This application claims priority under 35 U.S.C. §119 from Japanese Patent Applications No. 2011-021537 filed on Feb. 3, 2011. The entire subject matter of the application is incorporated herein by reference.
1. Technical Field
The following description relates to one or more techniques for supplying an intended device with powdery development agent charged with a predetermined polarity.
2. Related Art
A developer supply device that includes a developer transfer body having a plurality of transfer electrodes has been known. The developer transfer body is provided on an inner wall surface of a developer container configured to accommodate development agent. The developer transfer body is configured to transfer the development agent to an intended device by a traveling-wave electric field, which is generated when a multi-phase alternating-current voltage is applied to the plurality of transfer electrodes.
Further, a developer supply device has been known that includes a developer carrying member and a transfer board. The developer carrying member, which is a roller-shaped member having a cylindrical-face-shaped circumferential surface, is disposed to face an intended device. The transfer board includes a plurality of transfer electrodes arranged along a developer transfer path. The transfer board is configured to transfer development agent in a developer transfer direction along the developer transfer path by a traveling-wave electric field, which is generated when a voltage is applied to the transfer electrodes. The transfer board includes a vertical transfer board and a bottom transfer board. The vertical transfer board, extending vertically, is configured to transfer the development agent upward in the vertical direction as a developer transfer direction. The developer carrying member is disposed to face an upper end of the vertical transfer board. Further, when a predetermined voltage is applied to between the vertical transfer board and the developer carrying member, generated is such an electric field as to transfer the development agent charged with a predetermined polarity from the upper end of the vertical transfer board to developer carrying member. The bottom transfer board forms a bottom surface of a developer storage section. The bottom transfer board is connected with a lower end of the vertical transfer board, so as to transfer development agent charged by contact or friction with the bottom transfer board, of the development agent stored in the developer storage section, toward the lower end of the vertical transfer board by the traveling-wave electric field. Thereby, the development agent stored in the developer storage section is conveyed to a position where the upper end of the vertical transfer board faces the developer carrying member, along the developer transfer path by the bottom transfer board and the vertical transfer board. Then, the development agent charged with the predetermined polarity is transferred onto the developer carrying member in the aforementioned position by the electric field generated when the aforementioned predetermined voltage is applied. Thus, the development agent is carried on the circumferential surface of the developer carrying member.
In the known developer supply devices, when an accumulated transfer time for transferring the development agent using the developer transfer body is long, it leads to an unstable charge state of the development agent. For example, it might result in an increased ratio of development agent charged with a polarity opposite to the predetermined polarity (hereinafter referred to as opposite-polarity-charged development agent) to all development agent conveyed toward the intended device. More specifically, in the known developer supply device including the developer carrying member and the transfer board, a long accumulated transfer time for transferring the development agent using the transfer board might result in an increased ratio of opposite-polarity-charged development agent to all development agent carried on the circumferential surface of the developer carrying member. Hence, a final developer image formed on the side of the intended device might be likely to have a trouble such as a white fog. It is noted that the probability distribution of charge amounts of the charged development agent stored in the developer storage section is substantially a normal (Gaussian) distribution with zero as a mean value. Therefore, when a total charge amount of the development agent stored in the developer storage section becomes larger, the ratio of the opposite-polarity-charged development agent carried on the circumferential surface of the developer carrying member rises. Further, a large charge amount of development agent charged with the predetermined polarity and a large charge amount of opposite-polarity-charged development agent are aggregated together.
Aspects of the present invention are advantageous to provide one or more improved techniques for supplying an intended device with development agent charged with a predetermined polarity in a favorable manner.
According to aspects of the present invention, a developer supply device is provided, which includes a casing including a developer storage section provided at a bottom portion therein, and an opening formed at an end thereof away from the developer storage section, powdery development agent chargeable with a predetermined polarity, stored in the developer storage section of the casing, the development agent including a mother particle having, around an outer surface thereof, an electrically insulating layer without a polar group having a charge polarity identical to the predetermined polarity, and an external additive absorbed to around the mother particle in an easily desorbable manner, the external additive being an electrically insulating fine particle having a charge polarity identical to the predetermined polarity, and a transfer board disposed in the casing, the transfer board including a plurality of transfer electrodes arranged along a developer transfer path from developer storage section to the opening, the transfer board being configured to, when a multi-phase alternating-current voltage is applied to the plurality of transfer electrodes, transfer the development agent from the developer storage section toward the opening along the developer transfer path, so as to supply an intended device with the development agent charged with the predetermined polarity.
