Developer storage and delivery system for liquid electrophotography

Information

  • Patent Grant
  • 6546221
  • Patent Number
    6,546,221
  • Date Filed
    Friday, April 19, 2002
    22 years ago
  • Date Issued
    Tuesday, April 8, 2003
    21 years ago
Abstract
A developer storage and delivery system for liquid electrophotography having:(a) an insulating substrate with a first surface and a second surface;(b) a plurality of discrete conductive heating elements mounted on the first surface; and(c) a phase change developer having a melting point of at least 22° C.,wherein the phase change developer is on the top surface of each of the discrete conductive heating elements, except that a small portion of both ends of each of the conductive heating elements is free of the phase change developer for conducting electricity.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates generally to a developer storage and delivery system, and more particularly concerns storing a phase change developer on a continuous web or on an endless belt and delivering the phase change developer to a liquid electrophotographic developing system.




2. Background of the Art




In electrophotography, a photoreceptor in the form of a plate, belt, or drum having an electrically insulating photoconductive element on an electrically conductive substrate is imaged by first uniformly electrostatically charging the surface of the photoconductive element, and then exposing the charged surface to a pattern of light. The light exposure selectively dissipates the charge in the illuminated areas, thereby forming a pattern of charged and uncharged areas (i.e., an electrostatic latent image). A liquid or dry developer is then deposited in either the charged or uncharged areas to create a toned image on the surface of the photoconductive element. The resulting visible image can be fixed to the photoreceptor surface or transferred to a surface of an intermediate transfer material or a suitable receiving medium such as sheets of material, including, for example, paper, polymer, transparency, metal, metal coated substrates, composites and the like. The imaging process can be repeated many times on the reuseable photoconductive element.




In some electrophotographic imaging systems, the latent images are formed and developed on top of one another in a common imaging region of the photoreceptor. The latent images can also be formed and developed in multiple passes of the photoreceptor around a continuous transport path (i.e., a multi-pass system). Alternatively, the latent images can be formed and developed in a single pass of the photoreceptor around the continuous transport path. A single-pass system enables the multi-color images to be assembled at extremely high speeds relative to the multi-pass system. At each color development station, color developers are applied to the photoreceptor belt, for example, by electrically biased rotating developer rolls.




Image developing methods can be classified into liquid type and dry type. The dry type method uses dry (e.g., powder) developers and the wet type method uses liquid developers.




Dry developers are generally prepared by mixing and dispersing colorant particles and a charge director into a thermoplastic binder resin. This mixing and dispersing is followed by milling or micropulverization. The resulted developer often comprises a powder having particle sizes that are generally in the range of about 4 to 10 microns. If the fine powder of a dry developer is scattered, it poses an environmental problem because of its small particle size. Therefore, most dry developers are stored in a cartridge which is easily handled and disposed of Furthermore, the stability of dry developer is usually much better than that of liquid developer.




Liquid developers are usually prepared by dispersing colorant particles, a charge director, and a binder in an insulating liquid (i.e., a carrier or a vehicle). Liquid developer based imaging systems incorporate many features similar to those of dry developer based system. However, liquid developer particles are significantly smaller than dry developer particles. Because of their small particle size, ranging from


3


microns to submicron size, liquid developers are capable of producing very high resolution images. However, liquid developers have some drawbacks.




The major drawbacks of liquid developers are (1) the emission of the liquid carrier from liquid developers to the environment during the drying and transfer process due to inefficient solvent recovery system; (2) the need and difficulty in disposing the waste liquids; (3) the inconvenience of using and handling of liquid developers; (4) and the aggregation and sedimentation instability of (the materials inside the developer are stable, both individually and in their association with other materials in the developer, e.g., non-reactive) liquid developers.




While known liquid developers and processes are suitable for their intended purposes, a need remains for liquid developers and processes that reduce or substantially eliminate the above-mentioned drawbacks. Additionally, there is a need for liquid developers and processes that enable the formation of high quality images on a wide variety of substrates.




There have been many attempts to solve some of the above-mentioned drawbacks of liquid developers and dry developers. For example, U.S. Pat. No. 5,075,735 to Tsuchiya et al. discloses a developer delivery system comprising stripes or bars of solid developer mounted across a belt. The stripes or bars of solid developer are caused to drop onto a heater by a cutter and then the solid developer is melted by the heater into liquid. The resulted liquid developer is then used to develop electrophotographic images.




U.S. Pat. No. 5,815,780 to Boerger et al. discloses an apparatus for storing and delivering toner. The toner is stored on a belt in discretely sealed toner bubbles filled with toner. An extractor unit then causes toner bubbles to rupture, allowing the toner to fall into a developer housing to replenish the toner supply.




U.S. Pat. No. 5,998,081 to Morrison et al. discloses a metallic web coated with a solid developer which is melted by an external conductive heating element. The melted developer is caused to form visible images by contacting with electrostatic latent images.




SUMMARY OF THE INVENTION




This invention provides an improved developer storage and delivery system which eliminates or reduces the above-mentioned drawbacks of liquid developers and processes while providing high quality images on a wide variety of substrates.




In a first aspect, the invention features a developer storage and delivery system for liquid electrophotography that includes:




a conductive substrate with a first surface and a second surface;




a plurality of discrete conductive heating elements mounted on said first surface; and




a phase change developer having a melting point of at least 22° C., wherein said phase change developer is on the top surface of each of said conductive heating elements, except that a minor portion of the top surface of each of said conductive heating elements is free of said phase change developer. The term minor portion is used in its normal sense as less than 50% of the surface area directly over the conductive stripes is free of the phase change developer. It is preferred that this minor area be a small area, defined herein as less than 20% of the surface area over the conductive stripes or of the entire surface of the developer system, for example, 0.05 or 0.1% to 20%, 1 to 15%, 0.2 to 10%, 0.1 to 5% and 0.1 to 2% of the surface area over the conductive stripes or the developer system. The conductive stripes are for conducting electricity, preferably as part of a resistive heating element to heat the phase change developer. The developer is not necessarily conductive, and there must be at least a minor area and preferably a small area (as defined above) that is exposed to enable external electrical contact to connect the resistive heating element with an external power source.




In a second aspect, the invention features a developer storage and delivery system for liquid electrophotography that includes:




a conductive substrate with a first surface and a second surface;




a plurality of discrete conductive heating elements mounted on said first surface; and




a phase change developer having a melting point of at least 22° C., wherein said phase change developer is a continuous layer on the top surface of each of said conductive heating elements and on said first surface free of said conductive heating elements, except that a small of the top surface of each of said conductive heating elements is free of said phase change developer for conducting electricity.




In a third aspect, the invention features a developer storage and delivery system for liquid electrophotography that includes:




an insulating substrate with a first surface and a second surface;




a plurality of discrete conductive heating elements mounted on said first surface; and




a phase change developer having a melting point of at least 22° C., wherein said phase change developer is placed on the top surface of each of said discrete conductive heating elements, except that a small portion of both ends of each of said conductive heating elements is free of said phase change developer for conducting electricity.




