In the present invention, we adopted the use of macromolecule intracellular transduction technology (MITT) to deliver biologically active TFF1 protein into gastric cancer cells, grown both in culture and as tumor xenografts and to investigate the feasibility of using TFF1 as a protein-based therapy for gastric cancer.
Gastric cancer remains the fourth most common cancer worldwide and the second leading cause of cancer-related deaths. The most common form of gastric cancer is intestinal-type gastric adenocarcinoma, which progresses through a cascade of gastric carcinogenesis from normal mucosa to chronic superficial gastritis, atrophic gastritis, intestinal metaplasia with low- and high-grade dysplasia (LGD and HGD, respectively), and invasive gastric adenocarcinoma finally.
Trefoil factor 1 (TFF1) is a member of the trefoil factor family peptides that are cysteine-rich proteins and form a characteristic trefoil domain. TFF1 is expressed predominantly in the gastric epithelia and secreted by the mucus-secreting pit cells of the corpus and antropyloric regions of the stomach. TFF1 has been reported as a gastric-specific tumour-suppressor gene. The TFF1 protein, which is secreted as a component of the protective mucus layer in the stomach, is highly expressed in response to mucosal injury. Previous reports have shown loss of TFF1 protein expression in more than two-thirds of gastric adenocarcinomas (AC) because of mutation-independent mechanisms. The silencing of the TFF1 gene expression in gastric cancer is predominantly induced by the loss of heterozygosity and hypermethylation of the TFF1 promoter. The TFF1-knockout mouse model provided first evidence supporting a tumor suppressor role of TFF1 in gastric tumorigenesis, demonstrating that it is essential for normal differentiation of the antral and pyloric gastric mucosa. The NF-κB transcription factor, regulated via the IκB kinase (IKK) complex, play a critical role in coupling inflammation and cancer. The activation of the NF-κB signaling pathway promotes the induction of inflammation-associated tumors and suppresses apoptosis in advanced tumors. In the regulation of the complex cancer-inducing NF-κB signaling, TFF1 plays an important role in NF-κB-mediated inflammatory response in the multistep gastric tumorigenesis cascade.
In principle, protein-based therapeutics offer to a way to control biochemical processes in living cells under non steady-state conditions and with fewer off target effects than conventional small molecule therapeutics. In practice, systemic protein delivery in animals has proven difficult due to poor tissue penetration and rapid clearance. Protein transduction exploits the ability of some cell-penetrating peptide (CPP) sequences to enhance the uptake of proteins and other macromolecules by mammalian cells. Previously developed hydrophobic CPPs, named membrane translocating sequence (MTS), membrane translocating motif (MTM) and macromolecule transduction domain (MTD), are able to deliver biologically active proteins into a variety of cells and tissues. Various cargo proteins fused to these CPPs have been used to test the functional and/or therapeutic efficacy of protein transduction. However, the recombinant proteins fused to previously develop hydrophobic CPPs displayed extremely low solubility, poor yields and relatively low cell- and tissue-permeability. Therefore, these recombinant proteins were not suitable for further clinical development as therapeutic agents. To overcome these limitations, cell-permeable TFF1 recombinant proteins (CP-TFF1) fused to the combination of novel hydrophobic CPPs, namely advanced macromolecule transduction domains (aMTDs) to greatly improve the efficiency of membrane penetrating ability in vitro and in vivo with solubilization domains to increase in their solubility and manufacturing yield when expressed and purified from bacteria cells.
We have hypothesized that exogenously administered TFF1 proteins can compensate for the apparent inability of endogenously expressed members of this physiologic tumor suppressor in GIT to cure the established gastric cancers. We have tried to demonstrate that this approach namely “intracellular protein therapy” by designing and introducing cell-permeable form of TFF1 to determine its potential of anti-cancer therapeutic applicability. The present invention suggests that intracellular restoration of TFF1 with CP-TFF1 creates a new paradigm for anti-cancer therapy, and the intracellular protein replacement therapy with the TFF1 recombinant protein fused to the combination of aMTD and SDs pair may be useful to treat the cancer.
An aspect of the present invention relates to cell-permeable TFF1 (CP-TFF1) recombinant proteins capable of mediating the transduction of biologically active macromolecules into live cells.