According to aspects of the present invention, further provided is an image forming apparatus, which includes an image carrying body configured to carry an electrostatic latent image, and a developer supply device including a casing including a developer storage section provided at a bottom portion therein, and an opening formed at an end thereof away from the developer storage section, powdery development agent chargeable with a predetermined polarity, stored in the developer storage section of the casing, the development agent including a mother particle having, around an outer surface thereof, an electrically insulating layer without a polar group having a charge polarity identical to the predetermined polarity, and an external additive absorbed to around the mother particle in an easily desorbable manner, the external additive being an electrically insulating fine particle having a charge polarity identical to the predetermined polarity, a transfer board disposed in the casing, the transfer board including a plurality of transfer electrodes arranged along a developer transfer path from developer storage section to the opening, the transfer board being configured to, when a multi-phase alternating-current voltage is applied to the plurality of transfer electrodes, transfer the development agent from the developer storage section toward the opening along the developer transfer path, and a developer carrying body disposed to face the image carrying body, the developer carrying body being rotatably supported at the end of the casing where the opening is formed, the developer carrying body being configured to receive the development agent transferred by the transfer board and supply the image carrying body with the development agent charged with the predetermined polarity to develop the electrostatic latent image carried on the image carrying body.
It is noted that various connections are set forth between elements in the following description. It is noted that these connections in general and, unless specified otherwise, may be direct or indirect and that this specification is not intended to be limiting in this respect.
Hereinafter, an embodiment according to aspects of the present invention will be described with reference to the accompany drawings.
<Configuration of Laser Printer>
A laser printer 1 includes a sheet feeding mechanism 2, a photoconductive drum 3, an electrification device 4, a scanning unit 5, and a toner supply device 6. The laser printer 1 further includes therein a feed tray (not shown) configured to accommodate sheets P stacked thereon. The sheet feeding mechanism 2 is configured to feed the sheets P in the feed tray along a predetermined sheet feeding path PP on a sheet-by-sheet basis.
On a circumferential surface of the photoconductive drum 3, an electrostatic latent image carrying surface LS is formed as a cylindrical surface parallel to a main scanning direction (i.e., a z-axis direction in
The toner supply device 6 of the embodiment is disposed under the photoconductive body 3 so as to face the electrostatic latent image carrying surface LS in a development position DP downstream relative to the scanned position SP in a moving direction in which the electrostatic latent image LS moves in response to rotation of the photoconductive drum 3. The toner supply device 6 is configured to supply the positively charged toner T to the electrostatic latent image carrying surface LS in the development position DP. Subsequently, a detailed explanation will be provided about a specific configuration of each of elements included in the laser printer 1.
The sheet feeding mechanism 2 includes two registration rollers 21, and a transfer roller 22. The registration rollers 21 are configured to feed a sheet P toward a transfer position TP (downstream relative to the development position DP in the moving direction of the electrostatic latent image carrying surface LS) between the photoconductive drum 3 and the transfer roller 22 at a predetermined moment. The transfer roller 22 is disposed to face the electrostatic latent image carrying surface LS across the sheet feeding path PP (the sheet P) in the transfer position TP. Additionally, the transfer roller 22 is driven to rotate in a clockwise direction indicated by an arrow in
<<Toner Supply Device>>
As shown in
The toner T, which is positively-chargeable nonmagnetic-one-component black toner, includes a mother particle MP and an external additive AA attached onto the outer surface of the mother particle MP. The mother particle MP includes a core MP1 of polyester resin and a coating layer MP2 of non-ionic surfactant that is absorbed onto the outer surface of the core MP1. Namely, the mother particle MP has, around the outer surface thereof, the coating layer MP2 as an electrically insulating layer that does not have a polar group of the positive polarity identical to the intended polarity of the toner T. Further, the external additive AA is absorbed to around the mother particle MP in an easily desorbable manner. Specifically, the external additive AA is absorbed to the mother particle MP such that the desorption rate of the external additive AA is equal to or more than 0.5% when the toner T is dispersed in water solution containing non-ionic surfactant of 0.2 weight percent for three minutes using a high-speed shearing machine. In the embodiment, the toner T is produced to have a spatula angle less than 50 degrees. Further, the toner T is produced such that the absolute value of the charge amount of the toner T in the toner storage section 60a2 immediately before transferred by an electric field generated by a below-mentioned transfer board 63 (near the transfer board 63 in the process of an electric-field transferring operation) is equal to or more than 800 fC per 3000 particles and equal to or less than 3000 fC per 3000 particles.
