It is known to use fans, typically ducted fans, to disperse liquids (e.g. water) into the air. For example, it is known to provide a system comprising a ducted fan, a source of water, a pump, and nozzle system, whereby the pump is configured to force the water through the nozzle system into the air stream generated by the fan to thereby create an airstream comprising a mist of water. Such assemblies are known to be useful in controlling/limiting dust at/around industrial sites when dust generation is a concern. Still further, there are trailer mounted versions of such assemblies that are capable of dispensing an airstream laden with liquid droplets distances of over one hundred meters and include a generator, thereby eliminating any need to power the systems from external power supplies. The directional control of the airstream relative to the trailer can also be controlled via power driven articulation associated with the fan. In some cases, a trailer can also be provided with a tank of water or other liquid, thereby making such systems operable without connection to an external source of water/liquid.
Aside from dust control, there is a need in particular industries to reduce or minimize the odors emitted from particular activities. Particular chemicals are known to bond with particular other chemicals known to be odorously offensive to humans. Thus, dispersing such chemicals when and where such activities occur can reduce or minimize odorous emissions of such activities.
The present disclosure is directed to using a fan system with associated power and support equipment to dispense airstreams containing such chemicals in vapor (i.e., gaseous) form, as opposed to diluted liquid droplets suspensions. Such a system comprises a high pressure pump and nozzle configured for such pressure to vaporize chemicals from liquid to gas and dispense a stream of air comprising such vaporized chemicals. As opposed to the prior systems that dispense droplets of water in the air stream, the present disclosure is directed to discharging the liquid chemical mixture for dust or odor control through a fine nozzle under a sufficiently high pressure to cause the chemical mixture to vaporize upon discharge from the nozzle and mixing with the stream of air from the ducted fan. This eliminates any need to provide a carrier dilutant such as water to dilute such chemicals for dispersion as a mist. The need to supply such a system with water from a tank or external source can thereby be eliminated. As a result, the run-time and/or mobility of such a new system is greatly enhanced. Alternatively, the weight capacity of trailers provided with the system can be decreased, if desire, by a decrease in the gross weight eliminated by any dilution water required. The disclosure provides a unique way of dispensing chemicals from concentrate over substantial distances, and optionally on mobile platforms such as trailers.
In one aspect of the disclosure, a system comprises a fan and a high pressure pump combined with a nozzle designed to vaporize liquid chemicals and introduce the same into the airstream created by the fan. The system could optionally be mounted on a trailer or truck for mobility, which could include a generator so as to be completely operable independent of external supply. The system is not limited to being use connection with odor eliminating chemicals, but also applies to the dispersion of any chemical in vapor form, as opposed to suspended droplets, via a ducted fan.
The chemical discharging fan system 10 may include a generator 30 and a chemical container 32. The generator 30 may be used to power the fan 12 and other equipment of the chemical discharging fan system 10. For instance, the generator 30 may supply power to the fan motor 22, a controller 40 and/or a spray gun 42 mounted on the fan, and/or one or more pumps 44,46 associated with the system. The generator 30 may be a gasoline or diesel powered motor driven generator. The generator 30 may be mounted on a trailer as shown in
As shown in
The fluid supply, for instance, from the chemical container 32, may comprise an odor suppressant or a dust suppressant. The fluid may be drawn from the chemical container 32 by the pump 44 and directed to the fluid inlet 54 of the spray gun 42. In the alternative, the fluid may be drawn from the chemical container 32 with the pump 44 and directed to the booster pump 46, which directs the fluid to the fluid inlet 54 of the spray gun 42. In this way, the fluid directed to the spray gun 42 from the fluid supply source 32 directly comprises the odor suppressant or the dust suppressant chemical and there is no need to supply a separate dilutant (e.g., water) and no need to have the chemical dispensed or suspended in a water carrier. The liquid chemical mixture (e.g., the dust or odor suppressant) may be injected directly to the spray gun 42 under a sufficiently high pressure generated by the booster pump 46 and/or the main pump 44. The high pressure generated by the booster pump 46 and/or the main pump 44 in turn causes the chemical to vaporize upon discharge from the spray gun nozzle 58 into the stream of air AF from the ducted fan. This eliminates any need to dilute the chemicals, and dispenses with the need to supply the system with water from a tank or an external source.