CP-TFF1 fused to novel hydrophobic CPPs—namely advanced macromolecule transduction domains (aMTDs)—greatly improve the efficiency of membrane penetrating ability in vitro and in vivo of the recombinant proteins.
CP-TFF1 fused to solubilization domains (SDs) greatly increase in their solubility and manufacturing yield when they are expressed and purified in the bacteria system.
The present invention also, relates to its therapeutic application for delivery of a biologically active molecule to a cell, involving a cell-permeable TFF1 recombinant protein, where the aMTD is attached to a biologically active cargo molecule.
Other aspects of the present invention relate to the development of TFF1 recombinant protein fused with aMTD sequences for drug delivery, protein therapy, intracellular protein therapy, protein replacement therapy and peptide therapy.
An aspect of the present invention provides cell-permeable TFF1 as a biotherapeutics having improved solubility/yield and cell-/tissue-permeability and anti-gastric cancer effects. Therefore, this would allow their practically effective applications in drug delivery and protein therapy including intracellular protein therapy and protein replacement therapy.
The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings.
In this invention, it has been hypothesized that exogenously administered TFF1 proteins can compensate for the apparent inability of endogenously expressed members of this physiologic tumor suppressor in GIT to cure the established gastric cancers. To prove our hypothesis, the TFF1 recombinant proteins fused to novel hydrophobic CPPs called aMTDs to improve their cell-/tissue-permeability and additionally adopted solubilization domains to increase their solubility/yield in physiological condition, and then tested whether exogenous administration of TFF1 proteins can reconstitute their endogenous stores and restore their basic function as the tumor suppressor. This art of invention has demonstrated “intracellular protein therapy” by designing and introducing cell-permeable form of TFF1 has a great potential of anti-cancer therapeutic applicability in gastric cancer.
To address the limitation of previously developed hydrophobic CPPs, novel sequences have been developed. To design new hydrophobic CPPs for intracellular delivery of cargo proteins such as TFFF1, identification of optimal common sequence and/or homologous structural determinants, namely critical factors (CFs), had been crucial. To do it, the physicochemical characteristics of previously published hydrophobic CPPs were analyzed. To keep the similar mechanism on cellular uptake, all CPPs analyzed were hydrophobic region of signal peptide (HRSP)-derived CPPs (e.g. membrane translocating sequence: MTS and macromolecule transduction domain: MTD) as explained previously.
These 17 hydrophobic CPPs published from 1995 to 2014 have been analyzed for their 11 different characteristics—sequence, amino acid length, molecular weight, pl value, bending potential, rigidity/flexibility, structural feature, hydropathy, residue structure, amino acid composition, and secondary structure of the sequences. Two peptide/protein analysis programs were used (ExPasy: http://web.expasy.org/protparam/, SoSui: http://harrier.nagahama-i-bio.ac.jp/sosui/sosui_submit.html) to determine various indexes, structural features of the peptide sequences and to design new sequence. Followings are important factors analyzed.
Average length, molecular weight and pl value of the peptides analyzed were 10.8±2.4, 1,011±189.6 and 5.6±0.1, respectively.
Bending potential (Bending or No-Bending) was determined based on the fact whether proline (P) exists and/or where the amino acid(s) providing bending potential to the peptide in recombinant protein is/are located. Proline differs from the other common amino acids in that its side chain is bonded to the backbone nitrogen atom as well as the alpha-carbon atom. The resulting cyclic structure markedly influences protein architecture which is often found in the bends of folded peptide/protein chain. Eleven out of 17 were determined as ‘Bending’ peptide which means that proline should be present in the middle of sequence for peptide bending and/or located at the end of the peptide for protein bending. As indicated above, peptide sequences could penetrate the plasma membrane in a “bent” configuration. Therefore, bending or no-bending potential is considered as one of the critical factors for the improvement of current hydrophobic CPPs.
Since one of the crucial structural features of any peptide is based on the fact whether the motif is rigid or flexible, which is an intact physicochemical characteristic of the peptide sequence, instability index (II) of the sequence was determined. The index value representing rigidity/flexibility of the peptide was extremely varied (8.9−79.1), but average value was 40.1±21.9 which suggested that the peptide should be somehow flexible, but not too rigid or flexible.