The casing 60 includes a sub casing 60b that is provided in parallel with the bottom portion of the main casing 60a and formed substantially in a cylindrical shape having a center axis parallel to the main scanning direction. The internal space of the sub casing 60b is communicated with the toner storage section 60a2 inside the bottom portion of the main casing 60a via a communication hole 60c at each end thereof in the main scanning direction. There are augers 61 housed inside the bottom portion of the main casing 60a and the sub casing 60b, respectively. The augers 61 are configured to agitate and circulate the toner T in the bottom portion of the main casing 60a and the sub casing 60b.
The development roller 62 is a roller-shaped member having a toner carrying surface 62a that is a cylindrical circumferential surface. The development roller 62 is disposed to face the photoconductive drum 3. The development roller 62 is rotatably supported at the upper end portion of the main casing 60a where the opening 60a1 is formed. In the embodiment, the development roller 62 is housed in the casing 60 such that a rotational center axis thereof parallel to the main scanning direction is placed inside the main casing 60a and that substantially an upper half portion of the toner carrying surface 62a is exposed to the outside of the main casing 60a.
The transfer board 63 is formed, in the main casing 60a, along a toner transfer path TTP that is formed substantially in an oval shape elongated in the vertical direction when viewed along the z-axis direction in
The bottom transfer board 63a is fixed onto an inner wall surface of the main casing 60a at a bottom portion of the internal space of the main casing 60a, so as to form a bottom surface of the toner storage section 60a2. The bottom transfer board 63a is a concave curved-plate member that is curved in an upward-opening half-cylindrical shape when viewed along the z-axis direction in
An opposed member 64 is opposed to the toner carrying surface 62a in a position between the toner carrying position TCP and the development position DP in the moving direction of the toner carrying surface 62a. The opposed member 64 is configured to charge the toner T carried on the toner carrying surface 62a by the action of an alternating electric field generated between the opposed member 64 and the toner carrying surface 62a. In the embodiment, the opposed member 64, which is a roller-shaped member having a center axis parallel to the main scanning direction, is driven to rotate around the center axis. In addition, the toner supply device 6 includes a cleaning portion 65 configured to clean an opposed-roller surface 64a.
The bottom transfer board 63a and the vertical transfer board 63b of the transfer board 63 are electrically connected with a transfer power supply circuit 66. The retrieving board 63c is electrically connected with a retrieving power supply circuit 67. The development roller 62 is electrically connected with a development bias supply circuit 68. The transfer power supply circuit 66, the retrieving power supply circuit 67, and the development bias supply circuit 68 are configured to output respective voltages required for circulating the toner T in the toner transfer direction TTD along the toner transfer path TTP (specifically, voltages required for making the development roller 62 once carry the toner T stored in the toner storage section 60a2 to convey the toner T to the development position DP, retrieving from the development roller 62 the toner T that remains on the toner carrying surface 62a without having been consumed in the development position DP, and returning the retrieved toner T back to the toner storage section 60a2). The opposed member 64 is electrically connected with a charge bias supply circuit 69. The charge bias supply circuit 69 is configured to generate the alternating electric field in a position where the opposed member 64 (the opposed-roller surface 64a) is opposed to the development roller 62 (the toner carrying surface 62a) and charge the toner T carried on the toner carrying surface 62a by the action of the alternating electric field.
