Device and method for generating forward directed shock waves

Information

  • Patent Grant
  • 11602363
  • Patent Number
    11,602,363
  • Date Filed
    Thursday, February 25, 2021
    3 years ago
  • Date Issued
    Tuesday, March 14, 2023
    a year ago
Abstract
Described herein is a shock wave device for the treatment of vascular occlusions. The shock wave device includes an outer covering and an inner member inner connected at a distal end of the device. First and second conductive wires extend along the length of the device within the volume between the outer covering and the inner member. A conductive emitter band circumscribes the ends of the first and second wires to form a first spark gap between the end of the first wire and the emitter band and a second spark gap between the end of the second wire and the emitter band. When the volume is filled with conductive fluid and a high voltage pulse is applied across the first and second wires, first and second shock waves can be initiated from the first and second spark gaps.
Description
FIELD

The present disclosure relates generally to the generation of shock waves, and, more specifically, to the generation of shock waves within vascular or urinary structures.


BACKGROUND

The subject invention relates to treating calcified lesions in blood vessels, or obstructions in other vessels, such as kidney stones in ureters. One common approach to addressing this issue is balloon angioplasty. In this type of procedure, a catheter, carrying a balloon, is advanced into the vasculature along a guide wire until the balloon is aligned with the occlusion. The balloon is then pressurized in a manner to reduce or break the occlusion. When inflated to high pressures, angioplasty balloons can have a specific maximum diameter to which they will expand. Generally, the opening in the vessel under a concentric lesion will typically be much smaller. As the pressure is increased to open the passage way for blood flow, the balloon will be confined to the size of the opening in the calcified lesion (before it is broken open). As the pressure builds, a tremendous amount of energy is stored in the balloon until the calcified lesion breaks or cracks. That energy is then released and results in the rapid expansion of the balloon to its maximum dimension and may stress and injure the vessel walls.


Recently, the assignee herein has developed a system and method for breaking up calcium deposits in, for example, arteries and veins. Such a system is described, for example in U.S. Pat. Nos. 8,956,371 and 8,888,788, both of which are incorporated herein by reference. Embodiments described therein include a catheter having balloon, such as an angioplasty balloon, at the distal end thereof arranged to be inflated with a fluid. Disposed within the balloon is a shock wave generator that may take the form of, for example, a pair of electrodes, which are coupled to a high voltage source at the proximal end of the catheter through a connector. When the balloon is placed adjacent a calcified region of a vein or artery and a high voltage pulse is applied across the electrodes, a shock wave is formed that propagates through the fluid and impinges upon the wall of the balloon and the calcified region. Repeated pulses break up the calcium without damaging surrounding soft tissue. A similar technique can be used to treat kidney stones in the ureter. The shock waves generated by such systems typically propagate in all directions from the electrodes.


Arteries are sometimes totally occluded with a thrombus, plaque, fibrous plaque, and/or calcium deposits. When this condition is present, the physician typically first passes a soft narrow guide wire down the artery and through the occluded area. The guide wire may be as small as 0.014 inches in diameter and usually has a soft flexible tip to help avoid penetrating the artery wall in artery corners. The angioplasty balloon is then fed down the artery on the guide wire to the desired location of the blockage. Unfortunately, many times the physician is faced with a chronic occlusion which is not passable with a guide wire. This occurs when the occlusion is so tight and solid that the soft guide wire cannot penetrate through it. Stiffer guide wires may be used in these cases, but they must be used very carefully because they can easily penetrate the artery wall when forced against the chronic total occlusion.


Guide wires have been proposed that utilize radio frequency energy to open the occlusion. Unfortunately, the heat generated by the radio frequency energy to open the occlusion is intense and can damage the walls of the artery or vessel. The radio frequency energy produces a plasma which burns anything in its path. Hence, such systems must be used carefully and must be continuously moved without pause to avoid artery or vessel damage. Moreover, such an approach requires a centering mechanism that keeps the plasma centered in the artery or vessel. Such centering is difficult to achieve, especially in the corners and bends of the arteries or veins.


More recently, the assignee herein has proposed providing an electrode on the tip of a guide wire for generating forward directed shock waves to open a total occlusion enough to permit a guide wire and angioplasty balloon to be fed there through. In addition, such system avoids damage to the artery or vessel. This approach is disclosed in U.S. Patent Publication No. 2015/0320432, also incorporated herein by reference.


The subject invention relates to yet another alternative approach for generating forward directed shock waves that can be integrated with an angioplasty balloon. This approach can also be used in conjunction with other types of shock wave electrodes.


BRIEF SUMMARY

Described herein are shock wave devices and methods for the treatment of plaques or obstructions in vessels. The vessels may include blood vessels in a patient's vascular system or ureters in the patient's urinary system. One example of a shock wave device includes an outer covering and an inner member forming a guide wire lumen. The outer covering and inner member are connected at a distal end of the device, and a volume between the outer covering and the inner member is fillable with a conductive fluid. A first conductive wire and a second conductive wire extend along the length of the device within the volume between the outer covering and the inner member and end proximate to the distal end of the device. The lengths of the first and second wires are insulated and the ends of the first and second wires are uninsulated. A conductive emitter band circumscribes the ends of the first and second wires and forms a first spark gap between the end of the first wire and the emitter band and a second spark gap between the end of the second wire and the emitter band. When the volume is filled with the conductive fluid and a high voltage pulse is applied across the first and second wires, first and second shock waves will be initiated from the first and second spark gaps.


In some examples, the device further includes an insulting sheath circumscribing the inner member in a region proximate to the ends of the first and second wires. In some variations, the outer covering comprises an angioplasty balloon. In some examples, the emitter band is a cylindrical tube that extends closer to the distal end of the device than the first and second wires. In some examples, the device further includes a fluid pump connected to a proximal end of the device configured to provide conductive fluid to the volume between the outer covering and the inner member, and a fluid return line having an inlet proximate to the distal end of the device and configured to remove the conductive fluid from the volume between the outer covering and the inner member. The fluid pump and fluid return line may be configured to circulate the conductive fluid under pressure within the volume between the outer covering and the inner member. In some examples, the device further includes a pressure relief valve at an outlet of the fluid return line.


In some examples, the device further includes a third conductive wire and a fourth conductive wire extending along the length of the device within the volume between the outer covering and the inner member and ending proximate to the distal end of the device. The lengths of the third and fourth wires may be insulated and the ends of the third and fourth wires may be uninsulated. The conductive emitter band may circumscribe the ends of the third and fourth wires and form a third spark gap between the end of the third wire and the emitter band and a fourth spark gap between the end of the fourth wire and the emitter band. When the volume is filled with the conductive fluid and a second high voltage pulse is applied across the third and fourth wires, third and fourth shock waves may be initiated from the third and fourth spark gaps. In some examples, the conductive fluid comprises saline or a combination of saline and a contrasting agent. In some examples, the device further includes one or more secondary emitter bands disposed at a medial location of the device and configured to initiate at least a third shock wave from the medial location.


One example of a method includes introducing a shock wave device into a vessel, advancing the shock wave device within the vessel such that a distal end of the shock wave device faces a first treatment region, and applying a high voltage pulse across first and second wires to initiate first and second shock waves from first and second spark gaps formed between the first and second wires and an emitter band. The positioning of the first and second wires and the emitter band results in the first and second shock waves propagating in a substantially forward direction.


