The invention will be explained in more detail below, by way of example and with reference to the Figures, wherein:
As schematically shown in
Material removal is effected by separating material layers in the cornea using an adjustable telescope 6 to focus the high-enery pulsed laser beam 3 to a focus 7 located in the cornea 5. Each pulse of the pulsed laser radiation 3 generates an optical breakthrough in the tissue, such optical breakthrough in turn initiating a plasma bubble 8. Thus, the tissue layer separation covers a larger area than the focus 7 of the laser radiation 3, although the conditions for achieving the breakthrough are achieved only in the focus 7. Then, many plasma bubbles 8 are generated by suitable deflection of the laser beam 3 during treatment. This is shown schematically in
Due to the laser radiation 3 the laser surgical instrument 2 acts like a surgical knife directly separating material layers within the cornea 5 without damaging the surface of the cornea 5. If a cut 16 is guided up to the surface of the cornea by further generation of plasma bubbles 8, material of the cornea 5 isolated by the cut surface 9 can be pulled out laterally in the direction of the arrow 17 and can thus be removed.
On the one hand, displacement of the focus is then effected in the embodiment by means of the deflecting unit 10 shown schematically in
Due to the corneal curvature which is between 7 and 10 mm the partial volume T also has to be curved accordingly. Thus, the corneal curvature requires a curved cutting plane. This is effected by suitable control of the deflecting unit 10 and of the telescope 6.
The laser S generates laser pulses having a duration in the fs range. First, the laser pulses reach the laser pulse modulator 15 which influences the laser pulses (in a manner yet to be described) according to a control signal from the control unit 17. Next, at least the treatment laser pulses reach the scanner 10 and pass through the objective 6 into the patient's eye 1. There, they are focused and generate optical breakthroughs in the focus 7. The modulator sets the energy of the laser pulses, i.e. the fluence of the individual laser pulses. As the modulator an AOM or an electro-optical modulator (EOM), a Pockels cell, a liquid crystal element (LC element), a fiber-optical switching element or a variable attenuator, e.g. a neutral density filter, may be used.
The laser surgical instrument 1 can then work in different modes of operation which may each be realized separately or in combination and which relate to the energy or the fluence F of each laser pulse or to the local distance at which the laser pulses arc sequentially arranged so as to generate the cut surface 9.
The circles entered into the graph result from experimental measurements and represent points of measurement. Measurement was effected at a pulse duration of 300 fs and a 3 μm spot diameter of the focus 7.
The instrument 1 may be operated in an operational range 18 according to
In a first variant, the instrument 1 works with a spacing a of the laser focuses 7, i. e. of the centers of interaction, which is below a maximum value amax=10 μm. From this value, the graph for the threshold value M drops considerably towards smaller spacings a, making it possible to work with a clearly reduced fluence F.
In a second variant, an upper limit Fmax is employed for the fluence F. The value for this is 5 J/cm2.
In a combination of the first and second variants, both a≦amax and F≦Fmax apply. The spacings of the centers of interaction as well as the fluence of the laser pulses are located within the region composed of partial areas 18.1 and 18.2 which are yet to be explained. Since the laser surgical instrument 1, in both variants per se as well as in the combination of these two variants, respectively generates optical breakthroughs in the material, e.g. the cornea 5, the fluence F is, of course, always above the threshold value M, because each laser pulse securely generates an optical breakthrough 8 only above said threshold value.
A third variant modifies the second variant such that the fluence F of each laser pulse only exceeds the threshold value M at the most by an excessive energy of between 3 and 3.5 J/cm2. The fluence F is then kept below the dotted line of
In a different embodiment, the laser surgical instrument 1 works with laser pulses of which not every single one securely generates an optical breakthrough 8. However, in order to achieve material separation in spite of this, the centers of interaction are sequentially arranged at a spacing a which is smaller than the diameter d of the laser focus, i.e. smaller than the size of the zones of interaction. This mode of operation is shown in more detail in
As a result, the instrument 1 works in the operating range 19, which is characterized in that the distance between two subsequent centers of interaction is smaller than the extent of the zones of interaction or than the size of the focus spot and in that the fluence F is below the threshold value M required to generate optical breakthroughs.
In practice, a spacing of the laser focuses or of the centers of interaction, respectively, of approximately 3-5 μm has turned out to be well-suited for generating high-quality cuts with as little pulse energy as possible and requiring a limited amount of time.
In a laser surgical instrument 1 which produces very fine cuts, e.g. if the above-described fluence values are used for the laser pulses, the cut is not visible even immediately upon being produced, either because plasma bubbles or gas bubbles appear, having a smaller size and a shorter life than during operation outside the region 18, or because no bubbles form at all (during operation in the region 19). This may make it more difficult to prepare the isolated cut, e.g. by means of a spatula. A manual procedure used in many applications and wherein residual bridges which have not yet been fully separated are pierced by a spatula or other tools can become very difficult in case of such smooth cut.