<<<Internal Configuration of Transfer Board>>>
As shown in
The transfer electrodes 631 are formed on a surface of the transfer electrode supporting film 632. The transfer electrode supporting film 632 is a flexible film made of electrically insulated synthetic resin such as polyimide resin. The transfer electrode coating layer 633 is provided to coat the transfer electrodes 631 and the surface of the transfer electrode supporting film 632 on which the transfer electrodes 631 are formed. In the embodiment, the transfer electrode coating layer 633 is made of polyimide resin. On the transfer electrode coating layer 633, the transfer electrode overcoating layer 634 is provided. The surface (the toner transfer surface TTS) of the transfer electrode overcoating layer 634 is formed as a smooth surface with a very low level of irregularity, so as to smoothly convey the toner T. In the embodiment, the transfer electrode overcoating layer 634 is made of polyester resin, which is the same material as that for the core MP1 of the toner T.
<Specific Example of Method for Manufacturing Toner>
(1) Preparation of Suspension of Fine Particle Precursor to Mother Particles
<Evaluation Method>
An explanation will be provided below about a method for evaluating toner manufactured as above or in partially modified manufacturing methods.
(1) Amount of Polar Groups
The amount of polar groups of the toner is measured by an automatic potentiometric titrator (Model AT-510, manufactured by KYOTO ELECTRONICS MANUFACTURING CO., LTD.). Hereinafter, a procedure for measuring the amount of positive polar groups [mol/g] will be shown. It is noted that measurement of the amount of negative polar groups is opposite in use of reagents to measurement of the amount of positive polar groups. Specifically, benzethonium chloride is employed as specimen liquid, and sodium lauryl sulfate is employed as titration reagent. Further, the following procedure for measuring the amount of polar groups is a known method.
(1-1) A stir bar (rotor) of a magnetic stirrer distilled water of 30 g are put into a container with a lid. Then, precisely weighed toner of 1 g is put into the container.
First, the mole number W of sodium lauryl sulfate consumed in the titration is calculated based on the following expression (1).
W=(concentration of sodium lauryl sulfate solution [mol/L])×(titer [ml])/1000 (1)
Next, with respect to the mole number of sodium lauryl sulfate, a loss amount correction is made considering a loss amount of sodium lauryl sulfate caused by the filtering in preparation of the specimen liquid.
The total volume T [ml] of the liquid before the filtering is calculated based on the following expression (2). It is noted that, in the following calculation, each volume is determined based on the measured weight.
T=(input of benzethonium chloride solution [ml])+(input of water [ml])−(water volatilization volume [ml]) (2)
Subsequently, based on the following expression (3), the mole number X [mol] of benzethonium chloride contained before the filtering is calculated by making the loss amount correction with respect to the mole number of sodium lauryl sulfate. Specifically, since one mole of benzethonium chloride reacts with one mole of sodium lauryl sulfate, it is possible to determine the mole number X [mol] of benzethonium chloride contained before the filtering by making the loss amount correction with respect to the mole number of sodium lauryl sulfate.
X=W [mol]×T [ml]/(the volume of the filtered liquid [ml]) (3)
Next, based on the following expression (4), the mole number Y [mol] of benzethonium chloride consumed by reaction with the polar groups is calculated by subtracting the mole number X [mol] of benzethonium chloride contained before the filtering from the mole number [mol] of firstly-added benzethonium chloride. The mole number Y [mol] of benzethonium chloride consumed by reaction with the polar groups corresponds to the amount of electrostatically active polar groups.
Finally, based on the mole number Y [mol] of benzethonium chloride consumed by reaction with the polar groups, the following value Z [mol/g] is determined as the mole number of benzethonium chloride consumed by reaction with the polar groups per unit weight of the toner.