In a fourth aspect, the invention features a developer storage and delivery system for liquid electrophotography that includes:




an insulating substrate with a first surface and a second surface;




a plurality of discrete conductive heating elements mounted on said first surface; and




a phase change developer having a melting point of at least 22° C., wherein said phase change developer forms a layer that is preferably a continuous layer (This embodiment has a continuous developer layer on top of both the substrate and the heating elements, this structure shown primarily because it is easy to manufacture. This embodiment is shown in FIG.


2


. Non-continuous coatings may comprise, for example only, porous, patterned, striped, etc. coatings. However, we prefer the developer to be continuous so that no area of the developer roll is uncovered) on the top surface of each of said conductive heating elements and on said first surface free of said conductive heating elements, except that a small portion of both ends of each of said conductive heating elements is free of said phase change developer for conducting electricity.




The term “phase change developer” has an accepted meaning within the imaging art, however, some additional comments are useful in view of phenemic differences amongst mechanisms in this field. As the term indicates, the developer system is present as one physical phase under storage conditions (e.g., usually a solid) and transitions into another phase during development (usually a liquid phase), usually under the influence of heat or other directed energy sources. There are basically two preferred mechanisms in which these phase changes appear: a) complete conversion of the phase change developer layer from a solid to a liquid and b) release of a liquid from a phase change developer layer with a solid carrier in the phase change developer layer remaining as a solid during and after development. The first system operates by the entire layer softening to a point where the entire layer flows, carrying the active developer component to the charge distributed areas and depositing the developer composition on the appropriate areas where the charges attract the developer. In this case, the developer may be originally or finally in a solid phase or liquid phase within the phase change developer layer, but with the softened (flowable or liquefied) layer carrying the developer or allowing the developer to move over the surface of the layer having image-effecting charge distribution over its surface. The second system, where a liquid developer forms on the surface of the phase change developer carrying layer, usually maintains a solid carrying layer with a liquid developer provided on the surface of the carrier layer. This system may function, for example, by the developer having a lower softening point or even being present as a liquid (e.g., liquid/solid dispersion, liquid/solid emulsion) in the solid carrier layer. Upon activation or stimulation (e,g, by energy, such as heat), the developer composition will exude or otherwise emit from the surface of the solid carrier. This can occur by a number of different phenomena, and the practice of the invention is not limited to any specifically described phenomenon. For example, a phase change developer layer may be constructed by blending a developer composition that is solid at 22° C., which may be dispersed in a solid binder that is solid at 70° C., and the phase change developer composition coated on the imaging surface. Upon heating of the phase change developer layer to a temperature between 25° C. and 65° C., for example, especially where the developer composition is present at from 1 to 60% by weight of the phase change developer layer, the developer will soften or liquefy, and the developer composition will flow to the surface of the developer layer. The developer may be present as droplets and spread by physical action or may flow in sufficient volume to wet the surface of the developer layer and form a continuous layer of liquid. Thus, in the practice of the present invention, the phase change developer layer may be heated above room temperature and below or above the melt, softening or flow temperature of the carrier solid in the phase change developer layer.




The concept of an ‘activation point’ or ‘activation temperature’ is particularly easily understood in the concept of the present invention. At room temperature, below the activation temperature, the phase change developer layer will not allow the developer to readily distribute over the differentially charged layer to form a pattern or latent image or image in response to the distribution of charges. When the activation temperature has been exceeded on the phase change developer layer, the developer becomes able to be distributed over the differentially charged layer to form a pattern or latent image or image in response to the distribution of charges. The activation point or activation temperature is therefore the temperature at which the phase change developer layer passes from a state in which the developer is electrophotographically inactive to a state where the developer is electrophotographically active, as the temperature increases.




The developer storage and delivery system of the present invention will be described primarily with respect to electrophotographic office printing; however, it is to be understood that these developers are not so limited in their utility and may also be employed in other imaging processes, other printing processes, or other developer transfer processes, such as high speed printing presses, photocopying apparatus, microfilm reproduction devices, facsimile printing, ink jet printers, instrument recording devices, and the like.




DETAILED DESCRIPTION OF THE INVENTION











1. BRIEF DESCRIPTION OF THE DRAWINGS




The foregoing advantages, construction and operation of the present invention will become more readily apparent from the following description and accompanying drawings in which:





FIG. 1

is a diagrammatic illustration of a developer storage and delivery system wherein a phase change developer is placed on top of discrete conductive heating elements.





FIG. 2

is a diagrammatic illustration of a developer storage and delivery system wherein a continuous coating of a phase change developer is placed on top of both a conductive substrate and discrete conductive heating elements.





FIG. 3

is a diagrammatic illustration of a developer storage and delivery system wherein stripes of conductive heating element are placed on an insulated substrate, with optional electrical leads in contact with each end of the stripes, and no phase change developer is shown.





FIG. 4

is a diagrammatic illustration of a basic liquid electrophotographic process in which the present invention has utility and an apparatus for performing that process.





FIG. 5

is a diagrammatic illustration of an apparatus and a method for producing a multi-colored image in accordance with the present invention.











2. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Liquid electrophotography is a technology which produces or reproduces an image on paper or other desired receiving material. Liquid electrophotography uses liquid developers which may be black or which may be of different colors for the purpose of plating solid colored material onto a surface in a well-controlled and image-wise manner to create the desired prints. Typically, a colored image is constructed of four image planes. The first three image planes are constructed with a liquid developer in each of the three subtractive primary printing colors, yellow, cyan and magenta. The fourth image plane uses black developer.




In this invention, instead of conventional liquid developers, phase change developer storage and delivery systems are used. FIG.


1


and

FIG. 2

illustrate two aspects of this invention. The phase change developer storage and delivery system comprises conductive substrate


101


in the form of a continuous web or an endless belt or loop. The phase change developer storage and delivery system also comprises phase change developer


104


which is positioned, provided or placed on top of discrete conductive heating elements


102


. Conductive heating elements


102


may be in the form of a coating, etched pattern, a stripe, a bar, an embedded element, or any other useful forms or shapes. Phase change developer


104


may be in the form of discrete stripes, bars, or coatings placing on top of conductive heating elements


102


, as shown in

FIG. 1

, or in the form of a continuous coating placing on top of both conductive heating elements


102


and conductive substrate


101


, as shown in FIG.


2


. Phase change developer


104


may be applied on conductive heating elements


102


by gravure coating, roll coating, curtain coating, extrusion, lamination, spraying, or other coating techniques. The coating of the phase change developer


102


may be assisted with ultrasound, electrical field or magnetic field.




The components described above are all conventional in the art and any suitable combination of materials for conductive substrate


101


, conductive heating elements


102


and phase change developer


104


may be employed in the phase change developer storage and delivery system of the invention A particularly preferred phase change developer system is described in copending application Attorney's docket No. 456.008US1, filed the same date as this Application and titled “PHASE CHANGE DEVELOPER FOR LIQUID ELECTROPHOTOGRAPHY” having U.S. Ser. No. 10/127,062.