Alanine (V), valine (V), leucine (L) and isoleucine (I) contain aliphatic side chain and are hydrophobic—that is, they have an aversion to water and like to cluster. These amino acids having hydrophobicity and aliphatic residue enable them to pack together to form compact structure with few holes. Analyzed peptide sequence showed that all composing amino acids were hydrophobic (A, V, L and I) except glycine (G) in only one out of 17 and aliphatic (A, V, L, I, and P). Their hydropathic index (Grand Average of Hydropathy: GRAVY) and aliphatic index (Al) were 2.5±0.4 and 217.9±43.6, respectively.
As explained above, the CPP sequences may be supposed to penetrate the plasma membrane directly after inserting into the membranes in a “bent” configuration with hydrophobic sequences adopting an α-helical conformation. In addition, our analysis strongly indicated that bending potential was crucial. Therefore, structural analysis of the peptides conducted to determine whether the sequence was to form helix or not. Nine peptides were helix and 8 were not. It seems to suggest that helix structure may not be required, but favored for membrane penetration.
In the 11 characteristics analyzed, the following 6 are selected namely “Critical Factors (CFs)” for the development of new hydrophobic CPPs—advanced MTDs: i) amino acid length, ii) bending potential (proline presence and location), iii) rigidity/flexibility (instability index: II), iv) structural feature (aliphatic index: AI), v) hydropathy (GRAVY) and vi) amino acid composition/residue structure (hydrophobic and aliphatic A/a).
Since the analyzed data of the 17 different hydrophobic CPPs (analysis A) previously developed during the past 2 decades showed high variation and were hard to make common- or consensus-features, additional analysis B and C was also conducted to optimize the critical factors for better design of improved CPPs-aMTDs.
In analysis B, 8 CPPs were used with each cargo in vivo. Length was 11±3.2, but 3 out of 8 CPPs possessed little bending potential. Rigidity/Flexibility was 41±15, but removing one [MTD85: rigid, with minimal (II: 9.1)] of the peptides increased the overall instability index to 45.6±9.3. This suggested that higher flexibility (40 or higher II) is potentially be better. All other characteristics of the 8 CPPs were similar to the analysis A, including structural feature and hydropathy.
To optimize the ‘Common Range and/or Consensus Feature of Critical Factor’ for the practical design of aMTDs and the random peptides (rPs or rPeptides), which were to prove that the ‘Critical Factors’ determined in the analysis A, B and C were correct to improve the current problems of hydrophobic CPPs—protein aggregation, low solubility/yield, and poor cell/tissue-permeability of the recombinant proteins fused to the MTS/MTM or MTD, and non-common sequence and non-homologous structure of the peptides, empirically selected peptides were analyzed for their structural features and physicochemical factor indexes.
The peptides which did not have a bending potential, rigid or too flexible sequences (too low or too high Instability Index), or too low or too high hydrophobic CPP were unselected, but secondary structure was not considered because helix structure of sequence was not required. 8 selected CPP sequences that could provide a bending potential and higher flexibility were finally analyzed. Common amino acid length is 12 (11.6±3.0). Proline should be presence in the middle of and/or the end of sequence. Rigidity/Flexibility (II) is 45.5−57.3 (Avg: 50.1±3.6). Al and GRAVY representing structural feature and hydrophobicity of the peptide are 204.7±37.5 and 2.4±0.3, respectively. All peptides are consisted with hydrophobic and aliphatic amino acids (A, V, L, I, and P). Therefore, analysis C was chosen as a standard for the new design of new hydrophobic CPPs (TABLE 1).