Z=Y [mol]/(input of toner [g])
(2) Desorption Rate of External Additive
(3) Spatula Angle
(4) Charge Amount of Toner Before Transferred (Charge Amount of Toner at Activating Portion)
An experimental prototype of the toner supply device 6 is provided, which has the same configuration as shown in
(5) Ratio of Negatively Charged Toner, Transferability, Printing Property
Using the initialized prototype, an electric-field toner transferring operation (e.g., an image forming operation by a test model of laser printer in which the initialized prototype is incorporated, using a standard printer evaluation pattern J5 defined by Japan Electronics and Information Technology Industries Association) is carried out for 12 hours. Then, a white fog evaluation is carried out by measuring a reflecting density of a background area using a Macbeth densitometer manufactured by Gretag-Macbeth Corporation (Model RD-914, aperture diameter: 2 mm) In the white fog evaluation, it is determined that a “white fog” is caused, when the measured reflecting density is equal to or more than 0.3. Further, transferability of the toner (evenness of toner activation, showing how evenly the toner is activated and transferred at the activating portion on the transfer board 63) is evaluated based on unevenness of the density of a solid area in the main scanning direction and an adhesion pattern of the toner adhering to the activating portion on the transfer board 63. With respect to the toner on an area of the toner carrying surface 62a that is downstream relative to the toner carrying position TCP and upstream relative to the position opposed to the opposed member 64 in the moving direction of the toner carrying surface 62a, a ratio of negatively charged toner (negatively charged particles) is measured by the Espart Analyzer (trademark registered) manufactured by HOSOKAWA MICRON CORPORATION.
<Evaluation Results>
An explanation will be provided below about results of evaluation of the toner manufactured as above or in partially modified manufacturing methods. With respect to the toner manufactured in the aforementioned manufacturing method (hereinafter referred to as a “first working example”), the printing property and the transferability thereof are good. Namely, there is not any white fog recognized, and evenness of electric-field toner transferring in the width direction is good (it is visually confirmed that the toner has been very smoothly transferred by the electric field). In the first working example, other evaluation results are shown below.
In a second working example, toner is prepared in a modified manufacturing method where the additive amount of the surfactant is changed from 0.5 weight percent down to 0.1 weight percent in the process of making the surfactant absorbed to the mother particles. Additionally, in a third working example, toner is prepared in a modified manufacturing method where the additive amount of the surfactant is further reduced down to 0.01 weight percent in the process of making the surfactant absorbed to the mother particles. Further, in a fourth working example, toner is prepared in a modified manufacturing method where the type of the surfactant is changed to polyoxyethylene laurylether (product ID: DNS NL-90 (HLB value: 13.4), manufactured by DAI-ICHI KOGYO SEIYAKU Co., Ltd.). Further, in a fifth working example, toner is prepared in a modified manufacturing method where the type of the surfactant is changed to polyoxyethylene oleyl cetyl ether (product name: NOIGEN ET-69 (HLB value: 5.7), manufactured by DAI-ICHI KOGYO SEIYAKU Co., Ltd.). In each of first and second comparative examples, toner is prepared in a modified manufacturing method to use surfactant having an amino group (polyethylenimine (molecular weight: 10000), product name: EPOMIN SP-200, manufactured by NIPPON SHOKUBAI Co., Ltd.). It is noted that the additive amount of the surfactant is 0.01 weight percent in the first comparative example, and the additive amount of the surfactant is 0.3 weight percent in the second comparative example. In a third comparative example, toner is prepared in a modified manufacturing method without a process of making any surfactant absorbed to the mother particles. Further, in a fourth comparative example, toner is prepared in a modified manufacturing method where a condition of the external additive process of the first working example is changed. Specifically, in the external additive process, the dried mother particles containing the hydrophobic silica are agitated at a revolution of 2800 rpm for 15 minutes.
