This application is a U.S. National Phase application under 35 U.S.C. § 371 of International Application No. PCT/EP2012/005051 (WO 2013/087174 A1), filed on Dec. 7, 2012, and claims benefit to German Patent Application No. DE 10 2011 120 899.6, filed Dec. 12, 2011.
The present invention relates to determining the mass flow {dot over (m)} of a fluid, and particularly to determining the mass flow {dot over (m)} of a fluid for measuring and/or regulating mass flows of fluids in lines.
Thermal mass flow sensors or, synonymously, caloric mass flow sensors are based on the principle that heat is supplied to a flowing fluid. The heat transfer functions between the sensor and the fluid are thereby measured. The known 2-element principle has two elements which are arranged one behind the other in the flow direction and perform both the heating function and the function of temperature measurement. They are mounted on a heat-conducting line through which fluid flows, they are heated electrically and they are cooled by the flowing fluid. If both elements are heated with the same output, the line exhibits a symmetrical temperature profile around the elements when the fluid is at rest, that is to say the temperature difference between the elements is theoretically zero (see broken line in
In thermal mass flow sensors, the actual relationship between the mass flow and the measured temperature difference is complex. Determining factors are in particular the structural form (spacing of the sensors, size and shape of the heat exchange surfaces, axial and radial thermal resistivities, contact resistances), the flow conditions of the fluid, the fluid properties (viscosity, thermal conductivity, specific heat capacity), the installation position of the sensor and the ambient conditions. The functional relationship between the measured temperature difference and the mass flow is therefore determined empirically by multipoint calibration and stored in the form of sensor-specific characteristic curves. A large number of thermal mass flow sensors are known, in which the error sources of the measurement principle are limited or eliminated by different technical means.
U.S. Pat. No. 4,517,838 A, U.S. Pat. No. 5,347,861 A, U.S. Pat. No. 5,373,737 A, and EP 0 395 126 A1 describe sensors in which the measurement takes place, in a U-shaped bypass to the line in which the fluid is flowing. U.S. Pat. No. 4,517,838 A, U.S. Pat. No. 5,347,861 A and U.S. Pat. No. 5,373,737 A describe sensors according to the 2-element principle. In U.S. Pat. No. 4,517,838 A, the sensor pipe is surrounded by a narrow gap, as a result of which the effect of the installation position is reduced and the time constant is shortened. U.S. Pat. No. 5,347,861 A achieves the same aims by means of a heated thermal bridge over the sensor pipe. U.S. Pat. No. 5,373,737 A discloses an active cooling plate for eliminating the influence of the ambient temperature. In EP 0 395 126 A1, on the other hand, the 3-element principle is used. The start and end temperatures of the bypass are kept the same by strong thermal coupling; in order to compensate for the null drift, a two-part heating element is used. The measurement of the temperature difference takes place in such a manner that thermocouples or thermopiles connect the temperature measuring positions upstream and downstream of the heating element directly.
U.S. Pat. No. 7,895,888 B2 describes heater and temperature sensor chips which are secured to the surface of small pipelines and which operate according to the 3-element principle. In order to expand the measuring range, a plurality of temperature sensor pairs are arranged symmetrically to the central heater chip at different distances therefrom.
EP 0 137 687 A1, DE 43 24 040 A1, U.S. Pat. No. 7,197,953 B2 and WO 2007/063407 A2 describe sensors according to the 3-element principle which are produced by means of silicon technology and are integrated or inserted into flow channels. In EP 0 137 687 A1, the measurement is carried out in one or in a plurality of bypasses. In order to compensate for the temperature dependency of the characteristic curve, DE 43 24 040 A1 uses additional heater and media temperature sensors, the heater temperature being regulated to be constant with a changing mass flow and the media temperature being tracked via a characteristic curve which is dependent on material values. In U.S. Pat. No. 7,197,953 B2, Pt thin-film sensors for temperature measurement in combination with specific correlations for improving the accuracy of measurement are documented. WO 2007/063407 A2 describes the purposive distribution of the heat energy through heat-conducting material in order to reduce the systematic effects due to relatively low temperature differences. WO 01/14839 A1 describes a sensor whose heating element is operated in a pulsed manner. The mass flow is determined from the progression of the heating and cooling process at the sensor over time.
