The invention relates to a device for exhaust-gas recirculation (EGR), in particular in diesel engines. It furthermore relates to a method for exhaust-gas recirculation (EGR), in particular in diesel engines.
Known embodiments of exhaust-gas recirculation (EGR) conduct an exhaust-gas train branched off from the engine, on the exhaust-gas side, for recirculation into the fresh-air path of the engine, within an EGR section. They comprise a cooling device connected with the cooling system of the engine as an exhaust-gas/coolant heat exchanger, as well as an EGR valve, the task of which consists in regulating the recirculated amount of exhaust gas with adaptation to the characteristic field data of the engine.
In this regard, reference is made to DE 10 2010 014 845 A1 as an example.
On the one hand, an important concern in connection with diesel engines is to utilize exhaust-gas recirculation (EGR) for NOx reduction. In this regard, exhaust gas that is as cold as possible is to be supplied to the engine on its fresh-air side, in order to keep the process temperature as low as possible for the stated purpose. For this reason, it is provided, according to a known embodiment, to dispose the EGR valve on the cold side of the heat exchanger, but this brings with it the disadvantage that the EGR valve tends to accumulate soot at operating points below the condensation point of the exhaust gas.
In the case of another known embodiment, the EGR valve is therefore disposed on the hot side of the heat exchanger, but this causes it to be subject to great thermal stress, and therefore it only achieves the limited useful lifetime that is similar to a component subject to wear.
In addition, cooler aging (fouling) of the heat exchanger caused by surface deposits is an additional problem, leading to deterioration of the heat transfer in the cooling section, and this has a disadvantageous effect on the method of action of the EGR section.
In contrast, the present invention is based on the task of creating an improved device of the type stated initially, which avoids the stated disadvantages, in particular, it relieves thermal stress on the EGR valve in favor of a longer useful lifetime, and thereby meets the requirement of efficient EGR recirculation for robust and long-lived industrial diesel engines.
According to the invention, this goal is achieved with a device according to the claims and further embodiments, as well as with a method according to the claims and further embodiments.
Because of the fact that according to the proposal of the invention, the cooling device is divided into an EG pre-cooler and an EG main cooler that follows it, the possibility exists of disposing the EGR valve between the EG pre-cooler and EG main cooler, with a valve housing being provided there to accommodate the EGR valve.
In this regard, both cooling of the valve housing in which the EGR valve is accommodated and internal cooling of the EGR valve are unproblematic, in that a coolant connector to the EG pre-cooler is assigned with the EGR valve. In this manner, external cooling of the EGR valve, the electrical components of which can furthermore be connected with separate internal cooling, takes place by way of the cooled valve housing.
Furthermore, the EG pre-cooler can be supplied with coolant by way of the coolant connector of the valve housing.
The branched-off exhaust gas is first cooled off in the EG pre-cooler and, after passing through the EGR valve, in the EG main cooler, so that a mixed temperature that promotes NOx reduction is achieved on the fresh-air side of the engine. Because of the fact that the EG main cooler follows the EGR valve, there is no risk of soot accumulation in the EGR valve cause by low temperatures of the recirculated exhaust gas.
By means of the serial circuit of EG pre-cooler and EG main cooler according to the invention, the influence of disadvantageous cooler aging is furthermore counteracted, because a decrease in the cooling effect of the EG pre-cooler is compensated by the downstream EG main cooler. In the event of an increasing entry temperature difference on the side of the EG pre-cooler, a higher entry temperature difference on the side of the AG main cooler also occurs, which cooler thereby approximately compensates the decrease in cooling effect of the EG pre-cooler. In this way, the disadvantage fouling problem is eliminated by means of maintaining the mixed temperature on the fresh-air side of the engine, i.e. deposits in the EG cooling system do not lead to an increase in the exhaust-gas temperature after the EG main cooler, within certain limits, even if a certain deterioration of the heat transfer caused by cooler aging would have to be accepted in the EG pre-cooler.