As shown in
In this regard, as explicitly shown in
Meanwhile, in the first comparative example, the transferability of the toner is good since the external additive is absorbed to the mother particles in a relatively easily desorbable manner, the spatula angle is less than 50 degrees, and the charge amount of the toner at the activating portion is equal to or more than 800 fC per 3000 particles and equal to or less than 3000 fC per 3000 particles. However, there are positive polar groups and negative polar groups on the surfaces of the mother particles, and it leads to a high ratio of negatively charged toner. Therefore, in the first comparative example, occurrence of a white fog is recognized. In the second comparative example, the external additive is absorbed to the mother particles in a relatively easily desorbable manner. However, the charge amount of the toner at the activating portion is more than 3000 fC per 3000 particles, and the spatula angle is equal to or more than 50 degrees. Further, there is not any negative polar group on the surfaces of the mother particles while there are positive polar groups on the surfaces of the mother particles. In the second comparative example, the ratio of negatively charged toner is high, a white fog is caused, and the transferability of the toner is no good (although the toner has managed to be vertically transferred and carried on the toner carrying surface 62a, remarkable unevenness of the toner in the main scanning direction is observed). In the third comparative example, although there is no positive polar group on the surfaces of the mother particles, the external additive is firmly absorbed to the mother particles (the desorption rate of the external additive is 0.0%), and the spatula angle is equal to or more than 50 degrees. In the third comparative example, the charge amount of the toner at the activating portion is equal to or more than 800 fC per 3000 particles and equal to or less than 3000 fC per 3000 particles, and the transferability of the toner in the vertical direction is barely ensured. However, remarkable unevenness of the toner in the main scanning direction is observed. In the fourth comparative example, although there is no positive polar group on the surfaces of the mother particles, the external additive is firmly absorbed to the mother particles. Further, although the spatula angle is less than 50 degrees, the charge amount of the toner at the activating portion is less than 800 fC per 3000 particles. In the fourth comparative example, the toner has not been transferred by the electric field. Therefore, it was impossible to carry out the white fog evaluation or the evaluation of the ratio of negatively charged toner.
The above results are considered to be brought for the following causes. As conducted in the first to fifth working examples, when the external additive (electrically-insulating fine particles having the positive charge polarity identical to that of the toner) is absorbed in an easily desorbable (movable) state to the outer surface of the mother particle that does not have any positive polar group, the external additive is positively charged for some causes. For instance, the external additive is positively charged by contact (friction) with the transfer board 63 (the surface of the transfer electrode overcoating layer 634, i.e., the toner transfer surface TTS) and/or by rotation or contact sliding of the external additive on the outer surface of the mother particle when the toner contacts the transfer board 63. At this time, even though the mother particle is negatively charged, the mother particle is covered with the positively charged external additive. Therefore, since the positively charged external additive exists on the outermost surface of the toner, the toner apparently behaves as being positively charged (when an external electric field is applied, e.g., in the electric-field toner transferring or the development). Thus, in the embodiment, the charge polarity of the toner is mainly determined by the charge polarity of the external additive.
The aforementioned charging of the toner, resulting from the movement of the external additive on the outer surface of the mother particle, is caused in the same manner even in any of the following states. The states include a state where the accumulated transfer time for transferring the toner by the transfer board 63 is relatively long such that the external additive desorbed from the mother particle electrostatically adheres onto the transfer board 63 (in this state, the external additive is less likely to be charged by contact with the transfer board 63), and a state where the accumulated transfer time is relatively short such that the external additive desorbed from the mother particle does not electrostatically adhere onto the transfer board 63. Further, with respect to the negatively charged toner, when the external additive is positively charged by friction with the outer surface of the mother particle as described above, it results in an increased ratio of such toner (particles) that the charge state of the toner itself is changed into the positively charged state.
As described above, in the embodiment, the toner is charged in a stable manner as the external additive is allowed to move on the outer surface of the mother particle in a favorable manner. Hence, there is a small difference in the charge state of the toner between when the accumulated transfer time for transferring the toner by the transfer board 63 is short and when the accumulated transfer time is long. Thus, it is possible to put the negatively charged toner into the positively charged state.
In addition, when the charge amount of the toner at the activating portion is equal to or more than 800 fC per 3000 particles and the spatula angle is less than 50 degrees, the toner is allowed to have a sufficient charge amount and a sufficient fluidity. Thus, the toner is allowed to be activated by the electric field in a more effective manner. Moreover, when the charge amount of the toner at the activating portion is equal to or less than 3000 fC per 3000 particles, it is possible to prevent the toner from being negatively charged or being aggregated, as effectively as possible.
Thus, according to the embodiment, it is possible to avoid an unstably charged toner or unstable transferability of the toner to be transferred by the electric field, as effectively as possible. Thereby, it is possible to supply the positively charged toner in a stable and favorable manner.