1. Amino Acid Length: 9-13
2. Bending Potential (Proline Position: PP)
: Proline presences in the middle (from 5′ to 8′ amino acid) and at the end of sequence
3. Rigidity/Flexibility (Instability Index: II): 40-60
4. Structural Feature (Aliphatic Index: AI): 180-220
5. Hydropathy (GRAVY): 2.1-2.6
6. Amino Acid Composition: Hydrophobic and Aliphatic amino acids—A, V, L, I and P
1-3. Determination of Critical Factors for Development of aMTDs
For confirming the validity of 6 critical factors providing the optimized cell-/tissue-permeability, 240 aMTD sequences have been designed and developed based on six critical factors (TABLES 2-1 to 2-6 and 3). All 240 aMTDs (hydrophobic, flexible, bending, aliphatic and helical 12 a/a-length peptides) are practically confirmed by their quantitative and visual cell-permeability. To determine the cell-permeability of aMTDs and random peptides, which do not satisfy one or more critical factors have also been designed and tested. Relative cell-permeability of 240 aMTDs to the negative control (random peptide) was significantly increased by up to 164 fold, with average increase of 19.6±1.6. Moreover, novel 240 aMTDs averaged of 13±1.1 (maximum 109.9) and 6.6±0.5 (maximum 55.5) fold higher cell-permeability, respectively. As a result, there were vivid association of cell-permeability of the peptides and critical factors. According to the result from the newly designed and tested novel 240 aMTDs, the empirically optimized critical factors (CFs) are provided below.
1. Amino Acid Length: 12
2. Bending Potential (Proline Position: PP)
: Proline presences in the middle (from 5′ to 8′ amino acid) and at the end of sequence
3. Rigidity/Flexibility (Instability Index: II): 41.3-57.3
4. Structural Feature (Aliphatic Index: AI): 187.5-220.0
5. Hydropathy (GRAVY): 2.2-2.6
6. Amino Acid Composition: Hydrophobic and Aliphatic amino acids—A, V, L, I and P
These examined critical factors are within the range that we have set for our critical factors; therefore, we were able to confirm that the aMTDs that satisfy these critical factors have much higher cell-permeability and intracellular delivery potential compared to reference hydrophobic CPPs reported during the past two decades.
2. Development of TFF1 Recombinant Proteins Fused to aMTD and Solubilization Domain
High solubility, yield, stability, and cell-/tissue-permeability are essentially required together with their functional activity (anti-cancer effect) to determine whether they are eligible to have therapeutic applicability in clinic. Therefore, additional modifications were strongly recommended on the conventional recombinant TFF1 proteins fused to previously developed MTD.
2-1. The Advanced Hydrophobic CPP—aMTD43 and aMTD165
Based on these analytical data of hydrophobic CPPs published, 240 advanced MTDs (aMTDs) sequences have been designed and developed based on 6 critical factors (TABLES 2-1 to 2-6 and 3). Based on these six critical factors proven by experimental data, newly designed aMTD have been developed for their practical therapeutic usage to facilitate protein translocation across the plasma membrane.
For this present invention, aMTD/SD-fused TFF1 recombinant proteins have been developed by adopting aMTD43 and aMTD165 that satisfied all 6 critical factors. We found that aMTD43 and aMTD165 had a potential to enhance the uptake of a His-tagged enhanced green fluorescent protein (EGFP) in RAW264.7 cells as assessed by flow cytometry. Both peptides promoted greater cellular uptake of an EGFP cargo protein by cultured NIH3T3 cells than SDA only (
In addition with aMTD, we adopted non-functional protein domain (solubilization domain: SD; TABLE 5) to improve solubility, yield, and stability of the recombinant proteins. In previous study, to develop recombinant aMTD/SD-fused TFF1 recombinant proteins as protein-based biotherapeutics to treat gastric cancer, recombinant cargo (TFF1) proteins fused to conventional hydrophobic CPPs—MTDs could be expressed in bacteria system, purified with single-step affinity chromatography, but protein dissolved in physiological buffers (e.q. PBS, DMEM or RPMI1640 etc.) was highly insoluble and had low yield as a soluble form. This problem is extremely crucial in terms of the fact whether these proteins could go ahead for further pre-clinical and clinical development.
According to this specific aim, 5 solubilization domains were selected and information of these SDs are shown TABLE 5.