Both the EG pre-cooler and the EG main cooler can advantageously be configured as cast parts, either in one-part form or multi-part form.
In this regard, it can be provided, according to the invention, that the EG pre-cooler and the valve housing are configured as a one-part component.
Production simplification results from the further variant that the EG pre-cooler and/or the EG main cooler each have a multi-part housing. This is connected with the advantageous possibility that a pre-fabricated heat-exchanger insert part can be installed into the cooler housing, in each instance, and that in this manner, the EG pre-cooler and the EG main cooler can be equipped with the same heat-exchanger insert parts. Preferably, commercially available pipe-bundle heat exchangers can be used as heat-exchanger insert parts for the exhaust gas.
In this connection, the variant that a housing part of the pre-cooler and/or of the main cooler that connects with the valve housing is configured in one piece, in each instance, with the valve housing can be advantageous; in this way, it is possible to eliminate two separate components, and sealing flanges with screw connection parts are not required.
In a first embodiment variant, the engine cooling water for the EGR system is withdrawn from the engine cooling-water circuit, and it is advantageous if it is first conducted to the valve housing. In this housing, it is divided into multiple cooling-water paths. One of these runs through the EG pre-cooler and afterward through the EG main cooler; a further path flows through the valve housing and cools the EGR valve from the outside when doing so, and is afterward conducted to the engine cooling system; a further cooling-water path flows through the interior of the EGR valve, where it cools the electrical components of the valve.
Ultimately, all the cooling-water paths flow into the engine cooling water of the engine again, by way of hose lines. A partial stream can be conducted by way of the oil cooler, for example, and then flow back to the engine cooler.
Aside from the known pipe-bundle heat-exchanger elements, heat exchangers with case chambers are fundamentally also suitable for conducting the exhaust-gas stream, with the cooling water flowing around the chambers on the outside. In this regard, improvement of the heat transfer can be achieved, in simple manner, in that the inner cast surfaces of the heat exchangers are configured to be relatively rough on one or both sides, so that flow turbulences occur both on the gas side and on the water side.
In a further embodiment variant, a first cooling-water path is conducted into the EG pre-cooler and gets into the EG main cooler directly from there; here, the valve housing is supplied by means of a separate cooling-water path for the housing cooling and the interior cooling of the EGR valve.
To implement the above embodiment variants, it is proposed, according to the invention, that a coolant connector forms the coolant inflow to the valve housing, that the EG pre-cooler is connected with the valve housing and provided with a coolant drain to the EG main cooler.
Furthermore, it is proposed that the valve housing is provided with further coolant drains to the engine cooling system and/or other heat exchangers on the engine side.
Finally, it is proposed that the EG pre-cooler has separate cooling channels for conducting the coolant, which extend in the longitudinal direction of the EG pre-cooler, for cooling the exhaust gas in a counter-stream.
According to a further embodiment, it is provided that a coolant connector forms the coolant inflow to the EG pre-cooler, the coolant drain of which is directly connected with the EG main cooler, the coolant drain of which, in turn, is connected with the engine cooling system.
According to a method for exhaust-gas recirculation that is particularly advantageous in the case of diesel engines, it is provided that the exhaust gas branched off from the exhaust-gas train of the engine is sent in series, within an EGR section, first through an EG pre-cooler, then through an EGR valve for proportioning the EG recirculation rate and its distribution, and finally through an EG main cooler.
The coolant is branched off, in each instance, from the cooling system of the engine; the cooling water that is branched off in this process is conducted, in series, first through the EG pre-cooler, afterward through the EG main cooler. At least one partial amount of the branched-off cooling water is conducted through a valve housing that accommodates the EGR valve and/or through the interior of the EGR valve, and, if applicable, branched off to engine-side heat exchangers that are present outside of the EGR section.
The cooling water conducted through the EG pre-cooler is cooled there to a temperature clearly above the condensation point of the exhaust gas. The exhaust gas therefore gets through the EGR valve without putting excess thermal stress on it or endangering it due to condensation. In this regard, the exhaust gas branched off from the exhaust-gas manifold of the engine at 550 to 600° C. is cooled down by approximately 200 to 250° C. in the EG pre-cooler. The exhaust gas cooled off in the EG main cooler leaves the EGR section at an exit temperature of not more than about 100° C.
