The present disclosure relates generally to the generation of shock waves, and, more specifically, to the generation of shock waves within vascular or urinary structures.
The subject invention relates to treating calcified lesions in blood vessels, or obstructions in other vessels, such as kidney stones in ureters. One common approach to addressing this issue is balloon angioplasty. In this type of procedure, a catheter, carrying a balloon, is advanced into the vasculature along a guide wire until the balloon is aligned with the occlusion. The balloon is then pressurized in a manner to reduce or break the occlusion. When inflated to high pressures, angioplasty balloons can have a specific maximum diameter to which they will expand. Generally, the opening in the vessel under a concentric lesion will typically be much smaller. As the pressure is increased to open the passage way for blood flow, the balloon will be confined to the size of the opening in the calcified lesion (before it is broken open). As the pressure builds, a tremendous amount of energy is stored in the balloon until the calcified lesion breaks or cracks. That energy is then released and results in the rapid expansion of the balloon to its maximum dimension and may stress and injure the vessel walls.
Recently, the assignee herein has developed a system and method for breaking up calcium deposits in, for example, arteries and veins. Such a system is described, for example in U.S. Pat. Nos. 8,956,371 and 8,888,788, both of which are incorporated herein by reference. Embodiments described therein include a catheter having balloon, such as an angioplasty balloon, at the distal end thereof arranged to be inflated with a fluid. Disposed within the balloon is a shock wave generator that may take the form of, for example, a pair of electrodes, which are coupled to a high voltage source at the proximal end of the catheter through a connector. When the balloon is placed adjacent a calcified region of a vein or artery and a high voltage pulse is applied across the electrodes, a shock wave is formed that propagates through the fluid and impinges upon the wall of the balloon and the calcified region. Repeated pulses break up the calcium without damaging surrounding soft tissue. A similar technique can be used to treat kidney stones in the ureter. The shock waves generated by such systems typically propagate in all directions from the electrodes.
Arteries are sometimes totally occluded with a thrombus, plaque, fibrous plaque, and/or calcium deposits. When this condition is present, the physician typically first passes a soft narrow guide wire down the artery and through the occluded area. The guide wire may be as small as 0.014 inches in diameter and usually has a soft flexible tip to help avoid penetrating the artery wall in artery corners. The angioplasty balloon is then fed down the artery on the guide wire to the desired location of the blockage. Unfortunately, many times the physician is faced with a chronic occlusion which is not passable with a guide wire. This occurs when the occlusion is so tight and solid that the soft guide wire cannot penetrate through it. Stiffer guide wires may be used in these cases, but they must be used very carefully because they can easily penetrate the artery wall when forced against the chronic total occlusion.
Guide wires have been proposed that utilize radio frequency energy to open the occlusion. Unfortunately, the heat generated by the radio frequency energy to open the occlusion is intense and can damage the walls of the artery or vessel. The radio frequency energy produces a plasma which burns anything in its path. Hence, such systems must be used carefully and must be continuously moved without pause to avoid artery or vessel damage. Moreover, such an approach requires a centering mechanism that keeps the plasma centered in the artery or vessel. Such centering is difficult to achieve, especially in the corners and bends of the arteries or veins.
More recently, the assignee herein has proposed providing an electrode on the tip of a guide wire for generating forward directed shock waves to open a total occlusion enough to permit a guide wire and angioplasty balloon to be fed there through. In addition, such system avoids damage to the artery or vessel. This approach is disclosed in U.S. Patent Publication No. 2015/0320432, also incorporated herein by reference.
The subject invention relates to yet another alternative approach for generating forward directed shock waves that can be integrated with an angioplasty balloon. This approach can also be used in conjunction with other types of shock wave electrodes.
Described herein are shock wave devices and methods for the treatment of plaques or obstructions in vessels. The vessels may include blood vessels in a patient's vascular system or ureters in the patient's urinary system. One example of a shock wave device includes an outer covering and an inner member forming a guide wire lumen. The outer covering and inner member are connected at a distal end of the device, and a volume between the outer covering and the inner member is fillable with a conductive fluid. A first conductive wire and a second conductive wire extend along the length of the device within the volume between the outer covering and the inner member and end proximate to the distal end of the device. The lengths of the first and second wires are insulated and the ends of the first and second wires are uninsulated. A conductive emitter band circumscribes the ends of the first and second wires and forms a first spark gap between the end of the first wire and the emitter band and a second spark gap between the end of the second wire and the emitter band. When the volume is filled with the conductive fluid and a high voltage pulse is applied across the first and second wires, first and second shock waves will be initiated from the first and second spark gaps.
In some examples, the device further includes an insulting sheath circumscribing the inner member in a region proximate to the ends of the first and second wires. In some variations, the outer covering comprises an angioplasty balloon. In some examples, the emitter band is a cylindrical tube that extends closer to the distal end of the device than the first and second wires. In some examples, the device further includes a fluid pump connected to a proximal end of the device configured to provide conductive fluid to the volume between the outer covering and the inner member, and a fluid return line having an inlet proximate to the distal end of the device and configured to remove the conductive fluid from the volume between the outer covering and the inner member. The fluid pump and fluid return line may be configured to circulate the conductive fluid under pressure within the volume between the outer covering and the inner member. In some examples, the device further includes a pressure relief valve at an outlet of the fluid return line.