DE 689 03 678 T2 discloses a device for measuring the flow in liquids. A heating element is thereby arranged in a first block in order to increase the temperature thereof relative to a second block, a pipe being provided with a metal foil over its entire length. The metal foil and the pipe ensure that supplied heat energy flows from the first block to the second block, so that the whole region functions as a heat exchanger. This results in a temperature profile of the heat exchanger which is linear in the flow direction, the temperature of the heat exchanger increasing upstream in the flow direction.
U.S. Pat. No. 4,817,427 A discloses a device for measuring the flow of water in plant stems. Energy supplied via a main heater dissipates in the form of four different heat flows. In order to keep the sum of three of the four heat flows constant without having to determine their individual values exactly, additional heaters are used with varying water flows, regulation of which is effected via temperature gradients in the respective sections, which are detected by thermocouples. A homogenisation of the surface temperature of the main heater is achieved via copper foils.
In Thermal mass-flow meter, J. Phys. E 21, 1988, p. 994-997, J. H. Huij sing et al. describe a device for the thermal measurement of the mass flow rate, which device has three copper blocks which are arranged over the flow cross-section, the fluid flowing into the copper blocks through holes. The supply of a heat output takes place via the middle copper block. This arrangement ensures that the heat output is distributed evenly over the flow cross-section. The measurement principle is based on the temperature change of the fluid stream by the supplied heat output, the temperature profile of the heater in the flow direction playing no part.
In an embodiment, the present invention provides a device for determining the mass flow of a fluid, the device including a line for conducting the fluid in a flow direction to a contact with a heat exchanger having a surface temperature which is constant in the flow direction, a first temperature measuring position upstream from the exchanger for determining a first fluid temperature, a second temperature measuring position downstream from the heat exchanger for determining a second fluid temperature, and a third temperature measuring position for detecting the surface temperature of the heat exchanger.
The present invention will be described in even greater detail below based on the exemplary figures. The invention is not limited to the exemplary embodiments. All features described and/or illustrated herein can be used alone or combined in different combinations in embodiments of the invention. The features and advantages of various embodiments of the present invention will become apparent by reading the following detailed description with reference to the attached drawings which illustrate the following:
Embodiments of the present invention overcome the mentioned disadvantages and limitations of the prior art. In particular, a device and a method for determining the mass flow of a fluid are to be provided which allow the mass flow or capacity flow of a fluid in a line to be determined as simply and at the same as accurately as possible.
The present invention differs from the measurement principle of known thermal mass flow sensors. In thermal mass flow sensors, sensor-specific characteristic curves are used to establish an empirical relationship between the measured temperature difference of the line and the mass flow that is to be determined. Different approaches are hereby used in an attempt to limit various error influences.
By contrast, a device according to the invention constitutes a type of sensor which is not known from the prior art, and an example method according to the invention uses analytical, that is to say physically exact, relationships to determine the mass flow—and optionally also the systematic errors of the measured quantities—by an intrinsic calibration. In this manner, systematic errors in the measured quantities obtained are corrected. If the systematic errors of the measured quantities are also determined exactly by a method according to the invention, the mass flow in the entire measuring range can be calculated from the energy balance of the flowing fluid. The actual size of the systematic errors, apart from numerical limitations, plays no part in their determination, that is to say complex methods for limiting error influences are not required.
In an embodiment, a device according to the invention has a line through which a fluid flows (see
In an alternative embodiment, the line is arranged around the heat exchanger in such a manner that the fluid in the line flows around the heat exchanger (see
In a further embodiment, in which the heat exchanger is located inside the line, the fluid flows around the heat exchanger directly (see
The heat exchanger is in such a form that it has a surface temperature which is constant in the flow direction. The heat output supplied to the heat exchanger is preferably adjustable. Upstream and downstream of the heat exchanger are temperature measuring positions, with which the fluid temperatures are measured.