To overcome the limitations of high insolubility and low yield, we developed a newly recombinant TFF1 fused to aMTD and the SDs. To develop stable aMTD/SD-fused TFF1 recombinant proteins with better yield and solubility, total of three sets of TFF1 recombinant protein clones were designed and developed. In Set 1, TFF1 recombinant protein clones fused with aMTD43 and either SDA or SDB fused to C-terminus of the protein were developed. Recombinant proteins in Set 1 have shown relatively weak expression with very low solubility and yield (
PCR primers for the His-tagged solubilization domain recombinant proteins fused to aMTD43 and aMTD165 are summarized in TABLE 7. cDNA and amino acid sequences of histidine tag are provided in SEQ ID NO: 1 and 2, and cDNA and amino acid sequences of aMTDs and the peptides are indicated in SEQ ID NO: 3 and 4, respectively. cDNA and amino acid sequences are displayed in SEQ ID NO: 5 and 6 (TFF1), SEQ ID NO: 7 and 8 (SDA), SEQ ID NO: 9 and 10 (SDB), SEQ ID NO: 11 and 12 (SDC), SEQ ID NO: 13 and 14 (SDD), SEQ ID NO: 15 and 16 (SDE) and SEQ ID NO: 17 and 18 (SDF), respectively.
3. aMTD/SDs-Fused TFF1 Recombinant Proteins Significantly Increase Cell- and Tissue-Permeability
3-1. aMTD/SDs-Fused TFF1 Recombinant Proteins are Cell-Permeable
Cell permeability of TFF1 recombinant protein was evaluated in RAW 264.7 cells after 1 hour of protein treatment. aMTD/SD-fused TFF1 recombinant proteins were conjugated to FITC, according to the manufacturer's instructions. Protein uptake of TFF1 proteins containing aMTD165 (HSAM165T1SB, HSAM165sT1SB, HSAM165T1SB M165) in RAW264.7 cell (
In contrast, FITC-labeled TFF1 lacking aMTD (HSAT1SB, HSAsT1SB) was not detectable in RAW 264.7 cell. Similar Results were observed in NIH3T3 cells, using fluorescence confocal laser scanning microscopy to determine intracellular localization (FIGURE ID NO. 10). TFF1 proteins containing aMTD165 (HSAM165T1SB, HSAM165sT1SB, HSAM165T1SB M165) and efficiently entered the cells and were localized to various extents in the cytoplasm. In contrast, TFF1 protein (HSAT1SB, HSAsT1SB), containing only 6×His and the SDs, did not appear to enter the cells.
3-2. aMTD/SDs-Fused TFF1 Recombinant Proteins Enhance the Systemic Delivery to a Variety of Tissues
Next, to further investigate in vivo delivery of TFF1 recombinant proteins, FITC-labeled TFF1 proteins were monitored following intraperitoneal (IP) injections in mice. Tissue distributions of fluorescence-labeled-TFF1 proteins in different organs were analyzed by fluorescence microscopy. As shown in
4. Membrane Integrity and Fluidity were Essential for aMTD165-Delivery Mechanism
Since the aMTD165 outperformed over other transduction domains tested, we next investigated the mechanism of aMTD165-mediated protein uptake. The hydrophobic aMTD is thought to enter the cells directly by penetrating the plasma membrane. Several lines of evidence suggested that endocytosis was not the major route of entry by aMTD165-fused TFF1 proteins. In particular, uptake was unaffected by the treatment of cells with proteases, microtubule inhibitors or the ATP-depleting agent, antimycin. Conversely, HSAM165T1SB uptake was blocked by the conditions affecting membrane fluidity (temperature) and integrity (EDTA) (
5. CP-TFF1 Enhances the Penetration into Gastric Cancer Cells and Systemic Delivery to Stomach
To determine the cell-permeability of CP-TFF1 in the gastric cancer cells, cellular uptake of FITC-labeled TFF1 recombinant proteins was quantitatively evaluated by flow cytometry. FITC-HSAM165T1SB recombinant protein (CP-TFF1) promoted the transduction into cultured AGS and MKN75 gastric cancer cells (
To examine the effect of CP-TFF1 on cancer cell proliferation, we performed the CellTiter-Glo Luminescent Cell Viability Assay. As shown in
We next examined the wound healing assay and Transwell assay to assess the effects of CP-TFF1 proteins on gastric cancer cell migration (AGS, MKN45 and STKM2 cells). The wounds were produced by scraping of the cell monolayer with sterile white tip. CP-TFF1 protein (HSAM165T1SB) suppressed repopulation of the wounded monolayer (