In some examples, the device further includes a third conductive wire and a fourth conductive wire extending along the length of the device within the volume between the outer covering and the inner member and ending proximate to the distal end of the device. The lengths of the third and fourth wires may be insulated and the ends of the third and fourth wires may be uninsulated. The conductive emitter band may circumscribe the ends of the third and fourth wires and form a third spark gap between the end of the third wire and the emitter band and a fourth spark gap between the end of the fourth wire and the emitter band. When the volume is filled with the conductive fluid and a second high voltage pulse is applied across the third and fourth wires, third and fourth shock waves may be initiated from the third and fourth spark gaps. In some examples, the conductive fluid comprises saline or a combination of saline and a contrasting agent. In some examples, the device further includes one or more secondary emitter bands disposed at a medial location of the device and configured to initiate at least a third shock wave from the medial location.
One example of a method includes introducing a shock wave device into a vessel, advancing the shock wave device within the vessel such that a distal end of the shock wave device faces a first treatment region, and applying a high voltage pulse across first and second wires to initiate first and second shock waves from first and second spark gaps formed between the first and second wires and an emitter band. The positioning of the first and second wires and the emitter band results in the first and second shock waves propagating in a substantially forward direction.
In some examples, the method further includes, after the applying step, advancing the shock wave device further within the vessel such that an angioplasty balloon is aligned with the first treatment region or second treatment region, and inflating the angioplasty balloon. In some examples, the method further includes, after the applying step, advancing the shock wave device further within the vessel such that one or more secondary emitter bands at a medial location of the device are aligned with the first treatment region or a second treatment region, and initiating third shock waves from the secondary emitter bands. In some examples, the vessel is a blood vessel of a patient's vascular system or a ureter of the patient's urinary system. In some examples, first treatment region includes a chronic total occlusion (CTO), circumferential calcium, or a kidney stone.
Described herein are devices, systems, and methods for generating shock waves that propagate in a substantially forward direction to treat vascular diseases, such as chronic total occlusion (CTO) or circumferential calcium, or to treat urinary diseases, such as concretions or kidney stones in the ureter. In accordance with the present disclosure, a shock wave device includes an outer covering and an inner member forming a guide wire lumen. The outer covering and inner member are connected at a distal end of the device. A first conductive wire and a second conductive wire extend along the length of the device within the volume between the outer covering and the inner member, and end proximate to the distal end of the device. A conductive emitter band circumscribes the ends of the first and second wires to form a first spark gap between the end of the first wire and the emitter band and a second spark gap between the end of the second wire and the emitter band.
When the volume is filled with conductive fluid (e.g., saline and/or imaging contrast agent) and a high voltage pulse is applied across the first and second wires, first and second shock waves can be initiated from the first and second spark gaps. The voltage may range from 100 to 10,000 volts for various pulse durations. This high voltage may generate a gas bubble at the end surface of a wire and cause a plasma arc of electric current to traverse the bubble to the emitter band and create a rapidly expanding and collapsing bubble, which in turn creates a mechanical shock wave at the distal end of the device. The positioning of the emitter band in relation to the end of the wire may result in the shock wave propagating out in a substantially forward direction toward the distal end of the device. The shock waves may be mechanically conducted through the conductive fluid and through the outer covering in the substantially forward direction to apply mechanical force or pressure to impinge on an occlusion or calcium facing the distal end of the device. The size, rate of expansion and collapse of the bubble (and therefore, the magnitude, duration, and distribution of the mechanical force) may vary based on the magnitude and duration of the voltage pulse, as well as the distance between the end of the wire and the emitter band. The emitter band may be made of materials that can withstand high voltage levels and intense mechanical forces (e.g., about 1000-2000 psi or 68-136 ATM in a few microseconds) that are generated during use. For example, the emitter band may be made of stainless steel, tungsten, nickel, iron, steel, and the like.
In some embodiments, the device 100 may include a second pair of wires (not shown) offset from wires 106 by 90 degrees. For example, if wires 106 are positioned at 0 and 180 degrees, the second pair of wires may be positioned at 90 and 270 degrees. The second pair of wires also end near the distal end of the device 100 and include uninsulated portions at their ends. The emitter band 108 circumscribes the ends of the second pair of wires as well. A separate high voltage pulse may be applied across the second pair of wires to generate a second pair of arcs with the emitter band 108. As a result, a second set of shock waves are initiated from the distal end of the device 100. The first pair of wires 106 and the second pair of wires may be activated alternately, which may improve the effectiveness of the device 100 by further spreading the shock waves.
A fluid return line 112 with an inlet near the distal end of the device 100 draws in the conductive fluid from the interior volume, while a fluid pump (not shown) pumps in additional conductive fluid via a fluid inlet (shown in
In some embodiments, the shock wave device 100 may include secondary emitter bands 404 located in a medial location of the device 100. The device 100 shown in
In some embodiments, forward directed shock waves from the emitter band 108, radial directed shock waves from the secondary emitter bands 404, and inflation of the angioplasty balloon 402 may be utilized in various sequences and combinations to treat plaques or obstructions in vessels. The vessels may include blood vessels in a patient's vascular system or ureters in the patient's urinary system.