In some examples, the method further includes, after the applying step, advancing the shock wave device further within the vessel such that an angioplasty balloon is aligned with the first treatment region or second treatment region, and inflating the angioplasty balloon. In some examples, the method further includes, after the applying step, advancing the shock wave device further within the vessel such that one or more secondary emitter bands at a medial location of the device are aligned with the first treatment region or a second treatment region, and initiating third shock waves from the secondary emitter bands. In some examples, the vessel is a blood vessel of a patient's vascular system or a ureter of the patient's urinary system. In some examples, first treatment region includes a chronic total occlusion (CTO), circumferential calcium, or a kidney stone.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a cutaway perspective view of an example shock wave device for generating forward directed shock waves, in accordance with some embodiments.



FIG. 2 depicts a side sectional view of an example shock wave device for generating forward directed shock waves, in accordance with some embodiments.



FIG. 3 depicts a front sectional view of an example shock wave device for generating forward directed shock waves, in accordance with some embodiments.



FIG. 4 depicts an extended side sectional view of an example shock wave device for generating forward directed shock waves, in accordance with some embodiments.



FIG. 5 depicts a side view of an extended length of an example shock wave device, in accordance with some embodiments.



FIG. 6 is a flowchart representation of an exemplary method for generating forward directed shock waves.





DETAILED DESCRIPTION

Described herein are devices, systems, and methods for generating shock waves that propagate in a substantially forward direction to treat vascular diseases, such as chronic total occlusion (CTO) or circumferential calcium, or to treat urinary diseases, such as concretions or kidney stones in the ureter. In accordance with the present disclosure, a shock wave device includes an outer covering and an inner member forming a guide wire lumen. The outer covering and inner member are connected at a distal end of the device. A first conductive wire and a second conductive wire extend along the length of the device within the volume between the outer covering and the inner member, and end proximate to the distal end of the device. A conductive emitter band circumscribes the ends of the first and second wires to form a first spark gap between the end of the first wire and the emitter band and a second spark gap between the end of the second wire and the emitter band.


When the volume is filled with conductive fluid (e.g., saline and/or imaging contrast agent) and a high voltage pulse is applied across the first and second wires, first and second shock waves can be initiated from the first and second spark gaps. The voltage may range from 100 to 10,000 volts for various pulse durations. This high voltage may generate a gas bubble at the end surface of a wire and cause a plasma arc of electric current to traverse the bubble to the emitter band and create a rapidly expanding and collapsing bubble, which in turn creates a mechanical shock wave at the distal end of the device. The positioning of the emitter band in relation to the end of the wire may result in the shock wave propagating out in a substantially forward direction toward the distal end of the device. The shock waves may be mechanically conducted through the conductive fluid and through the outer covering in the substantially forward direction to apply mechanical force or pressure to impinge on an occlusion or calcium facing the distal end of the device. The size, rate of expansion and collapse of the bubble (and therefore, the magnitude, duration, and distribution of the mechanical force) may vary based on the magnitude and duration of the voltage pulse, as well as the distance between the end of the wire and the emitter band. The emitter band may be made of materials that can withstand high voltage levels and intense mechanical forces (e.g., about 1000-2000 psi or 68-136 ATM in a few microseconds) that are generated during use. For example, the emitter band may be made of stainless steel, tungsten, nickel, iron, steel, and the like.



FIG. 1 depicts a cutaway perspective view of an example shock wave device 100 for generating forward directed shock waves, in accordance with some embodiments. The device 100 includes an outer covering 102 (e.g., a flexible outer tube) and an inner member 104 that forms a lumen for a guide wire 114. The outer covering 102 and inner member 104 are connected at a distal end of the device 100, where the guide wire 114 may exit the device 100. The interior volume of the device 100 between the outer covering 102 and inner member 104 may be filled with a conductive fluid (e.g., saline and/or imaging contrast agent). Two insulated conductive wires 106 (e.g., insulated copper wires) extend along the length of the device 100 within the interior volume. While only one wire 106 is visible in FIG. 1, the second wire 106 extends along an opposing side of the inner member 104, as shown in FIGS. 2-3. The two wires 106 end near the distal end of the device 100 where the guide wire exits the lumen formed by the inner member 104. The ends of the two wires 106 include uninsulated portions (not shown). For example, the flat circular surfaces at the ends of the two wires may be uninsulated. An emitter band 108 is positioned within the interior volume around the ends of the two wires 106. The emitter band 108 may be a conductive cylinder with a diameter larger than the total diameter of the inner member 104 and the two wires 106 combined, such that the emitter band circumscribes the ends of the two wires 106 without contacting the wires, as shown in FIG. 2. An insulating sheath 110 (e.g., a polyimide insulator) may be positioned around the inner member 104 to separate the two wires 106 from the inner member 104 and to further insulate the two wires 106 from one another. In this way, the preferred conductive path between the two wires 106 is through the emitter band 108. When a high voltage pulse is applied across the two wires 106, an electrical current will arc from the uninsulated end of one wire to the emitter band 108, and then arc again from the emitter band 108 to the uninsulated end of the other wire. As a result, shock waves are initiated at the distal end of the shock wave device 100, which then propagate through the conductive fluid and the wall of the outer covering 102 to impinge on an occlusion or calcification.


In some embodiments, the device 100 may include a second pair of wires (not shown) offset from wires 106 by 90 degrees. For example, if wires 106 are positioned at 0 and 180 degrees, the second pair of wires may be positioned at 90 and 270 degrees. The second pair of wires also end near the distal end of the device 100 and include uninsulated portions at their ends. The emitter band 108 circumscribes the ends of the second pair of wires as well. A separate high voltage pulse may be applied across the second pair of wires to generate a second pair of arcs with the emitter band 108. As a result, a second set of shock waves are initiated from the distal end of the device 100. The first pair of wires 106 and the second pair of wires may be activated alternately, which may improve the effectiveness of the device 100 by further spreading the shock waves.


A fluid return line 112 with an inlet near the distal end of the device 100 draws in the conductive fluid from the interior volume, while a fluid pump (not shown) pumps in additional conductive fluid via a fluid inlet (shown in FIG. 5) at a proximal end of the device 100. In this way, the fluid return line 112 and fluid pump circulate the conductive fluid under pressure within the interior volume. Circulation of the conductive fluid may prevent bubbles created by the device 100 from becoming trapped within the distal tip of the device 100 due to the limited space within the tip. Furthermore, circulation of the conductive fluid may aid in cooling the device 100 and treatment site.