To further examine the underlying mechanisms of the anti-cancer effect of CP-TFF1, we performed western blot analysis. Human gastric cancer cells (AGS, NCI-N87) were treated with 10 μM of CP-TFF1 proteins (HSAM165T1SB) for 24 hr. Compared to control recombinant protein (HST1SB)-treated cells, cells treated with CP-TFF1 showed significantly increased cleaved Caspase-3 which plays an important role in apoptosis (
Next, we assessed the anti-tumor activity of CP-TFF1 against human cancer xenografts. Balb/c nu/nu mice were subcutaneously implanted with MKN45 tumor block (2 mm3) into the left back side of the mouse. Then, the mice were intravenously injected with 800 Ng/head recombinant TFF1 proteins (HSAT1SB or HSAM165T1SB) or diluent (DMEM) every day for 3 weeks. Mice were observed for an additional 3 weeks after the treatments ended. It shows phenotypic appearance of mouse treated with diluent, TFF1, CP-TFF1 at Day 0, 21, 42 (each group tested 7 mice) (
CP-TFF1 (HSAM165T1SB) protein significantly suppressed the tumor growth (p<0.05) during the treatment phase and persisted for at least 3 weeks after the treatment terminated (90% inhibition at day 42) (
The anti-tumor activity of CP-TFF1 (HSAM165T1SB) at day 42 was accompanied by changes in the expression of biomarkers (
The following examples are presented to aid practitioners of the invention, to provide experimental support for the invention, and to provide model protocols. In no way are these examples to be understood to limit the invention.
The expression vectors were designed for TFF1 recombinant protein fused with either one or both SDs (SDA, SDB, SDC, and SDD) and aMTD43 or aMTD165. To acquire expression vectors for TFF1 recombinant proteins, polymerase chain reaction (PCR) had been devised to amplify each designed aMTD43 or aMTD165 fused with TFF1.
The PCR reactions (100 ng genomic DNA, 10 pmol each primer, each 0.2 mM dNTP mixture, 1× reaction buffer and 2.5 U Pfu(+) DNA polymerase (Doctor Protein, Korea)) was digested on the different restriction enzyme site involving 40 cycles of denaturation (95° C.), annealing (58° C.), and extension (72° C.) for 30 seconds each. For the last extension cycle, the PCR reactions remained for 10 minutes at 72° C. TFF1 recombinant protein clones were produced in three sets. Set 1 coding sequence for SDA or SDB fused to C terminus of his-tagged aMTD/SD-TFF1 was cloned at NdeI (5′) and SalI (3′) in pET-28a(+) (Novagen, Madison, Wis., USA) from PCR-amplified DNA segments. PCR primers for the TFF1-fuseded SDA or SDB are summarized in TABLE 8, respectively. Set 2 coding sequence for SDC or SDD fused to N terminus of TFF1 recombinant protein was cloned at BamHI (5′) and HindIII (3′) in pET-32a(+) (Novagen, Madison, Wis., USA) or pET-39b(+) (Novagen, Madison, Wis., USA) from PCR-amplified DNA segments. PCR primers for the TFF1-fused to either SDC or SDD are summarized in TABLES 8 and 9, respectively. Set 3 coding sequence for SDA fused to N terminus and SDB fused to C terminus of aMTD/SD-TFF1 or aMTD/SD-sTFF1 was cloned at NdeI (5′) and XhoI (3′) in pET-28a(+) (Novagen, Madison, Wis., USA) from PCR-amplified DNA segments. DNA ligation was performed using T4 DNA ligase at 4° C. overnight. These plasmids were mixed with competent cells of E. coli DH5-alpha strain on the ice for 30 minutes. These mixture was placed in a water bath at 42° C. for 90 seconds and placed on ice for 2 minutes. Then, the mixture added with LB broth media was recovered in 37° C. shaking incubator for 1 hour. Transformant was plated on LB broth agar plate with kanamycin (50 μg/mL) (Biopure, Johnson, Tenn.) or ampicillin (100 μg/mL) (Biopure, Johnson, Tenn.) before incubating overnight at 37° C. From a single colony, plasmid DNA was extracted; and after the double digestion of Inserts fit restriction enzymes, digested DNA was confirmed at TFF1 (252 bp), sTFF1(207 bp), SDA (297 bp), and SDB (552 bp) by using 1.4% agarose gels electrophoresis.