While this invention has been particularly shown and described with references to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention. For all of the embodiments described above, the steps of the methods need not be performed sequentially.
This application claims is a continuation of U.S. Ser. No. 15/989,016, filed May 24, 2018, which in turn claims priority to provisional application Ser. No. 62/521,994, filed Jun. 19, 2017, the entire disclosures of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3413976 | Voolfovich | Dec 1968 | A |
3785382 | Schmidt et al. | Jan 1974 | A |
3902499 | Shene | Sep 1975 | A |
4027674 | Tessier et al. | Jun 1977 | A |
4030505 | Tessier | Jun 1977 | A |
4662126 | Malcolm | May 1987 | A |
4671254 | Fair | Jun 1987 | A |
4685458 | Leckrone | Aug 1987 | A |
4809682 | Forssmann et al. | Mar 1989 | A |
4813934 | Engelson et al. | Mar 1989 | A |
4878495 | Grayzei | Nov 1989 | A |
4900303 | Lemeison | Feb 1990 | A |
4994032 | Sugiyama et al. | Feb 1991 | A |
5009232 | Hassler et al. | Apr 1991 | A |
5046503 | Schneiderman | Sep 1991 | A |
5057103 | Davis | Oct 1991 | A |
5057106 | Kasevich et al. | Oct 1991 | A |
5061240 | Cherian | Oct 1991 | A |
5078717 | Parins et al. | Jan 1992 | A |
5103804 | Abele et al. | Apr 1992 | A |
5152767 | Sypal et al. | Oct 1992 | A |
5152768 | Bhatta | Oct 1992 | A |
5154722 | Filip | Oct 1992 | A |
5176675 | Watson et al. | Jan 1993 | A |
5195508 | Muller et al. | Mar 1993 | A |
5231976 | Wiksell | Aug 1993 | A |
5245988 | Einars et al. | Sep 1993 | A |
5246447 | Rosen et al. | Sep 1993 | A |
5254121 | Manevitz et al. | Oct 1993 | A |
5281231 | Rosen et al. | Jan 1994 | A |
5295958 | Shturman | Mar 1994 | A |
5321715 | Trost | Jun 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5336234 | Vigil et al. | Aug 1994 | A |
5362309 | Carter | Nov 1994 | A |
5364393 | Auth et al. | Nov 1994 | A |
5368591 | Lennox et al. | Nov 1994 | A |
5395335 | Jang | Mar 1995 | A |
5417208 | Winkler | May 1995 | A |
5425735 | Rosen et al. | Jun 1995 | A |
5431173 | Chin et al. | Jul 1995 | A |
5472406 | De La Torre et al. | Dec 1995 | A |
5582578 | Zhong et al. | Dec 1996 | A |
5603731 | Whitney | Feb 1997 | A |
5609606 | O'Boyle | Mar 1997 | A |
5662590 | De La Torre et al. | Sep 1997 | A |
5846218 | Brisken et al. | Dec 1998 | A |
5931805 | Brisken | Aug 1999 | A |
6007530 | Domhofer et al. | Dec 1999 | A |
6024718 | Chen et al. | Feb 2000 | A |
6033371 | Torre et al. | Mar 2000 | A |
6080119 | Schwarze et al. | Jun 2000 | A |
6083232 | Cox | Jul 2000 | A |
6113560 | Simnacher | Sep 2000 | A |
6186963 | Schwarze et al. | Feb 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6217531 | Reitmajer | Apr 2001 | B1 |
6267747 | Samson et al. | Jul 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6287272 | Brisken et al. | Sep 2001 | B1 |
6352535 | Lewis et al. | Mar 2002 | B1 |
6367203 | Graham et al. | Apr 2002 | B1 |
6371971 | Tsugita et al. | Apr 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6406486 | De La Torre et al. | Jun 2002 | B1 |
6514203 | Bukshpan | Feb 2003 | B2 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6589253 | Comish et al. | Jul 2003 | B1 |
6607003 | Wilson | Aug 2003 | B1 |
6638246 | Naimark et al. | Oct 2003 | B1 |
6652547 | Rabiner et al. | Nov 2003 | B2 |
6689089 | Tiedtke et al. | Feb 2004 | B1 |
6736784 | Menne et al. | May 2004 | B1 |
6740081 | Hilal | May 2004 | B2 |
6755821 | Fry | Jun 2004 | B1 |
6989009 | Lafontaine | Jan 2006 | B2 |
7241295 | Maguire | Jul 2007 | B2 |
7505812 | Eggers et al. | Mar 2009 | B1 |
7569032 | Naimark et al. | Aug 2009 | B2 |
7873404 | Patton | Jan 2011 | B1 |
7951111 | Drasler et al. | May 2011 | B2 |
8162859 | Schultheiss et al. | Apr 2012 | B2 |
8556813 | Cioanta et al. | Oct 2013 | B2 |
8574247 | Adams et al. | Nov 2013 | B2 |
8728091 | Hakala et al. | May 2014 | B2 |
8747416 | Hakala et al. | Jun 2014 | B2 |
8888788 | Hakala et al. | Nov 2014 | B2 |
8956371 | Hawkins et al. | Feb 2015 | B2 |
8956374 | Hawkins et al. | Feb 2015 | B2 |
9005216 | Hakala et al. | Apr 2015 | B2 |
9011462 | Adams et al. | Apr 2015 | B2 |
9011463 | Adams et al. | Apr 2015 | B2 |
9044618 | Hawkins et al. | Jun 2015 | B2 |
9044619 | Hawkins et al. | Jun 2015 | B2 |
9198825 | Katragadda | Dec 2015 | B2 |
9333000 | Hakala et al. | May 2016 | B2 |
9421025 | Hawkins et al. | Aug 2016 | B2 |
9522012 | Adams | Dec 2016 | B2 |
9730715 | Adams | Aug 2017 | B2 |
9993292 | Adams et al. | Jun 2018 | B2 |