FIG. 2 depicts a side sectional view of an example shock wave device 100 for generating forward directed shock waves, in accordance with some embodiments. As shown in FIG. 2, the two conductive wires 106 (e.g., polyimide-insulated copper wires) are positioned along opposing sides of the inner member 104. Each of the wires 106 include uninsulated wire ends 202. The insulating sheath 110 (e.g., polyimide tubing) is positioned in a region proximate to the uninsulated wire ends 202 to decrease the likelihood of electrical current arcing from one wire end to the other. The emitter band 108 is positioned with a forward edge closer to the distal end of the device 100 than the wire ends 202, such that two spark gaps are formed between each of the wire ends 202 and the emitter band 108. The positioning of the wire ends 202, insulating sheath 110, and emitter band 108 makes it so that when a high voltage pulse is applied across the two wires 106, an electrical current will arc from the uninsulated end of one wire to the emitter band 108, and then arc again from the emitter band 108 to the uninsulated end of the other wire. As a result, shock waves are initiated at the distal end of the shock wave device 100, which then propagate through the conductive fluid and the wall of the outer covering 102 to impinge on an occlusion or calcification. The positioning of the emitter band 108 closer to the distal end of the device than the wire ends 202 helps to encourage the shock waves to propagate in a substantially forward direction (e.g., longitudinally out of the distal end of the device 100). Shock waves may be generated repeatedly, as may be desirable by the practitioner to treat a region of vasculature.



FIG. 3 depicts a front sectional view of an example shock wave device 100 for generating forward directed shock waves, in accordance with some embodiments. As shown in FIG. 3, the emitter band 108 circumscribes the two conductive wires 106 (e.g., insulated copper wires) and the fluid return line 112. The fluid return line 112 includes an inlet that draws in conductive fluid from the interior volume of the device to allow the conductive fluid to be circulated within the distal end of the device 100.



FIG. 4 depicts an extended side sectional view of an example shock wave device 100 for generating forward directed shock waves, in accordance with some embodiments. As shown in FIG. 4, in some embodiments, the outer covering of the device 100 includes an angioplasty balloon 402. The balloon 402 may be inflated by pumping additional fluid into the interior volume of the device. The balloon 402 may be inflated before or after applying shock waves to a treatment region. For example, in some embodiments, after forward directed shock waves are initiated using the emitter band 108 at the distal end of the device 100 to break apart an occlusion, the device 100 is advanced further into a patient's vascular, and the balloon 402 is inflated in the region of the occlusion to further treat the region.


In some embodiments, the shock wave device 100 may include secondary emitter bands 404 located in a medial location of the device 100. The device 100 shown in FIG. 4 includes two secondary emitter bands 404, but various numbers of secondary bands 404 may be used. For example, in some embodiments, the device 100 may include a single secondary emitter band 404. In other embodiments, the device 100 may include five or more secondary emitter bands 404. The secondary emitter bands 404 may generate shock waves using a variety of techniques. For example, the secondary emitter bands 404 may generate shock waves using low-profile or coplanar electrodes, such as those described in U.S. Pat. No. 8,888,788 and U.S. application Ser. No. 15/346,132, which are hereby incorporated by reference in their entireties. The shock waves may radiate in a substantially radial direction from the medial location of the secondary emitter bands 404. In some embodiments, the secondary emitter bands 404 may initiate shock waves independently of the emitter band 108 at the distal end of the device 100. For example, in some embodiments, after forward directed shock waves are initiated using the emitter band 108 at the distal end of the device 100 to break apart an occlusion, the device 100 is advanced further into a patient's vascular until the medial location of a secondary emitter band 404 is aligned with the region of the occlusion. Then additional shock waves may be initiated from the secondary emitter band 404 to further treat the region. In order to permit independent operation, additional conductive wires may be provided between the high voltage source and the second emitter bands 404.


In some embodiments, forward directed shock waves from the emitter band 108, radial directed shock waves from the secondary emitter bands 404, and inflation of the angioplasty balloon 402 may be utilized in various sequences and combinations to treat plaques or obstructions in vessels. The vessels may include blood vessels in a patient's vascular system or ureters in the patient's urinary system.



FIG. 5 depicts a side view of an extended length of an example shock wave device 100, in accordance with some embodiments. The shock wave device 100 may be in communication with a fluid source and fluid pump (not shown) that introduces conductive fluid into an interior volume of the device 100 via a fluid inlet 502. The fluid pump may fill the interior volume with fluid to a certain pressure. The conductive fluid may be circulated within the interior volume of the device 100 by drawing fluid into the fluid return line shown in FIGS. 1 and 3, and then dispelling it through a waste outlet 504. The waste outlet 504 may include a pressure relief valve to maintain the fluid pressure within the interior volume of the device while the conductive fluid is circulated. Circulation of the conductive fluid may prevent bubbles created by the device 100 from becoming trapped within the distal tip of the device 100 due to the limited space within the tip. Trapped bubbles may block subsequent shock waves from propagating from the device 100, thus it is beneficial to prevent their build-up. In some embodiments, the waste outlet 504 may be connected to the fluid source so that the fluid pump recirculates the waste fluid.



FIG. 6 is a flowchart representation of an exemplary method for generating forward directed shock waves. As depicted in FIG. 6, a shock wave device is introduced into a vessel (602). The vessel may include blood vessels in a patient's vascular system or ureters in the patient's urinary system. The shock wave device may be the device 100 described in reference to FIGS. 1-5. The shock wave device is advanced within the vessel such that a distal end of the device faces a first treatment region (604). The first treatment region may include a chronic total occlusion (CTO), circumferential calcium, a kidney stone, or other obstructions or concretions. Once the distal end of the shock wave device is facing the first treatment region, a high voltage pulse is applied across first and second wires to initiate first and second shock waves from first and second spark gaps formed between the first and second wires and an emitter band (606). Due to the positioning of the first and second wires and the emitter band, the first and second shock waves propagate in a substantially forward direction out of the shock wave device to impinge on the occlusion or calcium in the first treatment area. In some embodiments, the shock wave device may then be advanced further within the vessel such that an angioplasty balloon is aligned with the first treatment region or with a second treatment region (608). The angioplasty balloon may then be inflated in the first or second treatment regions (610). In this way, conventional angioplasty balloon treatments may be applied to treat one or more treatment regions after the shock wave treatments are applied. Alternatively or in addition, in some embodiments, the shock wave device may be advanced further within the vessel such that a secondary emitter band at a medial location of the device is aligned with the first treatment region or with a second treatment region (612). Third shock waves may then be initiated from the secondary emitter band to apply additional shock wave treatment to the first or second treatment areas (614). Steps 604-614 may be carried out in various sequences or combinations, and repeated as necessary, when appropriate to treat the patient.


While this invention has been particularly shown and described with references to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention. For all of the embodiments described above, the steps of the methods need not be performed sequentially.