In an embodiment, the temperature measuring positions are arranged at arbitrary distances from the heat exchanger; in contrast to thermal mass flow sensors, a symmetrical arrangement around the heat exchanger is not necessary.
In a particular configuration, the temperature measuring positions, in the case where the heat exchanger is not accommodated inside the line, in contrast to thermal mass flow sensors, are attached to the line at distances from the heat exchanger which are sufficiently great that the fin efficiency of the line and/or the radial temperature profiles in the fluid are negligibly small. A negligible fin efficiency of the line means that the temperature increase through axial heat conduction in the line wall, starting from the heat exchanger as heat source, is negligibly small.
In a particular configuration, the first and the second temperature measuring positions are each preferably fixedly connected to a contact element, the first contact element surrounding the line upstream in relation to the heat exchanger and/or the second contact element surrounding the line downstream in relation to the heat exchanger.
In a particular configuration, the heat exchanger is surrounded by a saturated medium which is in the phase equilibrium of boiling liquid and saturated vapour, whereby the constant surface temperature in the flow direction is achieved via the saturation temperature of the medium condensing on the surface of the line and in the equilibrium state the condensed amount of liquid is vaporised again in the closed volume by the heat supplied by the heater. The constant surface temperature corresponding to the saturation temperature is thereby determined by measuring the vapour pressure. The temperature measuring positions for the fluid temperatures are likewise configured as vapour pressure thermometers which are filled with the same medium as the heat exchanger, so that the inlet temperature difference ΔT′ and the outlet temperature difference ΔT″ of the heat exchanger can each be determined by a differential pressure measurement (see
In order to understand an example method according to the invention, reference is made to the temperature/area diagram of the heat exchanger shown schematically in
Two energy balances can be prepared from the three measured quantities {dot over (Q)}, ΔT′ and ΔT″, on the one hand the energy balance of the flowing fluid, on the other hand the energy balance of the heat exchanger. Two analytical functions for the mass flow can be derived from the two energy balances. Function A for the mass flow is preferably given by rearranging the energy balance of the flowing fluid. Function B for the mass flow is preferably obtained by equalising the two energy balances with application of the law of energy conservation and then solving for the mass flow.
The three measured quantities {dot over (Q)}, ΔT′ and ΔT″ are generally subject to their respective systematic errors F{dot over (Q)}, FΔT′ and FΔT″. The results for the mass flow according to function A and according to function B therefore differ from one another without correction of the measured quantities, that is to say different systematic effects are obtained. However, the two analytical functions A and B are based solely on the same variables {dot over (Q)}, ΔT′ and ΔT″ and the specific heat capacity cp of the fluid. Therefore, the results of the functions A and B must correspond, on condition that the three variables of the functions are free of errors. Both the mass flow and the systematic errors of the measured quantities can be determined exactly from this condition by an intrinsic calibration of the sensor.
An example method according to the invention hence comprises method steps a) to c). According to step a), a series of measurements {{dot over (Q)}i, ΔT′i, ΔT″i}i=1 . . . n where n≥2 measurement points is recorded at a constant mass flow hi and constant temperature of the fluid at the first temperature measuring position, there being applied to the fluid at each measurement point by means of the heat exchanger a heat output {dot over (Q)} which has been changed in relation to the preceding measurement points.
According to step b), the n data sets are transferred to the functions A and B and each expanded with the systematic errors F{dot over (Q)}, FΔT′ and FΔT″, there being chosen as the first function A for the mass flow the function
and as the second function B for the mass flow the further function
wherein R is the increase in the function
which is determined by linear approximation of the measured data, and
denotes the natural logarithm of the quotient of ΔT′ and ΔT″. The functions A and B so formed are finally combined to give a common data quantity.