10226265 | Ku et al. | Mar 2019 | B2 |
10555744 | Nguyen et al. | Feb 2020 | B2 |
10966737 | Nguyen | Apr 2021 | B2 |
20010044596 | Jaafar | Nov 2001 | A1 |
20020045890 | Celliers et al. | Apr 2002 | A1 |
20020177889 | Brisken et al. | Nov 2002 | A1 |
20030004434 | Greco et al. | Jan 2003 | A1 |
20030060813 | Loeb et al. | Mar 2003 | A1 |
20030176873 | Chernenko et al. | Sep 2003 | A1 |
20030229370 | Miller | Dec 2003 | A1 |
20040044308 | Naimark et al. | Mar 2004 | A1 |
20040097963 | Seddon | May 2004 | A1 |
20040097996 | Rabiner et al. | May 2004 | A1 |
20040162508 | Uebelacker | Aug 2004 | A1 |
20040254570 | Hadjicostis et al. | Dec 2004 | A1 |
20050015953 | Keidar | Jan 2005 | A1 |
20050021013 | Visuri et al. | Jan 2005 | A1 |
20050059965 | Eberl et al. | Mar 2005 | A1 |
20050075662 | Pedersen et al. | Apr 2005 | A1 |
20050090888 | Hines et al. | Apr 2005 | A1 |
20050113722 | Schultheiss | May 2005 | A1 |
20050113822 | Fuimaono et al. | May 2005 | A1 |
20050171527 | Bhola | Aug 2005 | A1 |
20050228372 | Truckai et al. | Oct 2005 | A1 |
20050245866 | Azizi | Nov 2005 | A1 |
20050251131 | Lesh | Nov 2005 | A1 |
20060004286 | Chang et al. | Jan 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060184076 | Gm et al. | Aug 2006 | A1 |
20060190022 | Beyar et al. | Aug 2006 | A1 |
20070016112 | Schultheiss et al. | Jan 2007 | A1 |
20070088380 | Hirszowicz et al. | Apr 2007 | A1 |
20070129667 | Tiedtke et al. | Jun 2007 | A1 |
20070239082 | Schultheiss et al. | Oct 2007 | A1 |
20070239253 | Jagger et al. | Oct 2007 | A1 |
20070244423 | Zumeris et al. | Oct 2007 | A1 |
20070255270 | Camey | Nov 2007 | A1 |
20070282301 | Segalescu et al. | Dec 2007 | A1 |
20070299481 | Syed et al. | Dec 2007 | A1 |
20080097251 | Babaev | Apr 2008 | A1 |
20080188913 | Stone et al. | Aug 2008 | A1 |
20080294037 | Ritcher | Nov 2008 | A1 |
20090041833 | Bettinger et al. | Feb 2009 | A1 |
20090247945 | Ievit et al. | Oct 2009 | A1 |
20090254114 | Hirszowicz et al. | Oct 2009 | A1 |
20090312768 | Hawkins et al. | Dec 2009 | A1 |
20100016862 | Hawkins et al. | Jan 2010 | A1 |
20100022950 | Anderson et al. | Jan 2010 | A1 |
20100036294 | Mantell et al. | Feb 2010 | A1 |
20100094209 | Drasler et al. | Apr 2010 | A1 |
20100114020 | Hawkins et al. | May 2010 | A1 |
20100114065 | Hawkins | May 2010 | A1 |
20100121322 | Swanson | May 2010 | A1 |
20100125244 | McAndrew | May 2010 | A1 |
20100274189 | Kurth et al. | Oct 2010 | A1 |
20100305565 | Truckai et al. | Dec 2010 | A1 |
20110034832 | Cioanta et al. | Feb 2011 | A1 |
20110118634 | Golan | May 2011 | A1 |
20110166570 | Hawkins et al. | Jul 2011 | A1 |
20110208185 | Diamant et al. | Aug 2011 | A1 |
20110295227 | Hawkins et al. | Dec 2011 | A1 |
20120071889 | Mantell et al. | Mar 2012 | A1 |
20120095461 | Herscher et al. | Apr 2012 | A1 |
20120203255 | Hawkins et al. | Aug 2012 | A1 |
20120221013 | Hawkins et al. | Aug 2012 | A1 |
20130030431 | Adams | Jan 2013 | A1 |
20130030447 | Adams | Jan 2013 | A1 |
20140005576 | Adams et al. | Jan 2014 | A1 |
20140039513 | Hakala et al. | Feb 2014 | A1 |
20140052145 | Adams et al. | Feb 2014 | A1 |
20140052147 | Hakala et al. | Feb 2014 | A1 |
20140074111 | Hakala et al. | Mar 2014 | A1 |
20140074113 | Hakala et al. | Mar 2014 | A1 |
20140243820 | Adams et al. | Aug 2014 | A1 |
20140243847 | Hakala et al. | Aug 2014 | A1 |
20140288570 | Adams | Sep 2014 | A1 |
20140350401 | Sinelnikov | Nov 2014 | A1 |
20150073430 | Hakala et al. | Mar 2015 | A1 |
20150238208 | Adams et al. | Aug 2015 | A1 |
20150238209 | Hawkins et al. | Aug 2015 | A1 |
20150320432 | Adams | Nov 2015 | A1 |
20160151081 | Adams et al. | Jun 2016 | A1 |
20160174995 | Turjman et al. | Jun 2016 | A1 |
20160183957 | Hakala et al. | Jun 2016 | A1 |
20160324534 | Hawkins et al. | Nov 2016 | A1 |
20170135709 | Nguyen et al. | May 2017 | A1 |
20170151415 | Maeda et al. | Jun 2017 | A1 |
20170311965 | Adams | Nov 2017 | A1 |
20180098779 | Betelia et al. | Apr 2018 | A1 |
20180360482 | Nguyen | Dec 2018 | A1 |
20190150960 | Nguyen et al. | May 2019 | A1 |
20190365400 | Adams et al. | Dec 2019 | A1 |
20210085347 | Phan et al. | Mar 2021 | A1 |
20220183708 | Phan et al. | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
2009313507 | Nov 2014 | AU |
1269708 | Oct 2000 | CN |
101043914 | Sep 2007 | CN |
102057422 | May 2011 | CN |
102271748 | Dec 2011 | CN |
102765785 | Nov 2012 | CN |
103068330 | Apr 2013 | CN |
203564304 | Apr 2014 | CN |