Claims
  • 1. A shock wave device, comprising: an outer covering;an inner member, wherein the outer covering and the inner member are connected at a distal end of the device, and wherein a volume between the outer covering and the inner member is fillable with a conductive fluid;a first conductive wire and a second conductive wire extending along a length of the device within the outer covering and ending proximate to the distal end of the device, wherein lengths of the first and second conductive wires are insulated and wherein there is an uninsulated portion on each of the first and second conductive wires at a distal end face thereof; andan electrically conductive emitter band circumscribing distal ends of the first and second conductive wires and with a distal end of the electrically conductive emitter band being proximate to the distal end faces of the first and second conductive wires and forming a first spark gap between the distal end face of the first conductive wire and the electrically conductive emitter band and a second spark gap between the distal end face of the second conductive wire and the electrically conductive emitter band, wherein when the volume is filled with the conductive fluid and a high voltage pulse is applied across the first and second conductive wires, first and second shock waves will be initiated from the first and second spark gaps.
  • 2. The device of claim 1, further comprising: an insulating sheath circumscribing the inner member in a region proximate to the distal ends of the first and second conductive wires.
  • 3. The device of claim 1, wherein the outer covering comprises an angioplasty balloon.
  • 4. The device of claim 1, wherein the electrically conductive emitter band is a cylindrical tube.
  • 5. The device of claim 1, further comprising: a fluid pump connected to a proximal end of the device configured to provide the conductive fluid to the volume between the outer covering and the inner member; anda fluid return line having an inlet proximate to the distal end of the device and configured to remove the conductive fluid from the volume between the outer covering and the inner member,wherein the fluid pump and the fluid return line are configured to circulate the conductive fluid under pressure within the volume between the outer covering and the inner member.
  • 6. The device of claim 5, further comprising: a pressure relief valve at an outlet of the fluid return line.
  • 7. The device of claim 1, comprising a third conductive wire and a fourth conductive wire extending along the length of the device within the outer covering and ending proximate to the distal end of the device, wherein lengths of the third and fourth conductive wires are insulated and wherein there is an uninsulated portion on each of the third and fourth conductive wires at a distal end face thereof; andwherein the electrically conductive emitter band circumscribes distal ends of the third and fourth conductive wires and forms a third spark gap between the distal end face of the third conductive wire and the electrically conductive emitter band and a fourth spark gap between the distal end face of the fourth conductive wire and the electrically conductive emitter band, wherein when the volume is filled with the conductive fluid and a second high voltage pulse is applied across the third and fourth conductive wires, third and fourth shock waves will be initiated from the third and fourth spark gaps.
  • 8. The device of claim 1, wherein the conductive fluid comprises saline or a combination of saline and a contrasting agent.
  • 9. The device of claim 1, further comprising: one or more secondary electrically conductive emitter bands disposed at a medial location of the device and configured to initiate third shock waves from the medial location.
  • 10. The device claim 1, wherein the inner member includes a guide wire lumen.
  • 11. A shock wave device, comprising: an outer covering;an inner member, wherein the outer covering and the inner member are connected at a distal end of the device, and wherein a volume between the outer covering and the inner member is fillable with a conductive fluid;a first conductive wire and a second conductive wire extending along a length of the device within the outer covering and ending proximate to the distal end of the device, wherein lengths of the first and second conductive wires are insulated and wherein there is an uninsulated portion on each of the first and second conductive wires at a distal end face thereof; andan electrically conductive emitter band adjacent to the distal end faces of the first and second conductive wires and forming a first spark gap between the distal end face of the first conductive wire and the electrically conductive emitter band and a second spark gap between the distal end face of the second conductive wire and the electrically conductive emitter band, wherein when the volume is filled with the conductive fluid and a high voltage pulse is applied across the first and second conductive wires, first and second shock waves will be initiated from the first and second spark gaps.
  • 12. The device of claim 11 wherein a distal end of the electrically conductive emitter band is proximate to the distal end faces of the first and second conductive wires.
  • 13. The device of claim 12 wherein the electrically conductive emitter band circumscribes distal ends of the first and second conductive wires.
  • 14. The device of claim 11, further comprising: an insulating sheath circumscribing the inner member in a region proximate to distal ends of the first and second conductive wires.
  • 15. The device of claim 11, wherein the outer covering comprises an angioplasty balloon.
  • 16. The device of claim 11, wherein the electrically conductive emitter band is a cylindrical tube.
  • 17. The device of claim 11, further comprising: a fluid pump connected to a proximal end of the device configured to provide the conductive fluid to the volume between the outer covering and the inner member; anda fluid return line having an inlet proximate to the distal end of the device and configured to remove the conductive fluid from the volume between the outer covering and the inner member,wherein the fluid pump and the fluid return line are configured to circulate the conductive fluid under pressure within the volume between the outer covering and the inner member.
  • 18. The device of claim 11 further including: a third conductive wire and a fourth conductive wire extending along the length of the device within the outer covering and ending proximate to the distal end of the device, wherein lengths of the third and fourth conductive wires are insulated and wherein there is an uninsulated portion on each of the third and fourth conductive wires at a distal end face thereof; andwherein the electrically conductive emitter band is adjacent to distal ends of the third and fourth conductive wires and forms a third spark gap between the distal end face of the third conductive wire and the electrically conductive emitter band and a fourth spark gap between the distal end face of the fourth conductive wire and the electrically conductive emitter band, wherein when the volume is filled with the conductive fluid and a second high voltage pulse is applied across the third and fourth conductive wires, third and fourth shock waves will be initiated from the third and fourth spark gaps.
  • 19. The device of claim 11, further comprising: one or more secondary electrically conductive emitter bands disposed at a medial location of the device and configured to initiate third shock waves from the medial location.
  • 20. The device claim 11, wherein the inner member includes a guide wire lumen.
PRIORITY

This application claims is a continuation of U.S. Ser. No. 15/989,016, filed May 24, 2018, which in turn claims priority to provisional application Ser. No. 62/521,994, filed Jun. 19, 2017, the entire disclosures of which are incorporated by reference.