Denatured recombinant proteins were lysed using denature lysis buffer (8 M Urea, 10 mM Tris, 100 mM NaH2PO4) and purified by adding Ni-NTA resin. Resin bound to proteins were washed 3 times with 30 mL of denature washing buffer (8 M Urea, 10 mM Tris, 20 m imidazole, 100 mM NaH2PO4). Proteins were eluted 3 times with 30 mL of denature elution buffer (8 M Urea, 10 mM Tris, 250 mM imidazole). After purification, they was dialyzed twice against a refolding buffer (550 mM Guanidine-HCl, 440 mM L-Arginine, 50 mM Tris, 100 mM NDSB, 150 mM NaCl, 2 mM reduced glutathione and 0.2 mM oxidized glutathione). Finally, they were dialyzed against a physiological buffer such as DMEM at 4° C. until the dialysis was over 300×105 times. Concentration of purified proteins was quantified using Bradford assay according to the manufacturer's instructions. After purification, they were dialyzed against DMEM as indicated above. Finally, SDS-PAGE analysis was conducted to confirm the presence of target protein (
The His-tagged aMTD/SD-fused TFF1 recombinant proteins (
Solubility will be scored on a 5 point scale ranging from highly soluble proteins with little tendency to precipitate (+++++) to largely insoluble proteins (+) by measuring their turbidity (A450). Yield (mg/L) in physiological buffer condition of each recombinant protein will also be determined.
For quantitative cell-permeability, the aMTD-fused recombinant proteins were conjugated to FITC according to the manufacturer's instructions (Sigma-Aldrich, St. Louis, Mo.). RAW 264.7 cells were treated with 10 μM FITC-labeled recombinant proteins for 1 hour at 37° C., washed three times with cold PBS, and treated with proteinase K (10 μg/mL) for 5 minutes at 37° C. to remove cell surface-bound proteins. Cell-permeability of these recombinant proteins were analyzed by flow cytometry (Guava, Millipore, Darmstadt, Germany) using the FlowJo cytometric analysis software.
For a visual reference of cell-permeability, NIH3T3 cells were cultured for 24 hours on coverslip in 24-wells chamber slides, treated with 10 μM FITC-conjugated recombinant proteins for 1 hour at 37° C., and washed three times with cold PBS. Treated cells were fixed in 4% paraformaldehyde (PFA, Junsei, Tokyo, Japan) for 10 minutes at room temperature, washed three times with PBS, and mounted with VECTASHIELD Mounting Medium (Vector laboratories, Burlingame, Calif.) with DAPI (4′,6-diamidino-2-phenylindole) for nuclear staining. The intracellular localization of the fluorescent signal was determined by confocal laser scanning microscopy (LM700, Zeiss, Germany).
ICR mice (6-week-old, female) were injected intraperitoneally (750 μg/head) with FITC only or FITC-conjugated CP-TFF1 recombinant proteins. After 2 hours, the liver, kidney, spleen, lung, heart, and brain were isolated, washed with an O.C.T. compound (Sakura), and frozen on dry ice. Cryosections (20 μm) were analyzed by fluorescence microscopy.
RAW264.7 cells were pretreated with different agents to assess the effect of various conditions on protein uptake: (i) 5 μg/ml proteinase K for 10 minutes, (ii) 20 μM Taxol for 30 minutes, (iii) 10 μM antimycin in the presence or absence of 1 mM ATP for 2 hours (iv) incubation on ice (or maintained at 37° C.) for 15, 30, or 60 minutes, and (v) 100 mM EDTA for 3 hours. These agents were used at concentrations known to be active in other applications. The cells were then incubated with 10 μM FITC-labeled proteins for 1 hour at 37° C., were washed three times with ice-cold PBS, treated with proteinase K (10 μg/ml for 5 minutes at 37° C.) to remove cell-surface bound proteins and analyzed by flow cytometry.
Cell viability assay was evaluated with Cell-Titer Glo luminescent cell viability assay. Various gastric cancer cell lines were treated with 10 μM CP-TFF1 recombinant proteins or buffer alone for 72 hours with 2% fetal bovine serum, and the luminescence was analyzed.