Conductive heating elements


102


are either perpendicular or skewed at an angle to the edges of substrate


101


. External electrical contact


103


is used to pass a current through each of conductive heating elements


102


. Therefore, good conductivity between external electrical contact


103


and discrete conductive heating elements


102


is needed and may be provided by keeping a small portion of the top surface of each of conductive heating elements


102


free of phase change developer


104


. When a current is passed from electrical contact


103


through each of conductive heating elements


102


one by one, phase change developer


104


on each of conductive heating elements


102


is melted and turned into liquid state one by one. The developer and/or individual components within the developer may be melted to become flowable and/or active in the developing process. The phase change developer storage and delivery system may be run continuously or be indexed.





FIG. 3

shows another aspect of this invention. The phase change developer is not shown in FIG.


3


. However, it should be placed on top of conductive heating elements


102


. Although the preferred embodiment of the invention has been described as continuous, this preference is primarily due to the ease of manufacture of the coating (e.g., see

FIG. 2

for an example of a preferred method of manufacturing a system according to the invention) not to essential functional activities. Because the coating is softened or melted, porous or discontinuous coatings will flow and may form essentially continuous developer layers as flowable or liquid materials. Additionally, the continuous nature of the coating does not mean that the coating has to form a coating over the entire surface of the sheet or element. Conductive heating elements


102


are placed on an electrically insulating substrate


105


. Optionally, conductive contacts


106


are used to pass current through each of conductive heating elements


102


one by one by contacting electrical contacts


103


. The phase change developer storage and delivery system may be run continuously or be indexed. When a current is applied to conductive heating elements


102


, the phase change developer is melted and turned into liquid state that may be used subsequently in a liquid electrophotography process. The components described in

FIG. 3

are all conventional in the art and any suitable combination of materials for insulating substrate


105


, conductive heating elements


102


, conductive contacts


106


, and the phase change developer may be employed in the phase change developer storage and delivery system of the invention.




The typical process involved in liquid electrophotography can be illustrated with respect to a single color by reference to FIG.


4


. Light sensitive photoreceptor


10


is arranged on or near the surface of a mechanical carrier such as drum


12


. Photoreceptor


10


can be in the form of a belt or loop mounting on the outer surface of the drum. Photoreceptor


10


can also be coated on the outer surface of drum


12


. The mechanical carrier could, of course, be a belt or other movable support object. Drum


12


rotates in the clockwise direction of

FIG. 4

moving a given location of photoreceptor


10


past various stationary components which perform an operation relative to photoreceptor


10


or an image formed on drum


12


.




Of course, other mechanical arrangements could be used which provide relative movement between a given location on the surface of photoreceptor


10


and various components which operate on or in relation to photoreceptor


10


. For example, photoreceptor


10


could be stationary while the various components move past photoreceptor


10


or some combination of movement between both photoreceptor


10


and the various components could be facilitated. It is only important that there be relative movement between photoreceptor


10


and the other components. As this description refers to photoreceptor


10


being in a certain position or passing a certain position, it is to be recognized and understood that what is being referred to is a particular spot or location on photoreceptor


10


which has a certain position or passes a certain position relative to the components operating on photoreceptor


10


.




In

FIG. 4

, as drum


12


rotates, photoreceptor


10


moves past erase lamp


14


. When photoreceptor


10


passes under erase lamp


14


, radiation


16


from erase lamp


14


impinges on the surface of photoreceptor


10


causing any residual charge remaining on the surface of photoreceptor


10


to “bleed” away. Thus, the surface charge distribution of the surface of photoreceptor


10


as it exits erase lamp


14


is quite uniform and nearly zero depending upon the photoreceptor.




As drum


12


continues to rotate and photoreceptor


10


next passes under a charging device


18


, such as a roll corona, a uniform positive or negative charge is imposed upon the surface of photoreceptor


10


. This prepares the surface of photoreceptor


10


for an image-wise exposure to radiation by laser imaging device


20


as drum


12


continues to rotate. Wherever radiation from laser imaging device


20


impinges on the surface of photoreceptor


10


, the surface charge of photoreceptor


10


is reduced significantly while areas on the surface of photoreceptor


10


which do not receive radiation are not appreciably discharged. Areas of the surface of photoreceptor


10


which receive some radiation are discharged to a degree that corresponds to the amount of radiation received. This results in the surface of photoreceptor


10


having a surface charge distribution which is proportional to the desired image information imparted by laser imaging device


20


when the surface of photoreceptor


10


exits from under laser imaging device


20


.




As drum


12


continues to rotate, the surface of photoreceptor


10


passes by developer storage and delivery system


22


. Developer storage and delivery system


22


are illustrated in

FIGS. 1-3

above. A liquid developer is obtained by melting or liquefying the phase change developer in developer storage and delivery system


22


and then is applied to the surface of image-wise charged photoreceptor


10


in the presence of a positive or negative electric field which is established by placing developer roll


26


near the surface of photoreceptor


10


and imposing a bias voltage on developer roll


26


. The positive or negative electric field may also be established by placing a grounded developer roll


26


near the surface of photoreceptor


10


and imposing a bias voltage on photoreceptor


10


.




The liquid developer consists of positively or negatively charged “solid” developer particles of the desired color for the portion of the image being printed. The “solid” material in the developer, under force from the established electric field, migrates to and plates upon the surface of photoreceptor


10


in areas where the surface voltage is less than the bias voltage of developer roll


26


. The “solid” material in the developer will migrate to and plate upon the developer roll in areas where surface voltage of photoreceptor


10


is greater than the bias voltage of developer roll


26


. Excess developer not sufficiently plated to either the surface of photoreceptor


10


or to developer roll


26


is removed.




The image developed on photoreceptor


10


is then transferred, either indirectly by way of transfer rollers


38


and


40


, as illustrated in

FIG. 4

, or preferably directly to the receiving medium


36


to be printed. Typically, heat and pressure are utilized to fuse the image to receiving medium


36


. The resultant “print” is a hard copy manifestation of the image information written by laser imaging device


22


and is of a single color, the color represented by liquid developer


24


.




While photoreceptor


10


, drum


12


, erase lamp


14


, charging device


18


, laser imaging device


20


, developer storage and delivery system


22


, developer roll


26


, and transfer rollers


38


and


40


have been only diagrammatically illustrated in FIG.


4


and only generally described with relation thereto, it is to be recognized and understood that these components are generally well known in the art of electrophotography and the exact material and construction of these elements is a matter of design choice which is also well understood in the art.




It is possible, of course, to make prints containing many colors rather than one single color. The basic liquid electrophotography process and apparatus described in

FIG. 4

can be used by repeating the process described above for one color, a number of times wherein each repetition may image-wise expose a separate primary color plane, e.g., cyan, magenta, yellow or black, and each developer storage and delivery system


22


may be of a separate primary printing color corresponding to the image-wise exposed color plane. Superposition of four such color planes may be achieved with good registration onto the surface of photoreceptor


10


without transferring any of the color planes until all have been formed. Subsequent simultaneous transfer of all of these four color planes to a suitable receiving medium


36


may yield a quality color print.