US Referenced Citations (194)
Number Name Date Kind
3413976 Voolfovich Dec 1968 A
3785382 Schmidt et al. Jan 1974 A
3902499 Shene Sep 1975 A
4027674 Tessier et al. Jun 1977 A
4030505 Tessier Jun 1977 A
4662126 Malcolm May 1987 A
4671254 Fair Jun 1987 A
4685458 Leckrone Aug 1987 A
4809682 Forssmann et al. Mar 1989 A
4813934 Engelson et al. Mar 1989 A
4878495 Grayzei Nov 1989 A
4900303 Lemeison Feb 1990 A
4994032 Sugiyama et al. Feb 1991 A
5009232 Hassler et al. Apr 1991 A
5046503 Schneiderman Sep 1991 A
5057103 Davis Oct 1991 A
5057106 Kasevich et al. Oct 1991 A
5061240 Cherian Oct 1991 A
5078717 Parins et al. Jan 1992 A
5103804 Abele et al. Apr 1992 A
5152767 Sypal et al. Oct 1992 A
5152768 Bhatta Oct 1992 A
5154722 Filip Oct 1992 A
5176675 Watson et al. Jan 1993 A
5195508 Muller et al. Mar 1993 A
5231976 Wiksell Aug 1993 A
5245988 Einars et al. Sep 1993 A
5246447 Rosen et al. Sep 1993 A
5254121 Manevitz et al. Oct 1993 A
5281231 Rosen et al. Jan 1994 A
5295958 Shturman Mar 1994 A
5321715 Trost Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5336234 Vigil et al. Aug 1994 A
5362309 Carter Nov 1994 A
5364393 Auth et al. Nov 1994 A
5368591 Lennox et al. Nov 1994 A
5395335 Jang Mar 1995 A
5417208 Winkler May 1995 A
5425735 Rosen et al. Jun 1995 A
5431173 Chin et al. Jul 1995 A
5472406 De La Torre et al. Dec 1995 A
5582578 Zhong et al. Dec 1996 A
5603731 Whitney Feb 1997 A
5609606 O'Boyle Mar 1997 A
5662590 De La Torre et al. Sep 1997 A
5846218 Brisken et al. Dec 1998 A
5931805 Brisken Aug 1999 A
6007530 Domhofer et al. Dec 1999 A
6024718 Chen et al. Feb 2000 A
6033371 Torre et al. Mar 2000 A
6080119 Schwarze et al. Jun 2000 A
6083232 Cox Jul 2000 A
6113560 Simnacher Sep 2000 A
6186963 Schwarze et al. Feb 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217531 Reitmajer Apr 2001 B1
6267747 Samson et al. Jul 2001 B1
6277138 Levinson et al. Aug 2001 B1
6287272 Brisken et al. Sep 2001 B1
6352535 Lewis et al. Mar 2002 B1
6367203 Graham et al. Apr 2002 B1
6371971 Tsugita et al. Apr 2002 B1
6398792 O'Connor Jun 2002 B1
6406486 De La Torre et al. Jun 2002 B1
6514203 Bukshpan Feb 2003 B2
6524251 Rabiner et al. Feb 2003 B2
6589253 Comish et al. Jul 2003 B1
6607003 Wilson Aug 2003 B1
6638246 Naimark et al. Oct 2003 B1
6652547 Rabiner et al. Nov 2003 B2
6689089 Tiedtke et al. Feb 2004 B1
6736784 Menne et al. May 2004 B1
6740081 Hilal May 2004 B2
6755821 Fry Jun 2004 B1
6989009 Lafontaine Jan 2006 B2
7241295 Maguire Jul 2007 B2
7505812 Eggers et al. Mar 2009 B1
7569032 Naimark et al. Aug 2009 B2
7873404 Patton Jan 2011 B1
7951111 Drasler et al. May 2011 B2
8162859 Schultheiss et al. Apr 2012 B2
8556813 Cioanta et al. Oct 2013 B2
8574247 Adams et al. Nov 2013 B2
8728091 Hakala et al. May 2014 B2
8747416 Hakala et al. Jun 2014 B2
8888788 Hakala et al. Nov 2014 B2
8956371 Hawkins et al. Feb 2015 B2
8956374 Hawkins et al. Feb 2015 B2
9005216 Hakala et al. Apr 2015 B2
9011462 Adams et al. Apr 2015 B2
9011463 Adams et al. Apr 2015 B2
9044618 Hawkins et al. Jun 2015 B2
9044619 Hawkins et al. Jun 2015 B2
9198825 Katragadda Dec 2015 B2
9333000 Hakala et al. May 2016 B2
9421025 Hawkins et al. Aug 2016 B2
9522012 Adams Dec 2016 B2
9730715 Adams Aug 2017 B2
9993292 Adams et al. Jun 2018 B2
10226265 Ku et al. Mar 2019 B2
10555744 Nguyen et al. Feb 2020 B2
10966737 Nguyen Apr 2021 B2
20010044596 Jaafar Nov 2001 A1
20020045890 Celliers et al. Apr 2002 A1
20020177889 Brisken et al. Nov 2002 A1
20030004434 Greco et al. Jan 2003 A1
20030060813 Loeb et al. Mar 2003 A1
20030176873 Chernenko et al. Sep 2003 A1
20030229370 Miller Dec 2003 A1
20040044308 Naimark et al. Mar 2004 A1
20040097963 Seddon May 2004 A1
20040097996 Rabiner et al. May 2004 A1
20040162508 Uebelacker Aug 2004 A1
20040254570 Hadjicostis et al. Dec 2004 A1
20050015953 Keidar Jan 2005 A1
20050021013 Visuri et al. Jan 2005 A1
20050059965 Eberl et al. Mar 2005 A1
20050075662 Pedersen et al. Apr 2005 A1
20050090888 Hines et al. Apr 2005 A1
20050113722 Schultheiss May 2005 A1
20050113822 Fuimaono et al. May 2005 A1
20050171527 Bhola Aug 2005 A1
20050228372 Truckai et al. Oct 2005 A1
20050245866 Azizi Nov 2005 A1
20050251131 Lesh Nov 2005 A1
20060004286 Chang et al. Jan 2006 A1
20060074484 Huber Apr 2006 A1
20060184076 Gm et al. Aug 2006 A1
20060190022 Beyar et al. Aug 2006 A1
20070016112 Schultheiss et al. Jan 2007 A1
20070088380 Hirszowicz et al. Apr 2007 A1
20070129667 Tiedtke et al. Jun 2007 A1
20070239082 Schultheiss et al. Oct 2007 A1
20070239253 Jagger et al. Oct 2007 A1
20070244423 Zumeris et al. Oct 2007 A1
20070255270 Camey Nov 2007 A1
20070282301 Segalescu et al. Dec 2007 A1
20070299481 Syed et al. Dec 2007 A1
20080097251 Babaev Apr 2008 A1
20080188913 Stone et al. Aug 2008 A1
20080294037 Ritcher Nov 2008 A1
20090041833 Bettinger et al. Feb 2009 A1
20090247945 Ievit et al. Oct 2009 A1
20090254114 Hirszowicz et al. Oct 2009 A1
20090312768 Hawkins et al. Dec 2009 A1
20100016862 Hawkins et al. Jan 2010 A1
20100022950 Anderson et al. Jan 2010 A1
20100036294 Mantell et al. Feb 2010 A1
20100094209 Drasler et al. Apr 2010 A1
20100114020 Hawkins et al. May 2010 A1
20100114065 Hawkins May 2010 A1
20100121322 Swanson May 2010 A1
20100125244 McAndrew May 2010 A1
20100274189 Kurth et al. Oct 2010 A1
20100305565 Truckai et al. Dec 2010 A1
20110034832 Cioanta et al. Feb 2011 A1
20110118634 Golan May 2011 A1
20110166570 Hawkins et al. Jul 2011 A1
20110208185 Diamant et al. Aug 2011 A1
20110295227 Hawkins et al. Dec 2011 A1
20120071889 Mantell et al. Mar 2012 A1
20120095461 Herscher et al. Apr 2012 A1
20120203255 Hawkins et al. Aug 2012 A1
20120221013 Hawkins et al. Aug 2012 A1
20130030431 Adams Jan 2013 A1
20130030447 Adams Jan 2013 A1
20140005576 Adams et al. Jan 2014 A1
20140039513 Hakala et al. Feb 2014 A1
20140052145 Adams et al. Feb 2014 A1
20140052147 Hakala et al. Feb 2014 A1
20140074111 Hakala et al. Mar 2014 A1
20140074113 Hakala et al. Mar 2014 A1
20140243820 Adams et al. Aug 2014 A1
20140243847 Hakala et al. Aug 2014 A1
20140288570 Adams Sep 2014 A1
20140350401 Sinelnikov Nov 2014 A1
20150073430 Hakala et al. Mar 2015 A1
20150238208 Adams et al. Aug 2015 A1
20150238209 Hawkins et al. Aug 2015 A1
20150320432 Adams Nov 2015 A1