Referring to
The spray gun 42 may have a nozzle 58 that assists in providing a fine atomized discharge. In one aspect, the nozzle 58 may be configured to generate a hollow cone spray pattern, for instance, as shown in
The spray gun 42 may be controlled with the control 40 that is enabled to generate a pulse width modulation signal and/or a variable frequency signal. The control 40 may be adapted and configured to cycle the spray gun at least 1000 times per minute and up to 10,000 times per minute. The control 40 may have an adjustable frequency from 10 Hz to 170 Hz. The control may be a model 1550 AutoJet Modular spray system provided by Spraying Systems Company of Wheaton, Ill. The control 40 may be mounted adjacent to the fan 12 to allow the operator to adjust the desired spray characteristics. The desired spray characteristics may be based upon duty cycle. For instance, the control 40 may be provided with a human machine interface 60 which allows the operator to select a duty cycle, a frequency, and or a cycle rate. The duty cycle may correspond to the number of cycles per minute and/or frequency of the spray gun. The user may select a rate that is anywhere between 1 cycle per minute and 10,000 cycles per minute.
While the drawings show a control and a spray gun with a discharge nozzle attached thereto, the system may be configured with a nozzle with a fluid inlet that receives pressurized fluid from the fluid source. The nozzle may be dimensioned such that for a given pressure of the fluid from the fluid supply source at the fluid inlet to the nozzle, the exit velocity and pressure drop from the nozzle discharge may be sufficient to atomize and cause to vaporize the fluid upon discharge from the nozzle and entry into the air flow generated by the fan. Such an embodiment may dispense with the need to provide a control for the nozzle. Accordingly, the fluid may have constituents that enhance vaporization upon discharge from the nozzle and/or spray gun after pressurization.
In using the chemical discharging fan system 10, the user may align the fluid supply source to the fluid inlet 54 of the spray gun 42, energize the fan 12 to generate the airflow AF through the duct 14 of the fan, and then operate the control 40 to cycle the spray gun at a desired rate, which may be up to 1000 cycles per minute, or at least 1000 cycles per minute. The user may also operate the control 40 to cycle the spray gun as desired, including at a rate of at least 2000 cycles per minute or a rate of at least 5000 cycles per minute. In aligning the fluid supply source to the fluid inlet of the spray gun 42, the operator may energize a pump 44 that draws the fluid directly from the chemical container 32 to the fluid inlet 54 of the spray gun. In addition, or in the alternative, the user may also energize a booster pump 46 that draws fluid from the discharge of the main supply pump 44 and directs the fluid under high pressure to fluid inlet 54 of the spray gun 42. The user may operate the control 40 to set a duty cycle for the spray gun as desired, including at a duty cycle of 10% to 80%. In aligning the fluid from the fluid supply source, the user may provide an odor suppressant fluid or may provide a dust suppressant fluid or a combination. The user may energize a generator 30 to provide power to the control 40 and/or spray gun 42, fan motor 22, and/or pumps 44,46.
In other another aspect of the method, the user may energize the fan to generate the flow of air through the duct of the fan; and direct pressurized fluid from the fluid supply source to the fluid inlet of the nozzle in such a way that the fluid vaporizes upon being discharged from the nozzle into the flow of air generated by the fan. As mentioned above, the nozzle may be dimensioned such that for a given pressure of the fluid from the fluid supply source at the fluid inlet to the nozzle, the exit velocity and pressure drop from the nozzle discharge is sufficient to atomize and cause to vaporize the fluid upon discharge from the nozzle and entry into the air flow generated by the fan.
As various modifications could be made in the constructions and methods herein described without departing from the scope of the invention, it is intended that all matter contained in the foregoing description and shown in the accompanying drawings shall be interpreted as illustrative and not as limiting. The breadth and scope the present invention should not be limited by any of the above described exemplary embodiments.
This application claims the benefit of provisional application Ser. No. 62/586,264, filed Nov. 15, 2017, the disclosure of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62586264 | Nov 2017 | US |