While the above described liquid electrophotography process is suitable for construction of a multi-colored image, the process is somewhat slow because photoreceptor


10


should repeat the entire sequence for each color of the typical four color colored image. When the above process is performed for a particular color, e.g., cyan, laser imaging device


20


causes areas receiving radiation to at least partially discharged to create a surface charge distribution pattern of the surface of photoreceptor


10


which represents the portion of the image to be reproduced representing that particular color, e.g., cyan. After development by developer storage and delivery system


22


, the surface charge distribution of photoreceptor


10


is still quite variable (assuming at least some pattern to the image to be reproduced) and too low to be subsequently imaged. Photoreceptor


10


then should be erased to make the surface charge distribution uniform and should be again charged to provide a sufficient surface charge to allow a subsequent development process to plate liquid developer upon developed areas of photoreceptor


10


.




While not required by all embodiments of the present invention,

FIG. 5

diagrammatically illustrates an apparatus


42


and a method for producing a multicolored image. Photoreceptor


10


is mechanically supported by belt


44


which rotates in a clockwise direction around rollers


46


and


48


. Photoreceptor


10


is first conventionally erased with erase lamp


14


. Any residual charge left on photoreceptor


10


after the preceding cycle is preferably removed by erase lamp


14


and then conventionally charged using charging device


18


, such procedures being well known in the art. Laser imaging device


50


, similar to laser imaging device


20


illustrated in

FIG. 4

, exposes the surface of photoreceptor


10


to radiation in an image-wise pattern corresponding to a first color plane of the image to be reproduced.




With the surface of photoreceptor so image-wise charged, charged pigment particles in a first phase change developer in developer storage and delivery system


54


corresponding to the first color plane will migrate to and plate upon the surface of photoreceptor


10


in areas where the surface voltage of photoreceptor


10


is less than the bias of developer roll


56


associated with developer storage and delivery system


54


. The charge neutrality of the first phase change developer in its liquid phase is maintained by negatively (or positively) charged counter ions that balance the positively (or negatively) charged pigment particles. Counter ions are deposited on the surface of photoreceptor


10


in areas where the surface voltage is greater than the bias voltage of developer roll


56


associated with developer storage and delivery system


54


.




At this stage, photoreceptor


10


contains on its surface an image-wise distribution of plated “solids” of liquid phase change developer in accordance with a first color plane. The surface charge distribution of photoreceptor


10


has also been recharged with plated developer particles as well as with transparent counter ions from liquid phase change developer both being governed by the image-wise discharge of photoreceptor


10


due to laser imaging device


50


. Thus, at this stage the surface charge of photoreceptor


10


is also quite uniform. Although not all of the original surface charge of photoreceptor may have been obtained, a substantial portion of the previous surface charge of photoreceptor has been recaptured. Although photoreceptor


10


is now ready to be processed for the next color plane of the image after such recharging, it is preferable to recharge photoreceptor


10


with a corona (not shown in

FIG. 5

) before the next step.




As belt


44


continues to rotate, photoreceptor


10


next is image-wise exposed to radiation from laser imaging device


58


corresponding to a second color plane. Note that this process occurs during a single revolution of photoreceptor


10


by belt


44


and without the necessity of photoreceptor


10


being subjected to erase subsequent to exposure to laser imaging device


50


and developer storage and delivery system


54


corresponding to a first color plane. The remaining charge on the surface of photoreceptor


10


is subjected to radiation corresponding to a second color plane. This produces an image-wise distribution of surface charge on photoreceptor


10


corresponding to the second color plane of the image.




The second color plane of the image is then developed by developer storage and delivery system


62


containing a second phase change developer. Although the second phase change developer in its liquid phase contains “solid” color pigments consistent with the second color plane, the liquid stage of the phase change developer also contains substantially transparent counter ions which, although they may have differing chemical compositions than substantially transparent counter ions of the first liquid developer in developer storage and delivery system


54


, still are substantially transparent and oppositely charged to the “solid” color pigments. Developer roll


64


provides a bias voltage to allow “solid” color pigments of liquid developer


62


create a pattern of “solid” color pigments on the surface of photoreceptor


10


corresponding to the second color plane. The transparent counter ions also substantially recharge photoreceptor


10


and make the surface charge distribution of photoreceptor


10


substantially uniform. Preferably, the uniformity of the surface charge distribution on photoreceptor


10


is further improved by corona charging.




A third color plane of the image to be reproduced is deposited on the surface of photoreceptor


10


is similar fashion using laser imaging device


66


and developer storage and delivery system


70


containing a third phase change developer using developer roll


72


.




Similarly, a fourth color plane is deposited upon photoreceptor


10


using laser imaging device


74


and developer storage and delivery system


78


containing a fourth phase change developer using developer roll


80


.




The completed four color image is then transferred, either indirectly by way of transfer rollers


38


and


40


, as illustrated in

FIG. 5

, or preferably directly to the receiving medium


36


to be printed. Typically, heat and/or pressure are utilized to fix the image to receiving medium


36


. The resultant “print” is a hard copy manifestation of the four color image.




With proper selection of charging voltages, photoreceptor capacity and phase change developer, this process may be repeated an indeterminate number of times to produce a multi-colored image having an indeterminate number of color planes. Although the process and apparatus has been described above for conventional four color images, the process and apparatus are suitable for multi-color images having two or more color planes.




Charging device


18


is may be a charged roll or a scorotron type corona charging device. Charging device


18


has high voltage surfaces (not shown) coupled to a suitable positive high voltage source. The high voltage surfaces of charging device


18


are on or near the surface of photoreceptor


10


and are coupled to an adjustable positive voltage supply (not shown) to obtain an suitable positive surface voltage on photoreceptor


10


. Of course, connection to a positive voltage is required for a positive charging photoreceptor


10


. Alternatively, a negatively charging photoreceptor


10


using negative voltages would also be operable. The principles are the same for a negative charging photoreceptor


10


.




Laser imaging device


50


imparts image information associated with a first color plane of the image, laser imaging device


58


imparts image information associated with a second color plane of the image, laser imaging device


66


imparts image information associated with a third color plane of the image and laser imaging device


74


imparts image information associated with a fourth color plane of the image. Although each of laser imaging devices


50


,


58


,


66


and


74


are associated with a separate color of the image and operate in the sequence as described above with reference to

FIG. 5

, for convenience they are described together below.




Laser imaging devices


50


,


58


,


66


and


74


include a suitable high intensity electromagnetic radiation. The radiation may be a single beam or an array of beams. The array of beams may be generated by a LED (light emitting diode) array. The individual beams in such an array may be individually modulated. The radiation impinges, for example, on photoreceptor


10


as a line scan generally perpendicular to the direction of movement of photoreceptor


10


and at a fixed position relative to charging device


18


.




The radiation scans and exposes photoreceptor


10


preferably while maintaining exact synchronism with the movement of photoreceptor


10


. The image-wise exposure causes the surface charge of photoreceptor


10


to be reduced significantly wherever the radiation impinges. Areas of the surface of photoreceptor


10


where the radiation does not impinge are not appreciably discharged. Therefore, when photoreceptor


10


exits from under the radiation, its surface charge distribution is proportional to the desired image information.