The EGR valve is relieved of thermal stress by means of the serial circuit, according to the invention, of EG pre-cooler and EG main cooler, and the placement of the EGR valve between the two coolers, on the one hand; on the other hand, the exhaust-gas temperature in the EGR valve is still clearly above the condensation temperature of the exhaust gas, so that soot accumulation does not occur in the EGR valve, something that is observed in known EGR sections with EGR valves disposed in the entry.
In the following, exemplary embodiments of the invention will be explained using the drawing. This shows:
The EG pre-cooler 3 is configured as a single-part cast part, together with the EGR valve housing 4, and connected with the EG main cooler 5, which is also configured as a cast part, by way of a flange connected 4b, forming a seal. The EG main cooler 5 is also configured in one piece; it ends with a flange 5b for connecting with the intake manifold of the engine, not shown.
Different cooling paths, which are all supplied by the cooling system of the engine, are shown with dark arrows, wherein the starting temperature of the engine oil cooler (not shown) approximately corresponds to the input temperature of the different cooling paths.
According to
The branched-off exhaust gas stream 7a, the input temperature of which, into the pre-cooler 3, amounts to approximately 550 to 600° C., is cooled down by approximately 250 to 300° C. in the EG pre-cooler 3, and then exits from the EG main cooler 5 as an exhaust gas stream 7b having a temperature≤100° C., before it is conducted to the intake manifold of the engine.
In the interior of the EGR valve housing 4, a partial stream 8c, which serves for cooling the valve housing 4, is branched off from the cooling path 8. In the interior of the housing, there is a cooling mantle 22 (cf.
Furthermore, a further partial stream 8d is branched off in the interior of the valve housing 4, which stream flows through the interior of the EGR valve 6 for the purpose of cooling the electrical installed parts present there, and is connected with the cooling system of the engine by way of a coolant exit 20.
The coolant is connected with the interior of the EGR valve 6 for the purpose of cooling the electrical installations accommodated there, by way of bores 26 in the valve body 24. These installations serve for activation of a valve tappet 25, which is shown in its closed position relative to a valve seat 27 in
Number | Date | Country | Kind |
---|---|---|---|
10 2015 006 100 | May 2015 | DE | national |
This application is a continuation under 35 U.S.C. § 120 of International Application PCT/EP2016/060143, filed May 6, 2016, which claims priority to German Application 10 2015 006 100.3, filed May 9, 2015, the contents of each of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5690082 | Tanioka | Nov 1997 | A |
5769390 | Ando | Jun 1998 | A |
6216677 | McConnell | Apr 2001 | B1 |
9638141 | Barabasch | May 2017 | B2 |
20020174858 | Kato | Nov 2002 | A1 |
20040099245 | Kato | May 2004 | A1 |
20040107949 | Miyoshi | Jun 2004 | A1 |
20040177605 | Kojima | Sep 2004 | A1 |
20060277906 | Burk | Dec 2006 | A1 |
20070095334 | Nanba | May 2007 | A1 |
20100263610 | Mercz | Oct 2010 | A1 |
20140007852 | Huesges | Jan 2014 | A1 |
20150047341 | Ulrey | Feb 2015 | A1 |
20150047346 | Styles | Feb 2015 | A1 |
20150059716 | Na | Mar 2015 | A1 |
20150267602 | Amano | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
10232515 | Apr 2004 | DE |
102010014845 | Oct 2011 | DE |
102011001461 | Sep 2012 | DE |
2378104 | Oct 2011 | EP |
Entry |
---|
International Search Report, dated Jul. 14, 2016, for corresponding International Application No. PCT/EP2016/060143. |
Number | Date | Country | |
---|---|---|---|
20180066611 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2016/060143 | May 2016 | US |
Child | 15806882 | US |