vol. 2008 (44), pp. 109-114.
Related Publications (1)
Number Date Country
20180212835 A1 Jul 2018 US
Continuations (1)
Number Date Country
Parent 12603471 Oct 2009 US
Child 15928345 US