The radiation (a single beam or array of beams) from laser imaging devices


50


,


58


,


66


and


74


is modulated conventionally in response to image signals for any single color plane information from a suitable source such as a computer memory, communication channel, or the like. The mechanism through which the radiation from laser imaging devices is manipulated to reach photoreceptor


10


is also conventional.




Developer storage and delivery system


54


develops the first color plane of the image, developer storage and delivery system


62


develops the second color plane of the image, developer storage and delivery system


70


develops the third color plane of the image and developer storage and delivery system


78


develops the fourth color plane of the image. Although each of developer storage and delivery systems


54


,


62


,


70


and


78


are associated with a separate color of the image and operate in the sequence as described above with reference to

FIG. 5

, for convenience they are described together below.




The phase change developers should have a melting point of at least about 22° C., more preferably at least about 30° C., and most preferably at least about 40° C. The phase change developers may comprise a colorant, a carrier, a binder resin, and optionally other additives, such as a charge director and an adjuvant.




The carrier may be selected from a wide variety of natural and synthetic, organic and inorganic materials that are known in the art, but the carrier preferably has a Kauri-Butanol number less than 30. The carrier is typically chemically stable under a variety of conditions and electrically insulating. Electrically insulating refers to a material having a low dielectric constant and a high electrical resistivity. Preferably, the carrier has a dielectric constant of less than 5, more preferably less than 3. Electrical resistivities of carrier are typically greater than 10


9


Ohm-cm, more preferably greater than 10


10


Ohm-cm. The carrier preferably is also relatively nonviscous in its liquid state at the operating temperature to allow movement of the charged particles during development. In addition, the carrier should be chemically inert with respect to the materials or equipment used in the liquid electrophotographic process, particularly the photoreceptor and its release surface.




A number of classes of organic materials meet some or many of the requirements outlined above. Non-limiting examples of suitable carrier include aliphatic hydrocarbons or paraffins (n-pentane, hexane, heptane and the like), cycloaliphatic hydrocarbons (cyclopentane, cyclohexane and the like), aromatic hydrocarbons (benzene, toluene, xylene and the like), halogenated hydrocarbon solvents (chlorinated alkanes, fluorinated alkanes, chlorofluorocarbons, and the like), silicone oils and waxes, vegetable oils and waxes, animal oils and waxes, petroleum waxes, mineral waxes, synthetic wax, such as Fischer-Tropsch wax, polyethylene wax, 12-hydroxystearic acid amide, stearic acid amide, phthalic anhydride imide, and blends of these materials. Preferred carriers include branched paraffinic blends such as Norpar™ 18 (available from Exxon Corporation, NJ), vegetable waxes, animal waxes, petroleum waxes, silicone waxes, and synthetic waxes.




The roles of the binder resin are to be the vehicle for the pigments or dyes, to provide colloidal stability, and to aid fixing of the final image. The binder resin should contain charging sites or be able to incorporate materials that have charging sites. Furthermore, the binder resin should have a melting point above 22° C., more preferably above 30° C., and most preferably above 40° C. Non-limiting examples of suitable binder resin are crystalline polymers or copolymers derived from side-chain crystallizable and main-chain crystallizable polymerizable monomers, oligomers or polymers with melting transitions above 22° C. Suitable crystalline polymeric binder resins include homopolymers or copolymers of alkyl acrylates where the alkyl chain contains more than 13 carbon atoms (e.g., tetradecyl acrylate, pentadecyl acrylate, hexadecyl acrylate, heptadecyl acrylate, octadecyl acrylate, behenyl acrylate, etc); alkyl methacrylates wherein the alkyl chain contains more than 17 carbon atoms; ethylene; propylene; and acrylamide. Other suitable crystalline polymeric binder resins with melting points above 22° C. are derived from aryl acrylates and methacrylates; high molecular weight alpha olefins; linear or branched long chain alkyl vinyl ethers or vinyl esters; long chain alkyl isocyanates; unsaturated long chain polyesters, polysiloxanes and polysilanes; amino functional silicone waxes; polymerizable natural waxes, polymerizable synthetic waxes, and other similar type materials known to those skilled in the art.




Suitable crystalline polymeric binder resins can be also an organosol composed of a high molecular weight (co)polymeric graft stabilizer (shell) covalently bonded to an insoluble, thermoplastic (co)polymeric core. The graft stabilizer includes a crystallizable polymeric moiety that is capable of independently and reversibly crystallizing at or above 22° C. The graft stabilizer includes a polymerizable organic compound or mixture of polymerizable organic compounds of which at least one is a polymerizable crystallizable compound (PCC). Suitable PCC's include side-chain crystallizable and main-chain crystallizable polymerizable monomers, oligomers or polymers with melting transitions above 22° C. Suitable PCC's include alkylacrylates where the alkyl chain contains more than 13 carbon atoms (e.g., tetradecylacrylate, pentadecylacrylate, hexadecylacrylate, heptadecylacrylate, octadecylacrylate, etc); alkylmethacrylates wherein the alkyl chain contains more than 17 carbon atoms, ethylene; propylene; and acrylamide. Other suitable PCCs with melting points above 22° C. include aryl acrylates and methacrylates; high molecular weight alpha olefins; linear or branched long chain alkyl vinyl ethers or vinyl esters; long chain alkyl isocyanates; unsaturated long chain polyesters, polysiloxanes and polysilanes; amino functional silicone waxes; polymerizable natural waxes, polymerizable synthetic waxes, and other similar type materials known to those skilled in the art.




Useful colorants are well known in the art and include materials such as dyes, stains, and pigments. Preferred colorants are pigments that may be incorporated into the polymer binder resin, are nominally insoluble in and nonreactive with the carrier, and are useful and effective in making visible the latent electrostatic image. Non-limiting examples of typically suitable colorants include: phthalocyanine blue (C.I. Pigment Blue 15:1, 15:2, 15:3 and 15:4), monoarylide yellow (C.I. Pigment Yellow 1, 3, 65, 73 and 74), diarylide yellow (C.I. Pigment Yellow 12, 13, 14, 17 and 83), arylamide (Hansa) yellow (C.I. Pigment Yellow 10, 97, 105, 138 and 111), azo red (C.I. Pigment Red 3, 17, 22, 23, 38, 48:1, 48:2, 52:1, 81, 81:4 and 179), quinacridone magenta (C.I. Pigment Red 122, 202 and 209) and black pigments such as finely divided carbon (Cabot Monarch 120, Cabot Regal 300R, Cabot Regal 350R, Vulcan X72) and the like.




The optimal weight ratio of binder resin to colorant in the developer particles is on the order of 1/1 to 20/1, preferably between 3/1 and 10/1 and most preferably between 5/1 and 8/1. The total dispersed material in the carrier typically represents 0.5 to 70 weight percent, preferably between 5 and 50 weight percent, most preferably between 10 and 40 weight percent of the total developer composition.