203564304 | Apr 2014 | CN |
104582621 | Apr 2015 | CN |
104736073 | Jun 2015 | CN |
105188848 | Dec 2015 | CN |
3038445 | May 1982 | DE |
442199 | Aug 1991 | EP |
571306 | Nov 1993 | EP |
623360 | Nov 1994 | EP |
1596746 | Nov 2005 | EP |
2253884 | Nov 2010 | EP |
2362798 | Apr 2014 | EP |
3434209 | Jan 2019 | EP |
3473195 | Apr 2019 | EP |
60-191353 | Dec 1985 | JP |
S61135648 | Jun 1986 | JP |
62-099210 | Jun 1987 | JP |
62-275446 | Nov 1987 | JP |
3-63059 | Mar 1991 | JP |
6-125915 | May 1994 | JP |
7-47135 | Feb 1995 | JP |
8-89511 | Apr 1996 | JP |
10-314177 | Dec 1998 | JP |
2002538932 | Nov 2002 | JP |
2004081374 | Mar 2004 | JP |
2004357792 | Dec 2004 | JP |
2005095410 | Apr 2005 | JP |
2005515825 | Jun 2005 | JP |
2006516465 | Jul 2006 | JP |
2007532182 | Nov 2007 | JP |
2008506447 | Mar 2008 | JP |
2011513694 | Apr 2011 | JP |
2011520248 | Jul 2011 | JP |
2011524203 | Sep 2011 | JP |
2011528963 | Dec 2011 | JP |
2012505050 | Mar 2012 | JP |
2012508042 | Apr 2012 | JP |
2014208305 | Nov 2014 | JP |
2015528327 | Sep 2015 | JP |
6029828 | Nov 2016 | JP |
6081510 | Feb 2017 | JP |
WO-1992003975 | Mar 1992 | WO |
WO-1996024297 | Aug 1996 | WO |
WO-1999002096 | Jan 1999 | WO |
WO-2004069072 | Aug 2004 | WO |
WO-2005099594 | Oct 2005 | WO |
WO-2006006169 | Jan 2006 | WO |
WO-2006127158 | Nov 2006 | WO |
WO-2007088546 | Aug 2007 | WO |
WO-2007149905 | Dec 2007 | WO |
WO-2009121017 | Oct 2009 | WO |
WO-2009126544 | Oct 2009 | WO |
WO-2009152352 | Dec 2009 | WO |
WO-2010014515 | Feb 2010 | WO |
WO-2010014515 | Aug 2010 | WO |
WO-2010054048 | Sep 2010 | WO |
WO-2011143468 | Nov 2011 | WO |
WO-2012025833 | Mar 2012 | WO |
WO-2013169807 | Nov 2013 | WO |
WO-2016077627 | May 2016 | WO |
WO-2016109739 | Jul 2016 | WO |
Entry |
---|
Advisory Action received for U.S. Appl. No. 13/615,107, dated Nov. 6, 2015, 3 pages. |
Advisory Action Received for U.S. Appl. No. 12/482,995, dated Jun. 2, 2014, 3 pages. |
Advisory Action Received for U.S. Appl. No. 12/482,995, dated Sep. 29, 2011, 2 pages. |
Advisory Action Received for U.S. Appl. No. 12/581,295, dated Jul. 3, 2014, 3 pages. |
Advisory Action Received for U.S. Appl. No. 13/049,199, dated Jun. 7, 2012, 3 pages. |
Advisory Action received for U.S. Appl. No. 13/267,383, dated Jan. 6, 2014, 4 pages. |
Decision of Appeals Notice received for Japanese Patent Application No. 2011-534914, dated Oct. 17, 2016, 2 pages of Official Copy only. |
Decision to Grant received for European Patent Application No. 13756766.5, dated May 27, 2016, 2 pages. |
Decision to Grant received for European Patent Application No. 09825393.3, dated Mar. 13, 2014, 2 pages. |
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 09763640.1, dated Oct. 10, 2013, 5 pages. |
Extended European Search Report and Search Opinion received for European Patent Application No. 09825393.3, dated Feb. 28, 2013, 6 pages. |
Extended European Search Report received for European Patent Application No. 13827971.6, dated Apr. 12, 2016, 8 pages. |
Final Office Action received for U.S. Appl. No. 12/482,995, dated Jul. 22, 2011, 14 pages. |
Final Office Action received for U.S. Appl. No. 12/501,619, dated Feb. 21, 2012, 12 pages. |
Final Office Action received for U.S. Appl. No. 12/611,997, dated Dec. 11, 2012, 9 pages. |
Final Office Action received for U.S. Appl. No. 12/611,997, dated Nov. 10, 2011, 15 pages. |
Final Office Action received for U.S. Appl. No. 13/049,199, dated Apr. 4, 2012, 10 pages. |
Final Office Action received for U.S. Appl. No. 13/207,381, dated Nov. 2, 2012, 7 pages. |
Final Office Action received for U.S. Appl. No. 14/271,342 dated Feb. 27, 2015, 7 pages. |
Final Office Action received for U.S. Appl. No. 12/482,995, dated Feb. 20, 2014, 11 pages. |
Final Office Action received for U.S. Appl. No. 12/581,295, dated Jun. 5, 2014, 14 pages. |
Final Office Action received for U.S. Appl. No. 12/611,997, dated Oct. 24, 2013 10 pages. |
Final Office Action received for U.S. Appl. No. 13/049,199 dated Aug. 11, 2014, 8 pages. |
Final Office Action received for U.S. Appl. No. 13/207,381, dated Nov. 7, 2013 7 pages. |
Final Office Action Received for U.S. Appl. No. 13/267,383, dated May 28, 2015, 12 pages. |
Final Office Action received for U.S. Appl. No. 13/267,383, dated Oct. 25, 2013 8 pages. |
Final Office Action received for U.S. Appl. No. 13/534,658, dated Aug. 23, 2016, 11 pages. |
Final Office Action received for U.S. Appl. No. 13/615,107 dated Sep. 1, 2015, 9 pages. |