Cancer cell migration was determined using the wound healing assay. Briefly, cells were seeded into 12-well plates and grown to 90% confluence. The wounds were produced by scraping of the cell layer with a sterile white tip. For the CP-TFF1 recombinant protein treatment group, cells were treated with CP-TFF1 recombinant protein (10 μM) for 1 hour prior to changing the growth medium. Cells were cultured for an additional 24˜48 hours before being photographed. The migration is quantified by counting the number of cells that migrated from the wound edge into the clear area.
The lower surface of Transwell inserts (Costar) was coated with gelatin (10 μg/ml), and the membranes were allowed to dry for 1 hour at room temperature. The Transwell inserts were assembled into a 24-well plate, and the lower chamber was filled with growth media containing 10% FBS and bFGF (40 ng/ml). CP-TFF1-treated AGS Cells (5×105) were added to each upper chamber, and the plate was incubated at 37° C. in a 5% CO2 incubator for 24 hours. Migrated cells were fixed with 4% paraformaldehyde for 10 minutes, stained with 0.1% (w/v) crystal violet for 1 hour and counted.
For western blot analysis, CP-TFF1 (10 μM)-treated gastric cells were washed with PBS and were lysed in a lysis buffer (RIPA buffer) containing a protease cocktail (Roche) and phosphatase inhibitor cocktail. Equal amounts of cell lysate protein were subjected to SDS-PAGE and transferred to nitrocellulose membranes (BioRad). The protein transferred membranes were incubated to block non-specific binding sites in immersing the membrane in 5% non-fat dried milk (BD Bioscience). The membranes were incubated with cleaved Caspase-3 (1:1000) (Cell Signaling) overnight at 4° C. and β-actin at room temperature and then incubated with the appropriate horseradish peroxidase-conjugated secondary antibodies for 1 hour at room temperature. The blots were developed using a chemiluminescence detection system (ECL kit; Amersham Pharmacia Biotech) and exposed to an x-ray film (AGFA).
Female Balb/c nu/nu mice (DooYeol Biotech., Seoul, Korea) were subcutaneously implanted with MKN45 tumor block (2 mm3) into the left back side of the mouse. Tumor-bearing mice were intravenously administered with 800 μg/head the recombinant protein (HSAM165T1SB, HSAMT1SB) for 21 days and observed for 2 weeks following the termination of the treatment. Tumor size was monitored by measuring the longest (length) and shortest dimensions (width) once a day with a dial caliper, and tumor volume was calculated as width2×length×0.5.
Tissue samples were fixed in 4% Paraformaldehyde (Duksan) for 3 days, dehydrated, cleared with xylene and embedded in Paraplast. Sections (6 μm thick) of tumor were placed onto poly-L-lysine coated slides. To block endogenous peroxidase activity, sections were incubated for 15 minutes with 3% H2O2 in methanol. After washing three times with PBS, slides were incubated for 30 minutes with blocking solution (5% fetal bovine serum in PBS). Rabbit anti-VEGF (ab46154, abcam) were diluted 1:1000 (to protein concentration 0.1 μg/ml) in blocking solution, applied to sections, and incubated at 4° C. for 24 hours. After washing three times with PBS, sections were incubated with biotinylated mouse and rabbit IgG (Vector Laboratories) at a 1:1000 dilution for 1 hour at room temperature, then incubated with avidin-biotinylated peroxidase complex using a Vectorstain ABC Kit (Vector Laboratories) for 30 minutes at room temperature. After the slides are reacted with oxidized 3,3-diaminobenzidine as a chromogen, they were counterstained with Harris hematoxylin (Sigma-Aldrich). Permanently mounted slides were observed and photographed using a microscope equipped with a digital imaging system (ECLIPSE Ti, Nikon, Japan).
All data are presented as mean±s.d. Differences between groups were tested for statistical significance using Student's t-test and were considered significant at p<0.05 or p<0.01.
It will be apparent to those skilled in the art that various modifications can be made to the above-described exemplary embodiments of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention covers all such modifications provided that they come within the scope of the appended claims and their equivalents.
This application claims the benefit of the filing date of U.S. Provisional Application No. 62/054,406, filed on Sep. 24, 2014, in the United States Patent and Trademark Office, the disclosure of which is incorporated herein in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
62054406 | Sep 2014 | US |