An electrophotographic phase change developer may be formulated by incorporating a charge control agent into the phase change developer. The charge control agent, also known as a charge director, provides improved uniform charge polarity of the developer particles. The charge director may be incorporated into the developer particles using a variety of methods, such as chemically reacting the charge director with the developer particle, chemically or physically adsorbing the charge director onto. the developer particle (binder resin or pigment), or chelating the charge director to a functional group incorporated into the developer particle. A preferred method is attachment via a functional group built into the graft stabilizer. The charge director acts to impart an electrical charge of selected polarity onto the developer particles. Any number of charge directors described in the art may be used. For example, the charge director may be introduced in the form of metal salts consisting of polyvalent metal ions and organic anions as the counterion. Non-limiting examples of suitable metal ions include Ba(II), Ca(II), Mn(II), Zn(II), Zr(IV), Cu(II), Al(III), Cr(III), Fe(II), Fe(III), Sb(III), Bi(III), Co(II), La(III), Pb(II), Mg(II), Mo(III), Ni(II), Ag(l), Sr(II), Sn(IV), V(V), Y(III), and Ti(IV). Non-limiting examples of suitable organic anions include carboxylates or sulfonates derived from aliphatic or aromatic carboxylic or sulfonic acids, preferably aliphatic fatty acids such as stearic acid, behenic acid, neodecanoic acid, diisopropylsalicylic acid, octanoic acid, abietic acid, naphthenic acid, octanoic acid, lauric acid, tallic acid, and the like. Preferred positive charge directors are the metallic carboxylates (soaps) described in U.S. Pat. No. 3,411,936, incorporated herein by reference, which include alkaline earth- and heavy-metallic salts of fatty acids containing at least 6-7 carbons and cyclic aliphatic acids including naphthenic acid; more preferred are polyvalent metal soaps of zirconium and aluminum; most preferred is the zirconium soap of octanoic acid (Zirconium HEX-CEM from Mooney Chemicals, Cleveland, Ohio).




The preferred charge direction levels for a given phase change developer formulation will depend upon a number of factors, including the composition of the graft stabilizer and organosol, the molecular weight of the organosol, the particle size of the organosol, the core/shell ratio of the graft stabilizer, the pigment used in making the developer, and the ratio of binder resin to pigment. In addition, preferred charge direction levels will also depend upon the nature of the electrophotographic imaging process, particularly the design of the developing hardware and photoconductive element. Those skilled in the art, however, know how to adjust the level of charge direction based on the listed parameters to achieve the desired results for their particular application.




The useful conductivity range of a phase change developer is from about 10 to 1200 pico ohm-cm


−1


. High conductivities generally indicate inefficient association of the charges on the developer particles and is seen in the low relationship between current density and developer deposited during development. Low conductivities indicate little or no charging of the developer particles and lead to very low development rates. The use of charge director compounds to ensure sufficient charge associated with each particle is a common practice. There has, in recent times, been a realization that even with the use of charge directors there can be much unwanted charge situated on charged species in solution in the carrier. Such unwanted charge produces inefficiency, instability and inconsistency in the development.




Any number of methods may be used for effecting particle size reduction of the pigment in preparation of the phase change developers. Some suitable methods include high shear homogenization, ball-milling, attritor milling, high energy bead(sand) milling or other means known in the art. The operating temperature during particle size reduction is above the melting point of the crystalline polymeric binder resin. The resulted phase change developer is either cooled to room temperature to form a solid which optionally may be turned into a powder by pulverizing; sprayed to form droplets which then are cooled to form a powder; transferred to a mold and then cooled to form a shaped solid; or coated on a substrate and then cooled to form a coated web with a layer of the phase change developer. If the melting point of the phase transfer developer is less than 22° C., the phase transfer developer will not be solid at room temperature. If the melting point of the phase transfer developer is greater than 40° C., image splitting may occur. The viscosity of the phase transfer developer has been characterized in certain steps of the process as in the range of 10 to 100 pascal second. If the viscosity of the phase transfer developer is less than 10 pascal second, the phase transfer developer becomes too soft, and the viscosity of the phase transfer developer is greater than 100 pascal second, it will need a high temperature to melt the phase transfer developer. Where the viscosity of the phase transfer developer has been characterized in other steps as in the range of 0.001 to 0.01 pascal second, if the viscosity of the phase transfer developer is less than 0.001 pascal second, the liquid phase transfer developer will become too thin to be transferred on the developer, and the viscosity of the phase transfer developer is greater than 0.01 pascal second, the mobility of the liquid phase transfer developer will be too low for effective development of toned images.




Two modes of development are known in the art, namely deposition of liquid developer


52


,


60


,


68


and


76


in exposed areas of photoreceptor


10


and, alternatively, deposition of liquid developer


52


,


60


,


68


and


76


in unexposed regions. The former mode of imaging can improve formation of halftone dots while maintaining uniform density and low background densities. Although the invention has been described using a discharge development system whereby the positively charged liquid developer is deposited on the surface of photoreceptor


10


in areas discharged by the radiation, it is to be recognized and understood that an imaging system in which the opposite is true is also contemplated by this invention. Development is accomplished by using a uniform electric field produced by developer roll


56


,


64


,


72


and


80


spaced near the surface of photoreceptor


10


.




A thin, uniform layer of liquid developer is established on a rotating, cylindrical developer roll


56


,


64


,


72


and


80


. A bias voltage is applied to the developer roll intermediate to the unexposed surface potential of photoreceptor


10


and the exposed surface potential level of photoreceptor


10


. The voltage is adjusted to obtain the required maximum density level and tone reproduction scale for halftone dots without any background being deposited. Developer roll


56


,


64


,


72


and


80


is brought into proximity with the surface of photoreceptor


10


immediately before the latent image formed on the surface of photoreceptor


10


passes beneath the developer roll


56


,


64


,


72


and


80


. The bias voltage on developer roll


56


,


64


,


72


and


80


forces the charged pigment particles, which are mobile in the electric field, to develop the latent image. The charged “solid” particles in liquid developer will migrate to and plate upon the surface of photoreceptor


10


in areas where the surface charge of photoreceptor


10


is less than the bias voltage of developer roll


56


,


64


,


72


and


80


. The charge neutrality of liquid developer is maintained by oppositely-charged substantially transparent counter ions which balance the charge of the positively charged developer particles. Counter ions are deposited on the surface photoreceptor


10


in areas where the surface voltage of photoreceptor


10


is greater than the developer roll bias voltage.




The toner images plated on the surface of organophotoreceptor


10


is further dried by drying mechanism


34


. Drying mechanism


34


may be passive, may utilize active air blowers blowing hot air


90


, or may be other active devices such as rollers or IP lamp. In a preferred embodiment, drying mechanism is passive such that most of the carrier fluid is absorbed by the receiving medium. Supply roll


92


and take-up roll


94


are shown.




Photoreceptor


10


may be in the form of a belt or a drum. Photoreceptor


10


may be an organophotoreceptor as described in a previous filed U.S. patent application (Ser. No. 60/242517), which is incorporated herein by reference. Photoreceptor


10


may also be an inorganic photoreceptor containing at least an inorganic photosensitive material known in the art, such as alpha-silicon and chalcogenide glasses.