Final Office Action received for U.S. Appl. No. 13/646,570, dated Dec. 23, 2014, 10 pages. |
Final Office Action received for U.S. Appl. No. 14/229,735, dated Aug. 27, 2015, 7 pages. |
Final Office Action received for U.S. Appl. No. 14/273,063, dated Dec. 28, 2016, 11 pages. |
Final Office Action received for U.S. Appl. No. 14/660,539, dated Aug. 3, 2017, 11 pages. |
Intention to Grant received for European Patent Application No. 13756766.5, dated Jan. 8, 2016, 5 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/047070, dated Dec. 23, 2010, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/063354, dated May 19, 2011, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/047070, dated Feb. 21, 2013, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/023172, dated Aug. 15, 2013, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/031805, dated Feb. 19, 2015, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/039987 dated Nov. 20, 2014, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/048277 dated Jan. 8, 2015, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/055431, dated Feb. 26, 2015, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/059533 dated Mar. 26, 2015, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/029088, dated Nov. 17, 2016, 8 pages. |
International Search Report and Written Opinion Received for PCT Application No. PCT/US2018/034855, dated Aug. 23, 2018, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/031805 dated May 20, 2013, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/039987, dated Sep. 23, 2013, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/048277, dated Oct. 2, 2013, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/055431, dated Nov. 12, 2013, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/059533, dated Nov. 7, 2013, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/029088 dated Jul. 16, 2015, 13 pages. |
International Search Report received for PCT Patent Application No. PCT/US2009/047070, dated Jan. 19, 2010, 4 pages. |
International Search Report received for PCT Patent Application No. PCT/US2009/063354, dated Jun. 11, 2010, 3 pages. |
International Search Report received for PCT Patent Application No. PCT/US2012/023172, dated Sep. 28, 2012, 3 pages. |
International Written Opinion received for PCT Patent Application No. PCT/US2009/063354, dated Jun. 11, 2010, 4 pages. |
International Written Opinion received for PCT Patent Application No. PCT/US2011/047070, dated May 1, 2012, 5 pages. |
Non Final Office Action received for U.S. Appl. No. 12/482,995, dated Aug. 13, 2014, 10 pages. |
Non Final Office Action received for U.S. Appl. No. 12/482,995, dated Jul. 12, 2013, 11 pages. |
Non Final Office Action received for U.S. Appl. No. 12/611,997, dated Nov. 26, 2014, 8 pages. |
Non Final Office Action received for U.S. Appl. No. 13/207,381, dated Nov. 25, 2014, 5 pages. |
Non Final Office Action received for U.S. Appl. No. 13/465,264, dated Oct. 29, 2014, 13 pages. |
Non Final Office Action received for U.S. Appl. No. 13/646,570, dated Oct. 29, 2014, 10 pages. |
Non Final Office Action received for U.S. Appl. No. 14/079,463, dated Mar. 4, 2014, 9 pages. |
Non Final Office Action received for U.S. Appl. No. 12/482,995, dated Feb. 11, 2011, 27 pages. |
Non Final Office Action received for U.S. Appl. No. 12/501,619, dated Nov. 3, 2011, 10 pages. |
Non Final Office Action received for U.S. Appl. No. 12/611,997, dated Apr. 8, 2013, 9 pages. |
Non Final Office Action received for U.S. Appl. No. 12/611,997, dated Aug. 24, 2012, 11 pages. |
Non Final Office Action received for U.S. Appl. No. 12/611,997, dated Jun. 21, 2011, 13 pages. |
Non Final Office Action received for U.S. Appl. No. 13/049,199, dated Dec. 12, 2011, 10 pages. |
Non Final Office Action received for U.S. Appl. No. 13/207,381, dated Feb. 22, 2013, 7 pages. |
Non Final Office Action received for U.S. Appl. No. 13/207,381, dated Jun. 12, 2012, 6 pages. |
Non Final Office Action received for U.S. Appl. No. 13/534,658, dated Mar. 11, 2016, 12 pages. |
Non Final Office Action received for U.S. Appl. No. 14/218,858, dated Mar. 30, 2016, 13 pages. |