According to step c), the systematic errors are determined as free fit parameters of a fit function in which the variation, preferably the standard deviation, of the data quantity is minimised. The fit function provides the constant mass flow {dot over (m)}, the accuracy of which is dependent only on statistical uncertainties. However, arbitrary combinations of the three fit parameters F{dot over (Q)}, FΔT′ and FΔT″ are obtained because the system of equations with two equations and three unknowns is underconstrained.
In a configuration, therefore, an example method according to the invention is expanded following step c) by the two further method steps d) and e). According to step d), the fit function is expanded by a third independent function C in order to determine exactly the values of the systematic errors F{dot over (Q)}, FΔT′ and FΔT″.
According to step e), the mass flow is determined in standard operation of an example device according to the invention, that is to say in the entire measuring range using the measured quantities, in which the systematic errors have been corrected, from the energy balance of the flowing fluid according to function A.
The present invention can have the following advantages. An advantage of the present invention is the possibility of intrinsic calibration, that is to say calibration of an example device (sensor) according to the invention without a comparison standard. Carrying out the intrinsic calibration with at least 3 data points allows the steady-state conditions to be verified via the linearity of the equation ΔTm=f({dot over (Q)}).
The exact determination of the mass flow or capacity flow is possible at any time under steady-state conditions using method steps a) to c). The measurement inaccuracy depends only on statistical uncertainties; they can be reduced with increasing measuring time.
The measurement inaccuracy of the mass flow or capacity flow can be given directly from the measurement itself. It corresponds in the intrinsic calibration to the residual standard deviation of the fit function. In standard operation, the measurement inaccuracy is calculated from function A with the statistical uncertainties of the measured quantities according to the law of error propagation.
A method according to the invention permits calibration at any time and at any place, in particular in the fitted state in a plant under real operating conditions. This can be advantageous in the case of special use conditions, in particular at very low or very high temperatures, at which the technical outlay for calibration at the factory would be too high, the recalibration of a sensor in the case of contamination, long operating times or after particular loads, especially after inadmissible stresses or excessively high temperatures in the event of a failure; and systems in which the device according to the invention is integrated together with other components, in particular in miniaturised systems.
A consistency or a change in the systematic errors can be diagnosed by the sensor itself by periodically comparing results from the standard operation according to method step e) and from the calibrating operation according to method steps a) to c). If necessary, the systematic errors can be determined again using method step d), in particular in the case of very variable ambient conditions.
In cases where the exact determination of the systematic errors according to method step d) is not carried out, characteristic curves and/or characteristic zones which are based on intrinsic calibrations according to method steps a) to c) with differently chosen operating conditions in each case are prepared during operation for an operating range of the device according to the invention.
By including a downstream regulating valve, the device according to the invention can be used as a mass flow regulator. The particular advantage of this configuration is that two series of measurements with a different mass flow through the mass flow regulator itself can be produced, in order to determine exactly the systematic errors according to method steps a) to d).
Unlike thermal mass flow sensors, it is not necessary to minimise the systematic errors of the measured quantities. As a result, the structure of the device according to the invention can be simplified considerably.
A device according to the invention allows the mass flow or capacity flow to be determined with substantially lower temperature differences in comparison with thermal mass flow sensors, preferably in the region of (ΔT′−ΔT″)<1K. As a result, measurement of the mass flow either in the bypass and/or directly in the main flow of the fluid is possible, without the flow to be determined being affected.
The device according to
In a second configuration according to
In all the configurations, the heat exchanger (30) is in such a form that it has a surface temperature (33) which is constant in the flow direction x. The heat output (40) supplied to the heat exchanger (30) is adjustable. The surface temperature (33) of the heat exchanger (30) is detected at a third temperature measuring position (53). Upstream and downstream of the heat exchanger (30) are the first temperature measuring position (51) and the second temperature measuring position (52), with which the associated fluid temperatures are determined. In the configurations according to
In the embodiment according to
For all the configurations, including the embodiments shown in
Two energy balances can be prepared from the three measured quantities {dot over (Q)}, ΔT′ and ΔT″. The energy balance of the flowing fluid (20) was chosen as the first balance:
{dot over (Q)}={dot over (m)}cp(ΔT′−ΔT″). (1)
wherein {dot over (Q)} is the adjustable heat output (40), {dot over (m)} is the mass flow of the fluid (20), cp is the specific heat capacity of the fluid (20), and ΔT′ and ΔT″ are the inlet and outlet temperature differences of the heat exchanger (30). The factor {dot over (m)} cp is also known as the capacity flow Ċ of the fluid (20).
