Additional details, advantages and features of the invention can be derived not only from the claims and the features described therein—on their own and/or in combination with one another, but also from the following description of a preferred embodiment illustrated in the drawing.
Shown are:
To project lines onto a floor surface 10 of a room for the purpose of aligning tiles, floor plates or other floor coverings to be laid, especially in the field of construction, a device with essential components schematically illustrated in
The laser beam, in this case the optical axis 16, strikes the lens 14 at a distance A from the floor surface 10, where this distance is preferably around 50 mm. The lens 14 is geometrically designed and aligned with the laser beam, in this case the optical axis 16, so that in the corresponding illustrations of
The lens 14 features a frontal surface 20 and a rear surface 22 in relation to the light source 12. Furthermore, a projection 24 with a triangular profile and protruding beyond the rear surface 22 divides the lens 14 into an upper first section 26 and a lower second section 28. The projection 24, which runs the entire width B of the lens 14 and parallel to both the upper and lower boundary surfaces (top surface 30, base surface 32), divides the lens 14 in relation to its height into two approximately equal parts, meaning that the sections 24, 26 are approximately equal in length. The rear surface 22 also features two planar areas 34, 36, which merge at a surface 38. Thus when the lens 14 is in the operating position, the angle between the vertical axis and the upper area 26 is δ, while the angle between the vertical axis and the lower area 28 is γ, where δ<γ.
Running on the frontal surface 20 at the level of the surface 38 is a depression 40, which is of channel-shaped geometry and runs parallel to the projection 24 as well as to the upper and lower boundary surfaces 30, 32.
The laser beam, which preferably features an elliptical cross section, where the major axis can be 3 to 5 mm, for example, and the minor axis can be 1 mm to 1.5 mm smaller than the major axis, strikes the frontal surface 20 of the lens 14, specifically at the upper first section 26. The optical axis 16 preferably intersects the contact surface 42 at an angle α, where α≠90°. Thus the optical axis 16 should intersect the surface 40, namely its area running to the top surface 30, at an obtuse angle.
Furthermore,
The geometry of the lens 14, its design and its alignment to the optical axis 16 in the operating position facilitate the refraction, reflection and fanning of the striking radiation as illustrated in
A portion of the radiation totally reflected in the area 50 is totally reflected at the frontal surface 20 below the depression 40 and refracted by the base surface 32 of the lens 14 so that the desired fanning of the radiation and thus the projection of the line onto the floor surface 10 is ensured.
Also essential for projecting the marking is the first or upper section 26 of the lens 14 with the transverse boundary surfaces, in this case frontal and rear surfaces 20, 22, that decrease in distance from one another as they approach the top surface 30 and thereby virtually constitute borders of a wedge, the projection 24 on the rear surface 26 dividing the lens 14 into the upper and lower sections 36 and 28 as well as the depression 40 running in the lower section 28 of the frontal surface 20.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 021 421.8 | May 2006 | DE | national |