Non Final Office Action received for U.S. Appl. No. 14/515,130, dated Jan. 14, 2016, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/501,619, dated Jan. 28, 2014, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/581,295, dated Jan. 15, 2015, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/581,295, dated Mar. 10, 2014, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/611,997, dated Feb. 13, 2014, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/049,199, dated Feb. 4, 2014, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/207,381, dated Feb. 25, 2014, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/267,383, dated Feb. 25, 2015, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/465,264, dated Dec. 23, 2014, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/615,107, dated Apr. 24, 2015, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/646,583, dated Oct. 31, 2014, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/061,554, dated Mar. 12, 2014, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/271,276, dated Aug. 4, 2014, 7 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/271,342, dated Sep. 2, 2014, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/273,063, dated Jun. 3, 2016, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/660,539, dated Nov. 24, 2017, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/693,155, dated Jan. 15, 2016, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/660,539, dated Mar. 6, 2017, 14 pages. |
Notice of Acceptance Received for Australian Patent Application No. 2009257368, dated Aug. 28, 2014, 2 pages. |
Notice of Acceptance Received for Australian Patent Application No. 2009313507, dated Nov. 17, 2014, 2 pages. |
Notice of Allowance received for Canadian Patent Application No. 2,727,429, dated May 26, 2015, 1 page. |
Notice of Allowance received for Canadian Patent Application No. 2,779,600, dated Jul. 7, 2017, 1 page. |
Notice of Allowance received for Japanese Patent Application No. 2015-036444, dated Jan. 13, 2017, 3 pages (Official Copy Only). |
Notice of Allowance received for U.S. Appl. No. 14/515,130, dated May 2, 2016, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/515,130, dated May 25, 2016, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 12/581,295, dated Jul. 10, 2015, 15 pages. |
Notice of Allowance received for U.S. Appl. No. 12/581,295, dated Jul. 29, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 12/611,997, dated Apr. 15, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/207,381, dated Apr. 14, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/465,264, dated May 8, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/957,276, dated Aug. 28, 2015, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 14/271,276, dated Feb. 25, 2015, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 12/482,995, dated Dec. 24, 2014, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 13/049,199, dated Dec. 15, 2014, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/049,199, dated Jan. 13, 2015, 4 pages. |
Notice of Allowance received for U.S. Appl. No. 13/646,570, dated Mar. 11, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/777,807, dated May 19, 2015, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 13/831,543, dated Oct. 8, 2014, 14 pages. |
Notice of Allowance received for U.S. Appl. No. 14/061,554, dated Apr. 25, 2014, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/079,463, dated Apr. 1, 2014, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/218,858, dated Aug. 26, 2016, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/271,342, dated Mar. 13, 2015, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/273,063, dated Apr. 12, 2017. 7 pages. |
Notice of Allowance received for U.S. Appl. No. 14/660,539, dated Apr. 6, 2018, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 14/693,155, dated Apr. 26, 2016, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 13/615,107, dated Dec. 31, 2015, 10 pages. |
Office Action received for Australian Patent Application No. 2009257368, dated Apr. 28, 2014, 4 pages. |
Office Action received for Australian Patent Application No. 2009257368, dated Jul. 31, 2013, 4 pages. |
Office Action received for Australian Patent Application No. 2009313507, dated Nov. 13, 2013, 3 pages. |
Office Action received for Canadian Patent Application No. 2,727,429, dated Apr. 14, 2015, 4 pages. |
Office Action received for Canadian Patent Application No. 2,779,600, dated Jan. 4, 2016, 6 pages. |
Office Action received for Canadian Patent Application No. 2,779,600, dated Oct. 19, 2016, 3 pages. |
Office Action received for Chinese Patent Application No. 200980153687.X, dated Dec. 26, 2012, 11 pages of Official copy only. |