The energy balance of the heat exchanger (30) was chosen as the second balance:
wherein k is the heat transfer coefficient, based on the heat exchanger area A, and ΔTm is the mean logarithmic temperature difference of the heat exchanger (30). The variables k and A can be combined to give the thermal resistance R of the heat exchanger (30). The expression for the mean logarithmic temperature difference ΔTm is an analytical relationship, the derivation of which can be found in the specialist literature.
The thermal resistance R is dependent on the internal thermal resistances of the heat exchanger (30) and on the heat transmission resistance to the fluid (20). The heat transmission resistance is constant in the case of a laminar flow but is influenced by the Reynolds number in the case of a turbulent flow of the mass flow to be measured. A calculation of R is generally omitted. Under steady-state conditions, however, R can easily be determined because at a constant mass flow {dot over (m)}, R is also a constant. If a series of measurements is carried out with a stepwise change of the heat output {dot over (Q)}, a linear relationship between the measured quantities {dot over (Q)} and ΔTm=f (ΔT′; ΔT″) is obtained according to equation (2), wherein R is the increase in the function, which can be determined by linear approximation of the measured data (see
R=f({dot over (Q)},ΔT′,ΔT″). (3)
Two analytical functions for the mass flow can be derived from the two energy balances. The function A chosen here for the mass flow is given by rearranging equation (1):
The function B chosen here for the mass flow is obtained by equalising equations (1) and (2), with application of the law of energy conservation, and then solving for the mass flow:
If the specific heat capacity cp of the fluid (20) is not known, the functions A and B can be prepared analogously for the capacity streams ĊA and ĊB.
The three measured quantities {dot over (Q)}, ΔT′ and ΔT″ are generally subject to systematic errors F{dot over (Q)}, FΔT′ and FΔT″. The results for the mass flow according to function A and according to function B therefore differ from one another without correction of the measured quantities, that is to say different systematic effects are obtained. Such systematic effects of functions A and B are shown by way of example in
The two analytical functions A and B are based solely on the same variables {dot over (Q)}, ΔT′ and ΔT″ and the specific heat capacity cp of the fluid. Therefore, the results of functions A and B must agree on condition that the three variables of the functions are free of errors. Corresponding error-free variables can be formed by subtracting the systematic errors F{dot over (Q)}, FΔT′ and FΔT″ from the measured quantities {dot over (Q)}, ΔT′ and ΔT″ (The influence of statistical uncertainties will be discussed later in an example). The parameter F{dot over (Q)} thereby contains not only the actual systematic measuring errors of the heat output {dot over (Q)}, but also the part of the heat output which flows away to the surroundings or is additionally taken up therefrom. With equations (4) and (5), the following physically exact relationship applies:
On the basis of equation (6), the determination of the mass flows or capacity flows is carried out via an intrinsic calibration of the device according to the invention by the following method steps:
A series of measurements is carried out under steady-state conditions, that is to say with a constant mass flow {dot over (m)} and constant fluid temperature (51), in which the heat output {dot over (Q)} (40) is preferably changed stepwise. From the series of measurements with n measurement points there are obtained i=1 n data sets {{dot over (Q)}i, ΔT′i, ΔT″i}. For the linear approximation of the thermal resistance
n≥2 measuring points are required. More than 2 measuring points are advantageous because the residues of the linear approximation allow conclusions to be drawn regarding the actual stability of the operating conditions during the calibration.