20160151081 Adams et al. Jun 2016 A1
20160174995 Turjman et al. Jun 2016 A1
20160183957 Hakala et al. Jun 2016 A1
20160324534 Hawkins et al. Nov 2016 A1
20170135709 Nguyen et al. May 2017 A1
20170151415 Maeda et al. Jun 2017 A1
20170311965 Adams Nov 2017 A1
20180098779 Betelia et al. Apr 2018 A1
20180360482 Nguyen Dec 2018 A1
20190150960 Nguyen et al. May 2019 A1
20190365400 Adams et al. Dec 2019 A1
20210085347 Phan et al. Mar 2021 A1
20220183708 Phan et al. Jun 2022 A1
Foreign Referenced Citations (68)
Number Date Country
2009313507 Nov 2014 AU
1269708 Oct 2000 CN
101043914 Sep 2007 CN
102057422 May 2011 CN
102271748 Dec 2011 CN
102765785 Nov 2012 CN
103068330 Apr 2013 CN
203564304 Apr 2014 CN
203564304 Apr 2014 CN
104582621 Apr 2015 CN
104736073 Jun 2015 CN
105188848 Dec 2015 CN
3038445 May 1982 DE
442199 Aug 1991 EP
571306 Nov 1993 EP
623360 Nov 1994 EP
1596746 Nov 2005 EP
2253884 Nov 2010 EP
2362798 Apr 2014 EP
3434209 Jan 2019 EP
3473195 Apr 2019 EP
60-191353 Dec 1985 JP
S61135648 Jun 1986 JP
62-099210 Jun 1987 JP
62-275446 Nov 1987 JP
3-63059 Mar 1991 JP
6-125915 May 1994 JP
7-47135 Feb 1995 JP
8-89511 Apr 1996 JP
10-314177 Dec 1998 JP
2002538932 Nov 2002 JP
2004081374 Mar 2004 JP
2004357792 Dec 2004 JP
2005095410 Apr 2005 JP
2005515825 Jun 2005 JP
2006516465 Jul 2006 JP
2007532182 Nov 2007 JP
2008506447 Mar 2008 JP
2011513694 Apr 2011 JP
2011520248 Jul 2011 JP
2011524203 Sep 2011 JP
2011528963 Dec 2011 JP
2012505050 Mar 2012 JP
2012508042 Apr 2012 JP
2014208305 Nov 2014 JP
2015528327 Sep 2015 JP
6029828 Nov 2016 JP
6081510 Feb 2017 JP
WO-1992003975 Mar 1992 WO
WO-1996024297 Aug 1996 WO
WO-1999002096 Jan 1999 WO
WO-2004069072 Aug 2004 WO
WO-2005099594 Oct 2005 WO
WO-2006006169 Jan 2006 WO
WO-2006127158 Nov 2006 WO
WO-2007088546 Aug 2007 WO
WO-2007149905 Dec 2007 WO
WO-2009121017 Oct 2009 WO
WO-2009126544 Oct 2009 WO
WO-2009152352 Dec 2009 WO
WO-2010014515 Feb 2010 WO
WO-2010014515 Aug 2010 WO
WO-2010054048 Sep 2010 WO
WO-2011143468 Nov 2011 WO
WO-2012025833 Mar 2012 WO
WO-2013169807 Nov 2013 WO
WO-2016077627 May 2016 WO
WO-2016109739 Jul 2016 WO
Non-Patent Literature Citations (157)
Entry
Advisory Action received for U.S. Appl. No. 13/615,107, dated Nov. 6, 2015, 3 pages.
Advisory Action Received for U.S. Appl. No. 12/482,995, dated Jun. 2, 2014, 3 pages.
Advisory Action Received for U.S. Appl. No. 12/482,995, dated Sep. 29, 2011, 2 pages.
Advisory Action Received for U.S. Appl. No. 12/581,295, dated Jul. 3, 2014, 3 pages.
Advisory Action Received for U.S. Appl. No. 13/049,199, dated Jun. 7, 2012, 3 pages.
Advisory Action received for U.S. Appl. No. 13/267,383, dated Jan. 6, 2014, 4 pages.
Decision of Appeals Notice received for Japanese Patent Application No. 2011-534914, dated Oct. 17, 2016, 2 pages of Official Copy only.
Decision to Grant received for European Patent Application No. 13756766.5, dated May 27, 2016, 2 pages.
Decision to Grant received for European Patent Application No. 09825393.3, dated Mar. 13, 2014, 2 pages.
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 09763640.1, dated Oct. 10, 2013, 5 pages.
Extended European Search Report and Search Opinion received for European Patent Application No. 09825393.3, dated Feb. 28, 2013, 6 pages.
Extended European Search Report received for European Patent Application No. 13827971.6, dated Apr. 12, 2016, 8 pages.
Final Office Action received for U.S. Appl. No. 12/482,995, dated Jul. 22, 2011, 14 pages.
Final Office Action received for U.S. Appl. No. 12/501,619, dated Feb. 21, 2012, 12 pages.
Final Office Action received for U.S. Appl. No. 12/611,997, dated Dec. 11, 2012, 9 pages.
Final Office Action received for U.S. Appl. No. 12/611,997, dated Nov. 10, 2011, 15 pages.
Final Office Action received for U.S. Appl. No. 13/049,199, dated Apr. 4, 2012, 10 pages.
Final Office Action received for U.S. Appl. No. 13/207,381, dated Nov. 2, 2012, 7 pages.
Final Office Action received for U.S. Appl. No. 14/271,342 dated Feb. 27, 2015, 7 pages.
Final Office Action received for U.S. Appl. No. 12/482,995, dated Feb. 20, 2014, 11 pages.
Final Office Action received for U.S. Appl. No. 12/581,295, dated Jun. 5, 2014, 14 pages.
Final Office Action received for U.S. Appl. No. 12/611,997, dated Oct. 24, 2013 10 pages.
Final Office Action received for U.S. Appl. No. 13/049,199 dated Aug. 11, 2014, 8 pages.
Final Office Action received for U.S. Appl. No. 13/207,381, dated Nov. 7, 2013 7 pages.
Final Office Action Received for U.S. Appl. No. 13/267,383, dated May 28, 2015, 12 pages.
Final Office Action received for U.S. Appl. No. 13/267,383, dated Oct. 25, 2013 8 pages.
Final Office Action received for U.S. Appl. No. 13/534,658, dated Aug. 23, 2016, 11 pages.
Final Office Action received for U.S. Appl. No. 13/615,107 dated Sep. 1, 2015, 9 pages.
Final Office Action received for U.S. Appl. No. 13/646,570, dated Dec. 23, 2014, 10 pages.
Final Office Action received for U.S. Appl. No. 14/229,735, dated Aug. 27, 2015, 7 pages.
Final Office Action received for U.S. Appl. No. 14/273,063, dated Dec. 28, 2016, 11 pages.
Final Office Action received for U.S. Appl. No. 14/660,539, dated Aug. 3, 2017, 11 pages.
Intention to Grant received for European Patent Application No. 13756766.5, dated Jan. 8, 2016, 5 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/047070, dated Dec. 23, 2010, 7 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/063354, dated May 19, 2011, 6 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/047070, dated Feb. 21, 2013, 7 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/023172, dated Aug. 15, 2013, 6 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/031805, dated Feb. 19, 2015, 11 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/039987 dated Nov. 20, 2014, 11 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/048277 dated Jan. 8, 2015, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/055431, dated Feb. 26, 2015, 7 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/059533 dated Mar. 26, 2015, 10 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/029088, dated Nov. 17, 2016, 8 pages.