In order to avoid this, the control device 17 of the laser surgical instrument I carries out the division of the cut shown in
In order that a surgeon may feel this pocket with a spatula or other surgical instrument so as to sever possible bridges of tissue between the lens-shaped partial volume T and the rest of the cornea 5, the anterior portion F as well as the posterior portion L are respectively divided into two partial regions. A core region F1 or L1, which is substantially circular, is respectively surrounded by an annular peripheral region F2 or L2. In the core region located near the optical axis of vision, a small size of plasma bubble, i.e. a fine line of cutting, is worked with. This may be effected, for example, by operation in the regions 18 or 19 of
The diameters of the central regions F1 and L1 are preferably greater than the pupil diameter P of the treated eye. Thus, the peripheral regions F2 and L1, where a rougher cut was employed, are located outside the region of the cornea 5 used for optical perception and accordingly do not have a disturbing effect. The purpose of dividing the portions L and F is to simultaneously achieve the aspect of maximum precision of cutting as well as of good handling due to the visibility of the cut in the peripheral region as a result of differences in processing.
If plasma bubbles are employed for material separation, the energy of the laser pulses is above the threshold value M. As already mentioned, the shape of the bubbles resulting from the absorption of the laser energy in the tissue is subject to change over time. A first phase in which individual bubbles form is followed by a phase of agglomeration in which several individual bubbles join to form larger macrobubbles. Finally, dissipation is noted as the last phase in which the gas content of the macrobubbles is absorbed by the surrounding tissue until the bubbles have finally vanished again completely. Now, macrobubbles have the adverse property of deforming the surrounding tissue. If a further center of interaction is placed at a certain position in the deformed tissue to form the beginning of a plasma bubble, the position of the center of interaction will change and so will the position of the tissue separation effected thereby as soon as the phase of dissipation begins, in which the bubbles disappear and the deformed tissue relaxes (at least partially). Since the macrobubbles form only after a characteristic time and are not present already upon introducing laser pulse energy, it is envisaged for one variant of the laser surgical instrument 1 that the time between application of the laser energy in two regions of the tissue potentially influencing each other be kept sufficiently short so as to be shorter than a characteristic time which is required to form macrobubbles.
During isolation of the lens-shaped partial volume T, regions of the posterior and anterior portions of the cut surface 9 having an adverse effect on each other are located in the region of the optical axis of vision. If the cut is produced in the anterior portion F of the cut surface 9 only at a time when the previously processed posterior portion L already comprises macrobubbles, the cut surface of the anterior portion F is located within deformed tissue. The result after relaxation would be an undesired undulation of the cut surface 9 in the anterior portion F. Therefore, the laser surgical instrument 1 produces the cut surface in the anterior portion F and in the posterior portion L within a time interval which is smaller than the characteristic time it takes for macrobubbles to form. Typically, such time is approximately 5 s.
One way of achieving this consists in dividing the anterior and posterior portions into corresponding partial surfaces and alternating between the partial surfaces of the posterior and anterior portions during production of the cut surface so that at least in the central region the characteristic time for producing partial surfaces, posteriorly and anteriorly, is not exceeded. A further possibility consists in a suitable sequential arrangement of the centers of interaction. Thus, for example, first the posterior portion L can be cut in a spiral leading towards the optical axis of vision from the outside to the inside and directly afterwards the anterior portion F can be cut in a spiral extending outwards from the axis of vision. The generated interactions, at least in a core region around the axis of vision, are then within the time frame given by the characteristic period of time so that there is no influence on the macrobubbles during processing of the anterior portion.
During division into the partial surfaces which the laser surgical instrument 1 effects under the control of the control device 17 it is ensured that a posterior region to be worked on is not disturbed by an already processed anterior surface or zone of interaction acting as a scattering center.
The described cut shapes, surface divisions, etc. are effected by the laser surgical instrument under the control of the control device 17. The control device 17 causes operation of the laser surgical instrument 1 by the process features described herein.
As far as embodiments of the laser surgical instruments have been described above, they can be realized alone as well as in combination, depending on the specific realization of the laser surgical instrument 1. Instead of being employed in laser surgery, the instrument 1 can also be used for non-surgical material processing, for example in the production of wave guides or the processing of flexible materials.
The present application claims the benefit of U.S. Provisional Application No. 60/726,887, filed Oct. 14, 2005, which is incorporated herein in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
60726887 | Oct 2005 | US |