Office Action received for Chinese Patent Application No. 200980153687.X, dated Jul. 11, 2013, 11 pages (Official copy only). |
Office Action received for Chinese Patent Application No. 201380033808.3, dated Jul. 5, 2016. 9 pages (3 pages of English translation and 6 pages of Official copy). |
Office Action received for Chinese Patent Application No. 201380041656.1, dated Jul. 5, 2016. 9 pages (4 pages of English translation and 5 pages of Official copy). |
Office Action received for Chinese Patent Application No. 201380042887.4, dated Aug. 8, 2016, 9 pages (4 pages of English translation and 5 pages of Official copy). |
Office Action received for European Patent Application No. 09763640.1, dated Dec. 2, 2016, 4 pages. |
Office Action received for Japanese Patent Application No. 2011-513694, dated Aug. 27, 2013, 6 pages (3 pages of English Translation and 3 pages of Official copy). |
Office Action Received for Japanese Patent Application No. 2011-513694, dated Jun. 10, 2014, 4 pages total (2 pages of Official Copy and 2 pages of English Translation). |
Office Action Received for Japanese Patent Application No. 2011-534914, dated Jan. 13, 2015, 9 pages(7 pages of English Translation and 2 pages of Official Copy. |
Office Action received for Japanese Patent Application No. 2011-534914, dated May 10, 2016, 10 pages ( 4 pages of Official Copy and 6 pages of English Translation). |
Office Action received for Japanese Patent Application No. 2011-534914, dated Oct. 1, 2013, 5 pages (2 pages of English Translation and 3 pages of Official copy). |
Office Action received for Japanese Patent Application No. 2014-158517, dated Feb. 15, 2017, 8 pages (5 pages of English Translation and 3 pages of Official Copy Only). |
Office Action Received for Japanese Patent Application No. 2014-158517, dated Jun. 22, 2017. 14 pages of official Copy only. |
Office Action Received for Japanese Patent Application No. 2014-158517, dated May 19, 2015, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2015-036444, dated Feb. 23, 2016, 3 pages of English translation only. |
Office Action received for Japanese Patent Application No. 2016-143049, dated Apr. 24, 2017. 5 pages ( 2 pages of English Translation and 3 pages of Official copy). |
Office Action received for Japanese Patent Application No. 2015-036444, dated Sep. 14, 2016, 5 pages (3 Pages of English Translation and 2 Pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2016-094326, dated Dec. 2, 2016, 4 pages (2 pages of English Translation and 2 pages Official Copy Only). |
Office Action received for Japanese Patent Application No. 2016-094326, dated Jul. 6, 2017, 2 pages (Official Copy Only). |
Rosenschein et al., (1992). “Shock-Wave Thrombus Ablation, a New Method for Noninvasive Mechanical Thrombolysis,” The American Journal of Cardiology, 70:1358-1361. |
Zhong et al., (1997). “Transient Oscillation of Cavitation Bubbles Near Stone Surface During Electrohydraulic Lithotripsy,” Journal of Endourology, 11:55-61. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/050899 dated Feb. 2, 2021, 19 pages. |
Invitation to Pay Additional Fees for PCT Patent Application No. PCT/US2020/050899, dated Nov. 5, 2020, 13 pages. |
Third Party Preissuance Submission for U.S. Appl. No. 15/989,016, filed Mar. 8, 2019, 3 pages. |
Unpublished U.S. Appl. No. 17/021,905, filed Sep. 15, 2020, titled “Lesion Crossing Shock Wave Catheter”. |
Extended European Search Report received for European Patent Application No. 21191690.3, dated Jan. 17, 2022, 5 pages. |
International Search Report received for PCT Patent Application No. PCT/US2021/062666 dated Mar. 25, 2022, 9 pages. |
Office Action received for Chinese Patent Application No. 201880040835.6, dated Oct. 14, 2022, 8 pages. English translation. |
Office Action received for Japanese Patent Application No. 2019-569918, dated Feb. 14, 2022, 6 pages. English translation. |
Final Office Action received for U.S. Appl. No. 17/021,905, dated Sep. 12, 2022, 11 pages. |
Advisory Action received for U.S. Appl. No. 17/021,905, dated Nov. 22, 2022, 4 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/021,905, dated Apr. 8, 2022, 11 pages. |
Requirement for Restriction/Election received for U.S. Appl. No. 17/021,905 dated Nov. 8, 2021, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20210177445 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62521994 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15989016 | May 2018 | US |
Child | 17185276 | US |