International Search Report and Written Opinion Received for PCT Application No. PCT/US2018/034855, dated Aug. 23, 2018, 13 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/031805 dated May 20, 2013, 13 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/039987, dated Sep. 23, 2013, 15 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/048277, dated Oct. 2, 2013, 14 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/055431, dated Nov. 12, 2013, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/059533, dated Nov. 7, 2013, 14 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/029088 dated Jul. 16, 2015, 13 pages.
International Search Report received for PCT Patent Application No. PCT/US2009/047070, dated Jan. 19, 2010, 4 pages.
International Search Report received for PCT Patent Application No. PCT/US2009/063354, dated Jun. 11, 2010, 3 pages.
International Search Report received for PCT Patent Application No. PCT/US2012/023172, dated Sep. 28, 2012, 3 pages.
International Written Opinion received for PCT Patent Application No. PCT/US2009/063354, dated Jun. 11, 2010, 4 pages.
International Written Opinion received for PCT Patent Application No. PCT/US2011/047070, dated May 1, 2012, 5 pages.
Non Final Office Action received for U.S. Appl. No. 12/482,995, dated Aug. 13, 2014, 10 pages.
Non Final Office Action received for U.S. Appl. No. 12/482,995, dated Jul. 12, 2013, 11 pages.
Non Final Office Action received for U.S. Appl. No. 12/611,997, dated Nov. 26, 2014, 8 pages.
Non Final Office Action received for U.S. Appl. No. 13/207,381, dated Nov. 25, 2014, 5 pages.
Non Final Office Action received for U.S. Appl. No. 13/465,264, dated Oct. 29, 2014, 13 pages.
Non Final Office Action received for U.S. Appl. No. 13/646,570, dated Oct. 29, 2014, 10 pages.
Non Final Office Action received for U.S. Appl. No. 14/079,463, dated Mar. 4, 2014, 9 pages.
Non Final Office Action received for U.S. Appl. No. 12/482,995, dated Feb. 11, 2011, 27 pages.
Non Final Office Action received for U.S. Appl. No. 12/501,619, dated Nov. 3, 2011, 10 pages.
Non Final Office Action received for U.S. Appl. No. 12/611,997, dated Apr. 8, 2013, 9 pages.
Non Final Office Action received for U.S. Appl. No. 12/611,997, dated Aug. 24, 2012, 11 pages.
Non Final Office Action received for U.S. Appl. No. 12/611,997, dated Jun. 21, 2011, 13 pages.
Non Final Office Action received for U.S. Appl. No. 13/049,199, dated Dec. 12, 2011, 10 pages.
Non Final Office Action received for U.S. Appl. No. 13/207,381, dated Feb. 22, 2013, 7 pages.
Non Final Office Action received for U.S. Appl. No. 13/207,381, dated Jun. 12, 2012, 6 pages.
Non Final Office Action received for U.S. Appl. No. 13/534,658, dated Mar. 11, 2016, 12 pages.
Non Final Office Action received for U.S. Appl. No. 14/218,858, dated Mar. 30, 2016, 13 pages.
Non Final Office Action received for U.S. Appl. No. 14/515,130, dated Jan. 14, 2016, 16 pages.
Non-Final Office Action received for U.S. Appl. No. 12/501,619, dated Jan. 28, 2014, 10 pages.
Non-Final Office Action received for U.S. Appl. No. 12/581,295, dated Jan. 15, 2015, 14 pages.
Non-Final Office Action received for U.S. Appl. No. 12/581,295, dated Mar. 10, 2014, 11 pages.
Non-Final Office Action received for U.S. Appl. No. 12/611,997, dated Feb. 13, 2014, 9 pages.
Non-Final Office Action received for U.S. Appl. No. 13/049,199, dated Feb. 4, 2014, 8 pages.
Non-Final Office Action received for U.S. Appl. No. 13/207,381, dated Feb. 25, 2014, 8 pages.
Non-Final Office Action received for U.S. Appl. No. 13/267,383, dated Feb. 25, 2015, 9 pages.
Non-Final Office Action received for U.S. Appl. No. 13/465,264, dated Dec. 23, 2014, 13 pages.
Non-Final Office Action received for U.S. Appl. No. 13/615,107, dated Apr. 24, 2015, 9 pages.
Non-Final Office Action received for U.S. Appl. No. 13/646,583, dated Oct. 31, 2014, 8 pages.
Non-Final Office Action received for U.S. Appl. No. 14/061,554, dated Mar. 12, 2014, 14 pages.
Non-Final Office Action received for U.S. Appl. No. 14/271,276, dated Aug. 4, 2014, 7 pages.
Non-Final Office Action received for U.S. Appl. No. 14/271,342, dated Sep. 2, 2014, 6 pages.
Non-Final Office Action received for U.S. Appl. No. 14/273,063, dated Jun. 3, 2016, 9 pages.
Non-Final Office Action received for U.S. Appl. No. 14/660,539, dated Nov. 24, 2017, 10 pages.
Non-Final Office Action received for U.S. Appl. No. 14/693,155, dated Jan. 15, 2016, 6 pages.
Non-Final Office Action received for U.S. Appl. No. 14/660,539, dated Mar. 6, 2017, 14 pages.
Notice of Acceptance Received for Australian Patent Application No. 2009257368, dated Aug. 28, 2014, 2 pages.
Notice of Acceptance Received for Australian Patent Application No. 2009313507, dated Nov. 17, 2014, 2 pages.
Notice of Allowance received for Canadian Patent Application No. 2,727,429, dated May 26, 2015, 1 page.
Notice of Allowance received for Canadian Patent Application No. 2,779,600, dated Jul. 7, 2017, 1 page.
Notice of Allowance received for Japanese Patent Application No. 2015-036444, dated Jan. 13, 2017, 3 pages (Official Copy Only).
Notice of Allowance received for U.S. Appl. No. 14/515,130, dated May 2, 2016, 8 pages.
Notice of Allowance received for U.S. Appl. No. 14/515,130, dated May 25, 2016, 3 pages.
Notice of Allowance received for U.S. Appl. No. 12/581,295, dated Jul. 10, 2015, 15 pages.
Notice of Allowance received for U.S. Appl. No. 12/581,295, dated Jul. 29, 2015, 7 pages.
Notice of Allowance received for U.S. Appl. No. 12/611,997, dated Apr. 15, 2015, 7 pages.
Notice of Allowance received for U.S. Appl. No. 13/207,381, dated Apr. 14, 2015, 7 pages.
Notice of Allowance received for U.S. Appl. No. 13/465,264, dated May 8, 2015, 7 pages.
Notice of Allowance received for U.S. Appl. No. 13/957,276, dated Aug. 28, 2015, 9 pages.
Notice of Allowance received for U.S. Appl. No. 14/271,276, dated Feb. 25, 2015, 8 pages.
Notice of Allowance received for U.S. Appl. No. 12/482,995, dated Dec. 24, 2014, 6 pages.
Notice of Allowance received for U.S. Appl. No. 13/049,199, dated Dec. 15, 2014, 7 pages.
Notice of Allowance received for U.S. Appl. No. 13/049,199, dated Jan. 13, 2015, 4 pages.
Notice of Allowance received for U.S. Appl. No. 13/646,570, dated Mar. 11, 2015, 7 pages.