The n data sets are transferred to the functions A and B for the mass flow and expanded analogously to equation (6) with the systematic errors F{dot over (Q)}, FΔT′ and FΔT″. The functions A and B so formed are combined to give a common data quantity.
The systematic errors F{dot over (Q)}, FΔT′ and FΔT″ are then determined as free fit parameters of a fit function, in which the variation, preferably the standard deviation of the data quantity is minimised. With the fitting so carried out, the constant mass flow or capacity flow of the intrinsic calibration is obtained. The result for the capacity flow Ċ={dot over (m)} cp depends only on statistical uncertainties, that is to say on variations in the capacity flow itself and on variations of the measured quantities about their mean values. The residual standard deviation of the 2 n data points of the data quantity is a direct measure of the measurement uncertainty of the capacity flow measurement. The measurement uncertainty of the mass flow {dot over (m)} is additionally dependent on the uncertainty of the value of the specific heat capacity cp.
As the result of the fit function, in principle arbitrary combinations of the fit parameters F{dot over (Q)}, FΔT′ and FΔT″ are possible. This is because the equation system with two equations and three unknowns is underconstrained. Although the exact capacity flow or mass flow is obtained for the fitted series of measurements, the use of such arbitrary combinations of fit parameters in the whole measurement range of a device according to the invention would result in systematic effects as in
The standard operation of a device according to the invention requires intrinsic calibration with three independent relationships for the exact determination of the systematic errors. The mass flow is calculated with the measured quantities, in which the systematic errors have been corrected, from the energy balance of the flowing fluid according to function A. The measurement uncertainty depends, in addition to the statistical uncertainties, on the extent to which the systematic errors in the measuring range of the sensor are unchanged.
A fit function expanded by a second series of measurements provides the accuracies summarised in Tab. 2 of the systematic errors F{dot over (Q)}, FΔT′ and FΔT″ for the exemplary data listed in Tab. 1. If these data are used as residual errors, in order to calculate the uncertainty of the mass flow according to equation (4) and the law of error propagation, then values of <10−7 kg/s are obtained for all the exemplary data. This result leads to the following conclusions:
In comparison with thermal mass flow sensors, devices according to the invention can be operated with substantially smaller temperature differences, whereby temperature differences of the fluid of (ΔT′−ΔT″)<1 K are possible. As a result, in addition to a mass flow measurement in the bypass, mass flow measurement directly in the main flow of the fluid is in particular also possible.
The measurement uncertainty of devices according to the invention is dependent almost exclusively on the stability of the operating parameters during the intrinsic calibration, as well as on the stability and the resolution of the three measured quantities. The accuracy of the three measured quantities plays no part.
In a method according to the invention it was assumed that the heat transfer coefficient k and accordingly the thermal resistance R at a constant mass flow {dot over (m)} are likewise constant. This assumption in principle applies only to gas flows, while in the case of liquid flows the influence of the wall temperature is to be taken into consideration via the viscosity ratio. However, this influence is only in the region of 10−3K−1; it is negligible within a series of measurements taking into consideration the necessary temperature changes.
The use of the calibrated systematic errors in the standard operation of a device according to the invention requires that the systematic errors do not change at different mass flows. This can only be achieved if temperature differences as a result of intrinsic heating of the temperature sensors are negligible at the first temperature measuring position (51) and at the second temperature measuring position (52). The use of vapour pressure thermometers, thermocouples or thermopiles for measuring the inlet and outlet temperature differences ΔT′ and ΔT″ is therefore particularly advantageous, because the functioning of such devices means that no intrinsic heating occurs. While a resolution of the temperature measurement in the millikelvin range can be achieved with vapour pressure thermometers, the resolution of thermocouples or thermopiles is, however, limited. As an alternative thereto, the use of thermometers with intrinsic heating, in particular of resistance thermometers, is not ruled out. However, the operating parameters thereof and the size of the contact surfaces (11, 12) at the two temperature measuring positions (51, 52) must be matched to one another in such a manner that the influence of the intrinsic heating is negligible.