Claims
  • 1. A developer storage and delivery system for liquid electrophotography comprising:(a) a conductive substrate with a first surface and a second surface; (b) a plurality of discrete conductive heating elements mounted on said first surface; and (c) a phase change developer having a melting point of at least 22° C., wherein said phase change developer is on at least the top surface of each of said conductive heating elements, except that a minor portion of the top surface of each of said conductive heating elements is free of said phase change developer for conducting electricity; wherein the minor portion of the top surface that is free of phase change developer comprises less than 15% of that surface area and each of said discrete conductive heating elements is in the form of a stripe.
  • 2. A developer storage and delivery system for liquid electrophotography according to claim 1 wherein said phase change developer comprises a crystallizing polymeric binder resin derived from a polymerizable monomer selected form the group consisting of hexacontanyl (meth)acrylate, pentacosanyl (meth)acrylate, behenyl (meth)acrylate, octadecyl (meth)acrylate, hexyldecyl acrylate, tetradecyl acrylate, and amino functional silicones.
  • 3. A developer storage and delivery system for liquid electrophotography according to claim 1 wherein said phase change developer comprises a carrier selected form the group consisting of plant oils and waxes, animal oils and waxes, petroleum oils and waxes, synthetic oils and waxes, branched paraffinic oils and waxes, and silicone oils and waxes.
  • 4. A developer storage and delivery system for liquid electrophotography according to claim 1 wherein said phase change developer comprises an organosol having a graft stabilizer derived from a polymerizable monomer selected form the group consisting of hexacontanyl(meth)acrylate, pentacosanyl(meth)acrylate, behenyl(meth)acrylate, octadecyl(meth)acrylate, hexyldecylacrylate, tetradecylacrylate, and amino functional silicones.
  • 5. A developer storage and delivery system for liquid electrophotography according to claim 1 wherein said conductive substrate is a continuous web.
  • 6. A developer storage and delivery system for liquid electrophotography according to claim 5 further comprises a take-up roll and a supply roll wherein said take-up roll and said supply roll are connected to each end of said continuous web.
  • 7. A developer storage and delivery system for liquid electrophotography according to claim 1 wherein said conductive substrate is an endless belt.
  • 8. A developer storage and delivery system for liquid electrophotography according to claim 1 wherein said conductive substrate is selected from the group consisting of metallic films, polymeric films encapsulated with a conductive coating, and conductive polymeric films.
  • 9. A developer storage and delivery system for liquid electrophotography according to claim 1 wherein each of said discrete conductive heating elements is in the form of a coating.
  • 10. A developer storage and delivery system for liquid electrophotography comprising:(d) a conductive substrate with a first surface and a second surface; (e) a plurality of discrete conductive heating elements mounted on said first surface; and a phase change developer having a melting point of at least 22° C., wherein said phase change developer is on at least the top surface of each of said conductive heating elements, except that a minor portion of the top surface of each of said conductive heating elements is free of said phase change developer for conducting electricity wherein the minor portion of the top surface that is free of phase change developer comprises less than 15% of that surface area and each of said discrete conductive heating elements is skewed at an angle or perpendicular to the edge of said conductive substrate.
  • 11. A developer storage and delivery system for liquid electrophotography comprising:(a) a conductive substrate with a first surface and a second surface; (b) a plurality of discrete conductive heating elements mounted on said first surface; and (c) a phase change developer having a melting point of at least 22° C., wherein said phase change developer forms a layer on the top surface of each of said conductive heating elements and on said first surface free of said conductive heating elements, except that 0.1 to 10% of the top surface of each of said conductive heating elements is free of said phase change developer for conducting electricity; wherein each of said discrete conductive heating elements is in the form of a stripe.
  • 12. The developer system of claim 11 wherein said phase change developer storage and delivery comprises a continuous layer o-f phase change developer.
  • 13. A developer storage and delivery system for liquid electrophotography according to claim 11 wherein said phase change developer comprises a crystallizing polymeric binder resin derived from a polymerizable monomer selected form the group consisting of hexacontanyl (meth)acrylate, pentacosanyl (meth)acryl ate, behenyl (meth)acrylate, octadecyl (meth)acrylate, hexyldecyl acrylate, tetradecyl acrylate, and amino functional silicones.
  • 14. A developer storage and delivery system for liquid electrophotography according to claim 11 wherein said phase change developer comprises a carrier selected form the group consisting of plant oils and waxes, animal oils and waxes, petroleum oils and waxes, synthetic oils and waxes, branched paraffinic oils and waxes, and silicone oils and waxes.
  • 15. A developer storage and delivery system for liquid electrophotography according to claim 11 wherein said phase change developer comprises an organosol having a graft stabilizer derived from a polymerizable monomer selected form the group consisting of hexacontanyl (meth)acrylate, pentacosanyl (meth)acrylate, behenyl (meth)acrylate, octadecyl (meth)acrylate, hexyldecyl acrylate, tetradecyl acrylate, and amino functional silicones.
  • 16. A developer storage and delivery system for liquid electrophotography according to claim 11 wherein said conductive substrate is a continuous web.
  • 17. A developer storage and delivery system for liquid electrophotography according to claim 16 further comprises a take-up roll and a supply roll wherein said take-up roll and said supply roll are connected to each end of said continuous web.
  • 18. A developer storage and delivery system for liquid electrophotography according to claim 11 wherein said conductive substrate is an endless belt.
  • 19. A developer storage and delivery system for liquid electrophotography according to claims 11 wherein said conductive substrate is selected from the group consisting of metallic films, polymeric films encapsulated with a conductive coating, and conductive polymeric films.
  • 20. A developer storage and delivery system for liquid electrophotography according to claim 11 wherein each of said discrete conductive heating elements is in the form of a coating.
  • 21. A developer storage and delivery system for liquid electrophotography comprising:(a) a conductive substrate with a first surface and a second surface; (b) a plurality of discrete conductive heating elements mounted on said first surface; and (c) a phase change developer having a melting point of at least 22° C., wherein said phase change developer forms a layer on the top surface of each of said conductive heating elements and on said first surface free of said conductive heating elements, except that 0.1 to 10% of the top surface of each of said conductive heating elements is free of said phase change developer for conducting electricity; wherein each of said discrete conductive heating elements is skewed at an angle or perpendicular to the edge of said conductive substrate.
  • 22. A developer storage and delivery system for liquid electrophotography comprising:(a) an insulating substrate with a first surface and a second surface; (b) a plurality of discrete conductive heating elements mounted on said first surface; and (c) a phase change developer having a melting point of at least 22° C., wherein said phase change developer is on the top surface of each of said discrete conductive heating elements, except that from 0.1 to 10% of the area of both ends of each of said conductive heating elements is free of said phase change developer for conducting electricity; wherein each of said discrete conductive heating elements is in the form of a stripe.