Hereinabove, the embodiment according to aspects of the present invention has been described. The present invention can be practiced by employing conventional materials, methodology and equipment. Accordingly, the details of such materials, equipment and methodology are not set forth herein in detail. In the previous descriptions, numerous specific details are set forth, such as specific materials, structures, chemicals, processes, etc., in order to provide a thorough understanding of the present invention. However, it should be recognized that the present invention can be practiced without reapportioning to the details specifically set forth. In other instances, well known processing structures have not been described in detail, in order not to unnecessarily obscure the present invention.
Only an exemplary embodiment of the present invention and but a few examples of their versatility are shown and described in the present disclosure. It is to be understood that the present invention is capable of use in various other combinations and environments and is capable of changes or modifications within the scope of the inventive concept as expressed herein. For example, the following modifications are possible.
<Modifications>
The toner supply device 6 may be configured without the opposed member 64 or elements accompanying the opposed member 64.
The transfer board 63 may be provided with a down-facing toner transfer surface TTS. As shown in
At the bottom portion inside the casing 60, there may be subsidiary toner storage sections 60a3 and 60a4 each of which is formed to be substantially an upward-opening C-shaped room when viewed along the z-axis direction and disposed adjacent to the toner storage section 60a2. Between the toner storage section 60a2 and the subsidiary toner storage section 60a3, there may be a separation wall 60a5 formed along the main scanning direction. Further, between the subsidiary toner storage section 60a3 and the subsidiary toner storage section 60a4, there may be a separation wall 60a6 formed along the main scanning direction. The subsidiary toner storage sections 60a3 and 60a4 may be connected with each other at both ends thereof in the main scanning direction, such that the toner T flows between the subsidiary toner storage sections 60a3 and 60a4.
In the internal space of the casing 60, a shield member 60a7 may be provided. The shield member 60a7 may be a plate member formed substantially in an arc shape when viewed along the z-axis direction. The shield member 60a7 may be formed to divide the internal space of the casing 60 into a roller housing section 60a8 at a side closer to the opening 60a1 in the longitudinal direction of the casing 60 and a remaining section other than the roller housing section 60a8. The roller housing section 60a8 may be configured to accommodate the development roller 62. Namely, the shield member 60a7 may be configured to shield the development roller 62 from a space where the toner T is stored (i.e., from the remaining section other than the roller housing section 60a8 inside the casing 60).
A bottom plate 60a9 and a top plate 60aA may be connected with each other at a side closer to the toner storage section 60a2 in the longitudinal direction of the casing 60. Further, the bottom plate 60a9 and the top plate 60aA may be smoothly connected to form a substantially arc shape when viewed along the z-axis direction. The top plate 60aA may include a projection 60aB that protrudes toward the inside of the casing 60 and is formed along the main scanning direction. The projection 60aB may be disposed in such a position as to separate the internal space of the casing 60 into the roller housing section 60a8 and the remaining section other than the roller housing section 60a8. Specifically, the projection 60aB may be disposed to face the shield member 60a7. A surface of the projection 60aB that faces the shield member 60a7 may be formed to be a concave surface substantially along a surface of the shield member 60a7.
In the modification, the transfer board 63 may include a first transfer board 63d, a second transfer board 63e, and a third transfer board 63f. The first transfer board 63d may be fixed onto an inner wall surface of the top plate 60aA of the casing 60, such that a first toner transfer surface TTS1, which is a down-facing surface of the first transfer board 63d, is provided along the longitudinal direction of the casing 60. Further, the first transfer board 63d may extend from the side closer to the toner storage section 60a2 in the longitudinal direction of the casing 60 to the surface of the projection 60aB that faces the shield member 60a7. The second transfer board 63e may be fixed onto a surface of the shield member 60a7 that faces the projection 60aB and the development roller 62. A surface of the second transfer board 63e may be referred to as a “second toner transfer surface TTS2.” At a downstream end of the first transfer board 63d in the toner transfer direction TTD, the first toner transfer surface TTS1 may be formed in a concave cylindrical surface shape along the second toner transfer surface TTS2. The second transfer board 63e may include an upstream section 63e1 that faces the downstream end of the first transfer board 63d in the toner transfer direction TTD, and a downstream section 63e2 that is opposed in closest proximity to the development roller 62. The second transfer board 63e may be configured to receive the toner T at the upstream section 63e1 from the first transfer board 63d, transfer the received toner T to the downstream section 63e2 by a traveling-wave electric field, and supply the toner T to the toner carrying surface 62a at the downstream section 63e2. A portion of the downstream section 63e2, which portion is located downstream relative to the position opposed in closest proximity to the development roller 62 in the toner transfer direction TTD, may be configured to transfer the toner T toward the subsidiary toner storage section 60a4.