Notice of Allowance received for U.S. Appl. No. 13/777,807, dated May 19, 2015, 13 pages.
Notice of Allowance received for U.S. Appl. No. 13/831,543, dated Oct. 8, 2014, 14 pages.
Notice of Allowance received for U.S. Appl. No. 14/061,554, dated Apr. 25, 2014, 8 pages.
Notice of Allowance received for U.S. Appl. No. 14/079,463, dated Apr. 1, 2014, 5 pages.
Notice of Allowance received for U.S. Appl. No. 14/218,858, dated Aug. 26, 2016, 8 pages.
Notice of Allowance received for U.S. Appl. No. 14/271,342, dated Mar. 13, 2015, 5 pages.
Notice of Allowance received for U.S. Appl. No. 14/273,063, dated Apr. 12, 2017. 7 pages.
Notice of Allowance received for U.S. Appl. No. 14/660,539, dated Apr. 6, 2018, 7 pages.
Notice of Allowance received for U.S. Appl. No. 14/693,155, dated Apr. 26, 2016, 9 pages.
Notice of Allowance received for U.S. Appl. No. 13/615,107, dated Dec. 31, 2015, 10 pages.
Office Action received for Australian Patent Application No. 2009257368, dated Apr. 28, 2014, 4 pages.
Office Action received for Australian Patent Application No. 2009257368, dated Jul. 31, 2013, 4 pages.
Office Action received for Australian Patent Application No. 2009313507, dated Nov. 13, 2013, 3 pages.
Office Action received for Canadian Patent Application No. 2,727,429, dated Apr. 14, 2015, 4 pages.
Office Action received for Canadian Patent Application No. 2,779,600, dated Jan. 4, 2016, 6 pages.
Office Action received for Canadian Patent Application No. 2,779,600, dated Oct. 19, 2016, 3 pages.
Office Action received for Chinese Patent Application No. 200980153687.X, dated Dec. 26, 2012, 11 pages of Official copy only.
Office Action received for Chinese Patent Application No. 200980153687.X, dated Jul. 11, 2013, 11 pages (Official copy only).
Office Action received for Chinese Patent Application No. 201380033808.3, dated Jul. 5, 2016. 9 pages (3 pages of English translation and 6 pages of Official copy).
Office Action received for Chinese Patent Application No. 201380041656.1, dated Jul. 5, 2016. 9 pages (4 pages of English translation and 5 pages of Official copy).
Office Action received for Chinese Patent Application No. 201380042887.4, dated Aug. 8, 2016, 9 pages (4 pages of English translation and 5 pages of Official copy).
Office Action received for European Patent Application No. 09763640.1, dated Dec. 2, 2016, 4 pages.
Office Action received for Japanese Patent Application No. 2011-513694, dated Aug. 27, 2013, 6 pages (3 pages of English Translation and 3 pages of Official copy).
Office Action Received for Japanese Patent Application No. 2011-513694, dated Jun. 10, 2014, 4 pages total (2 pages of Official Copy and 2 pages of English Translation).
Office Action Received for Japanese Patent Application No. 2011-534914, dated Jan. 13, 2015, 9 pages(7 pages of English Translation and 2 pages of Official Copy.
Office Action received for Japanese Patent Application No. 2011-534914, dated May 10, 2016, 10 pages ( 4 pages of Official Copy and 6 pages of English Translation).
Office Action received for Japanese Patent Application No. 2011-534914, dated Oct. 1, 2013, 5 pages (2 pages of English Translation and 3 pages of Official copy).
Office Action received for Japanese Patent Application No. 2014-158517, dated Feb. 15, 2017, 8 pages (5 pages of English Translation and 3 pages of Official Copy Only).
Office Action Received for Japanese Patent Application No. 2014-158517, dated Jun. 22, 2017. 14 pages of official Copy only.
Office Action Received for Japanese Patent Application No. 2014-158517, dated May 19, 2015, 5 pages (2 pages of English Translation and 3 pages of Official Copy).
Office Action received for Japanese Patent Application No. 2015-036444, dated Feb. 23, 2016, 3 pages of English translation only.
Office Action received for Japanese Patent Application No. 2016-143049, dated Apr. 24, 2017. 5 pages ( 2 pages of English Translation and 3 pages of Official copy).
Office Action received for Japanese Patent Application No. 2015-036444, dated Sep. 14, 2016, 5 pages (3 Pages of English Translation and 2 Pages of Official Copy).
Office Action received for Japanese Patent Application No. 2016-094326, dated Dec. 2, 2016, 4 pages (2 pages of English Translation and 2 pages Official Copy Only).
Office Action received for Japanese Patent Application No. 2016-094326, dated Jul. 6, 2017, 2 pages (Official Copy Only).
Rosenschein et al., (1992). “Shock-Wave Thrombus Ablation, a New Method for Noninvasive Mechanical Thrombolysis,” The American Journal of Cardiology, 70:1358-1361.
Zhong et al., (1997). “Transient Oscillation of Cavitation Bubbles Near Stone Surface During Electrohydraulic Lithotripsy,” Journal of Endourology, 11:55-61.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/050899 dated Feb. 2, 2021, 19 pages.
Invitation to Pay Additional Fees for PCT Patent Application No. PCT/US2020/050899, dated Nov. 5, 2020, 13 pages.
Third Party Preissuance Submission for U.S. Appl. No. 15/989,016, filed Mar. 8, 2019, 3 pages.
Unpublished U.S. Appl. No. 17/021,905, filed Sep. 15, 2020, titled “Lesion Crossing Shock Wave Catheter”.
Extended European Search Report received for European Patent Application No. 21191690.3, dated Jan. 17, 2022, 5 pages.
International Search Report received for PCT Patent Application No. PCT/US2021/062666 dated Mar. 25, 2022, 9 pages.
Office Action received for Chinese Patent Application No. 201880040835.6, dated Oct. 14, 2022, 8 pages. English translation.
Office Action received for Japanese Patent Application No. 2019-569918, dated Feb. 14, 2022, 6 pages. English translation.
Final Office Action received for U.S. Appl. No. 17/021,905, dated Sep. 12, 2022, 11 pages.
Advisory Action received for U.S. Appl. No. 17/021,905, dated Nov. 22, 2022, 4 pages.
Non-Final Office Action received for U.S. Appl. No. 17/021,905, dated Apr. 8, 2022, 11 pages.
Requirement for Restriction/Election received for U.S. Appl. No. 17/021,905 dated Nov. 8, 2021, 5 pages.
Related Publications (1)
Number Date Country
20210177445 A1 Jun 2021 US
Provisional Applications (1)
Number Date Country
62521994 Jun 2017 US
Continuations (1)
Number Date Country
Parent 15989016 May 2018 US
Child 17185276 US