  • 23. A developer storage and delivery system for liquid electrophotography according to claim 22 wherein said insulating substrate is selected from the group consisting of paper, polymeric films, fabric, and cloth.
  • 24. A developer storage and delivery system for liquid electrophotography according to claim 22 wherein said phase change developer comprises a crystallizing polymeric binder resin derived from a polymerizable monomer selected form the group consisting of hexacontanyl (meth)acrylate, pentacosanyl (meth)acrylate, behenyl (meth)acrylate, octadecyl (meth)acrylate, hexyldecyl acrylate, tetradecyl acrylate, and amino functional silicones.
  • 25. A developer storage and delivery system for liquid electrophotography according to claim 22 wherein said phase change developer comprises a carrier selected form the group consisting of plant oils and waxes, animal oils and waxes, petroleum oils and waxes, synthetic oils and waxes, branched paraffinic oils and waxes, and silicone oils and waxes.
  • 26. A developer storage and delivery system for liquid electrophotography according to claim 22 wherein said phase change developer comprises an organosol having a graft stabilizer derived from a polymerizable monomer selected form the group consisting of hexacontanyl (meth)acrylate, pentacosanyl (meth)acrylate, behenyl (meth)acrylate, octadecyl (meth)acrylate, hexyldecyl acrylate, tetradecyl acrylate, and amino functional silicones.
  • 27. A developer storage and delivery system for liquid electrophotography according to claim 22 wherein said insulating substrate is a continuous web.
  • 28. A developer storage and delivery system for liquid electrophotography according to claim 27 further comprises a take-up roll and a supply roll wherein said take-up roll and said supply roll are connected to each end of said continuous web.
  • 29. A developer storage and delivery system for liquid electrophotography according to claim 22 wherein said insulating substrate is an endless belt.
  • 30. A developer storage and delivery system for liquid electrophotography according to claim 22 wherein each of said discrete conductive heating elements is skew at an angle or perpendicular to the edge of said conductive substrate.
  • 31. A developer storage and delivery system for liquid electrophotography comprising:(a) an insulating substrate with a first surface and a second surface; (b) a plurality of discrete conductive heating elements mounted on said first surface; and (c) a phase change developer having a melting point of at least 22° C., wherein said phase change developer is on the top surface of each of said discrete conductive heating elements, except that from 0.1 to 10% of the area of both ends of each of said conductive heating elements is free of said phase change developer for conducting electricity; further comprising a plurality of conductive contacts on said insulating substrate, wherein each of said conductive contacts is connected to one end of said discrete conductive heating elements.
  • 32. A developer storage and delivery system for liquid electrophotography comprising:(a) an insulating substrate with a first surface and a second surface; (b) a plurality of discrete conductive heating elements mounted on said first surface; and (c) a phase change developer having a melting point of at least 22° C., wherein said phase change developer is on the top surface of each of said conductive heating elements and on said first surface free of said conductive heating elements, except that a small portion of both ends of each of said conductive heating elements is free of said phase change developer for conducting electricity; and wherein each of said discrete conductive heating elements is in the form of a stripe.
  • 33. The developer storage system of claim 32 wherein the phase change developer is present as a continuous layer.
  • 34. A developer storage and delivery system for liquid electrophotography according to claim 32 wherein said insulating substrate is selected from the group consisting of paper, polymeric films, fabric, and cloth.
  • 35. A developer storage and delivery system for liquid electrophotography according to claim 32 wherein said phase change developer comprises a crystallizing polymeric binder resin derived from a polymerizable monomer selected form the group consisting of hexacontanyl (meth)acrylate, pentacosanyl (meth)acrylate, behenyl (meth)acrylate, octadecyl (meth)acrylate, hexyldecyl acrylate, tetradecyl acrylate, and amino functional silicones.
  • 36. A developer storage and delivery system for liquid electrophotography according to claim 32 wherein said phase change developer comprises a carrier selected form the group consisting of plant oils and waxes, animal oils and waxes, petroleum oils and waxes, synthetic oils and waxes, branched paraffinic oils and waxes, and silicone oils and waxes.
  • 37. A developer storage and delivery system for liquid electrophotography according to claim 32 wherein said phase change developer comprises an organosol having a graft stabilizer derived from a polymerizable monomer selected form the group consisting of hexacontanyl (meth)acrylate, pentacosanyl (meth)acrylate, behenyl (meth)acrylate, octadecyl (meth)acrylate, hexyldecyl acrylate, tetradecyl acrylate, and amino functional silicones.
  • 38. A developer storage and delivery system for liquid electrophotography according to claim 32 wherein said insulating substrate is a continuous web.
  • 39. A developer storage and delivery system for liquid electrophotography according to claim 38 further comprises a take-up roll and a supply roll wherein said take-up roll and said supply roll are connected to each end of said continuous web.
  • 40. A developer storage and delivery system for liquid electrophotography according to claim 32 wherein said insulating substrate is an endless belt.
  • 41. A developer storage and delivery system for liquid electrophotography comprising:(a) an insulating substrate with a first surface and a second surface; (b) a plurality of discrete conductive heating elements mounted on said first surface; and (c) a phase change developer having a melting point of at least 22° C., wherein said phase change developer is on the top surface of each of said conductive heating elements and on said first surface free of said conductive heating elements, except that a small portion of both ends of each of said conductive heating elements is free of said phase change developer for conducting electricity; wherein each of said discrete conductive heating elements is skewed at an angle or perpendicular to the edge of said conductive substrate.
  • 42. A developer storage and delivery system for liquid electrophotography comprising:(d) an insulating substrate with a first surface and a second surface; (e) a plurality of discrete conductive heating elements mounted on said first surface; and (f) a phase change developer having a melting point of at least 22° C., wherein said phase change developer is on the top surface of each of said conductive heating elements and on said first surface free of said conductive heating elements, except that a small portion of both ends of each of said conductive heating elements is free of said phase change developer for conducting electricity; further comprising a plurality of conductive contacts on said insulating substrate, wherein each of said conductive contacts is connected to one end of said discrete conductive heating elements.
Parent Case Info

This application claims the benefit of Provisional Application No. 60/285,183, filed Apr. 20, 2001.

US Referenced Citations (10)
Number Name Date Kind
5075735 Tsuchiya et al. Dec 1991 A
5229235 Wantanabe et al. Jul 1993 A
5517288 Martin et al. May 1996 A
5622804 Matsuoka et al. Apr 1997 A
5650253 Baker et al. Jul 1997 A
5695904 Larson et al. Dec 1997 A
5783350 Matsuoka et al. Jul 1998 A
5815780 Boerger Sep 1998 A
5998081 Morrison et al. Dec 1999 A
6255363 Baker et al. Jul 2001 B1
Foreign Referenced Citations (1)
Number Date Country
0605108 May 1998 EP
Non-Patent Literature Citations (1)
Entry
Yoshikawa, et al., “Thermal Offset Printing with Melt Transfer Type Ink (Top-M),” The 9th International Congress on Advances in Non-Impact Printing Technologies/Japan Hardcopy '93; Oct. 4-8, 1993, Pacifico Yokohama, Yokohama, Japan, pp. 330-333.
Provisional Applications (1)
Number Date Country
60/285183 Apr 2001 US