The third transfer board 63f may be fixed to an end, closer to the toner storage section 60a2, of an inner wall surface of the bottom plate 60a9 of the casing 60 in the longitudinal direction of the casing 60. The third transfer board 63f may be configured such that an upstream end thereof in the toner transfer direction TTD is immersed in the toner T stored in the toner storage section 60a2. Further, a downstream end of the third transfer board 63f in the toner transfer direction TTD may be connected with an upstream end of the first transfer board 63d in the toner transfer direction TTD. Namely, the toner transfer surface TTS of the third transfer board 63f may form a slant face extending up toward the upstream end of the first transfer board 63d in the toner transfer direction TTD.
An agitator 601 may be provided in a position, corresponding to the toner storage section 60a2, of the bottom portion of the casing 60. The agitator 601 may include a shaft 601a that forms a rotational center axis parallel to the main scanning direction, and an agitating bar 601b formed radially outside the shaft 601a. The agitating bar 601b may be a bar-shaped member having a longitudinal direction along the shaft 601a, and typically provided in parallel with the shaft 601a. The agitator 601 is configured to, when the shaft 601a is driven to rotate, agitate the toner T in the toner storage section 60a2.
A first auger 61a and a second auger 61b may be provided at the bottom portion inside the casing 60. The first auger 61a and the second auger 61b may be configured to agitate the previously-stored toner T and the toner T coming down (retrieved) from the first transfer board 63d (the first toner transfer surface TTS1), in the subsidiary toner storage sections 60a3 and 60a4 adjacent to the toner storage section 60a2 at the bottom portion of the casing 60. Further, the first auger 61a and the second auger 61b may be configured to convey the toner T to the toner storage section 60a2.
The first auger 61a may be disposed in a position corresponding to the subsidiary toner storage section 60a3. The first auger 61a may include a shaft 61a1 that forms a rotational center axis parallel to the main scanning direction, and a corkscrew blade 61a2 formed around the shaft 61a1. The first auger 61a may be configured to, when the shaft 61a1 is driven to rotate, convey the toner T in a first direction (e.g., a positive direction along the z-axis in
In the modification, the toner T having the same properties as exemplified in the aforementioned embodiment may be transferred on the down-facing first toner transfer surface TTS1 of the first transfer board 63d with a favorable transferability. Thus, the ratio of negatively charged toner with respect to the toner T carried on the toner carrying surface 62a may be restrained and reduced as effectively as possible.
Number | Date | Country | Kind |
---|---|---|---|
2011-021537 | Feb 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5142336 | Hotomi et al. | Aug 1992 | A |
6013404 | Feng et al. | Jan 2000 | A |
20030064310 | Kumar et al. | Apr 2003 | A1 |
20080292362 | Ikami et al. | Nov 2008 | A1 |
20090080942 | Nishiwaki et al. | Mar 2009 | A1 |
20100158577 | Nishiwaki | Jun 2010 | A1 |
20110158706 | Nishiwaki | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
59-176755 | Oct 1984 | JP |
3-12678 | Jan 1991 | JP |
2003-149868 | May 2003 | JP |
3540878 | Jul 2004 | JP |
2008-70673 | Mar 2008 | JP |
2008-70674 | Mar 2008 | JP |
2008-281627 | Nov 2008 | JP |
2009-80271 | Apr 2009 | JP |
2009-80299 | Apr 2009 | JP |
2010-145911 | Jul 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20120201576 A1 | Aug 2012 | US |