Under steady-state conditions, 10 measurement points were recorded at variable heat output {dot over (Q)}. At each of the 10 measurement points, approximately 1000 measurement data were recorded over a period of 30 minutes, from which measurement data the mean values and the standard deviations of the measured quantities were calculated.
The systematic effects of the functions A and B using the mean values of the measured quantities are given in
The results of the calculated mass flows using method steps a) to c) are characterised in
By means or a method according to the invention, therefore, not only were the systematic errors of the mass flow measurement corrected, but the statistical uncertainty was also reduced by more than one order of magnitude. The low measurement uncertainty of 0.6% could already be achieved with standard process measurement technology for the temperature, pressure and output measurement, which was not specially optimised for the requirements of a device according to the invention.
A method according to the invention, which is based on two independent analytical relationships and an independent experimental relationship for determining the systematic errors of three measured quantities, can in principle be expanded by additional measured quantities Yi and associated error parameters FY
In a first embodiment for the model expansion, an additional temperature measuring position (54) for the surface temperature of the heat exchanger (30) is provided according to
In a second embodiment for the model expansion, an additional temperature measuring position is provided on the housing of a device according to the invention, in order to take into consideration the influence of the ambient temperature and accordingly a possible change in the error parameter F{dot over (Q)}. In this case, an additional series of measurements at variable housing temperature is required for determining the systematic errors.
Fluids are understood as being gaseous media, liquid media and mixtures of gaseous, liquid and/or solid components without latent heat. Lines within the meaning of the invention are pipes and channels of any desired closed cross-sectional geometry. If the specific heat capacity cp of the fluid is not known, then the invention allows the capacity flow Ċ={dot over (m)} cp of the fluid to be determined.
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive. It will be understood that changes and modifications may be made by those of ordinary skill within the scope of the following claims. In particular, the present invention covers further embodiments with any combination of features from different embodiments described above and below.
The terms used in the claims should be construed to have the broadest reasonable interpretation consistent with the foregoing description. For example, the use of the article “a” or “the” in introducing an element should not be interpreted as being exclusive of a plurality of elements. Likewise, the recitation of “or” should be interpreted as being inclusive, such that the recitation of “A or B” is not exclusive of “A and B,” unless it is clear from the context or the foregoing description that only one of A and B is intended. Further, the recitation of “at least one of A, B and C” should be interpreted as one or more of a group of elements consisting of A, B and C, and should not be interpreted as requiring at least one of each of the listed elements A, B and C, regardless of whether A, B and C are related as categories or otherwise. Moreover, the recitation of “A, B and/or C” or “at least one of A, B or C” should be interpreted as including any singular entity from the listed elements, e.g., A, any subset from the listed elements, e.g., A and B, or the entire list of elements A, B and C.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 120 899 | Dec 2011 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2012/005051 | 12/7/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/087174 | 6/20/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4478277 | Friedman | Oct 1984 | A |
4517838 | Wachi et al. | May 1985 | A |
4817427 | Kitano et al. | Apr 1989 | A |
4972707 | Nijdam | Nov 1990 | A |
5347861 | Satoh | Sep 1994 | A |
5373737 | Hwang | Dec 1994 | A |
7197953 | Olin | Apr 2007 | B2 |
7895888 | Hasebe | Mar 2011 | B2 |
20060162911 | Oh | Jul 2006 | A1 |
20100308257 | Lampe | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
4324040 | Jan 1994 | DE |
0137687 | Apr 1985 | EP |
0395126 | Oct 1990 | EP |
0114839 | Mar 2001 | WO |
2007063407 | Jun 2007 | WO |
Entry |
---|
J.H. Huijsing, “Thermal mass-flow meter”, J. Phys. E: Sci. Instrum. 21, Apr. 20, 1988, pp. 994-997. |
Number | Date | Country | |
---|---|---|---|
20150006092 A1 | Jan 2015 | US |