The invention relates to a device and a method for pumping a flowable mass, in particular a consumable item, e.g. viscous fat masses.
Devices for pumping such masses are known. They comprise a pump chamber with an inlet opening and an outlet opening. In the pump chamber a piston can be moved to and fro. By moving the piston in the first direction (movement forwards) the mass can be sucked into the pump chamber by way of the inlet opening. By moving the piston in the second direction (movement backwards) the mass can be discharged from the pump chamber by way of the outlet opening. The pump housing and the piston can be of different designs. Depending on the design, the piston movement in the interior of the pump chamber is a straight-line displacement of the piston along a displacement axis, or is a rotary movement of the piston on a rotary axis. In this arrangement, opening and closing the inlet opening and the outlet opening needs to be coordinated with the movements of the piston. Depending on the design, opening and closing these openings takes place by means of a slide valve or a rotary valve. In the case of a matched shape of the piston and the pump chamber, the functions of sucking in and discharging mass, and opening and closing the openings, can also be achieved by a combination of straight-line piston movement and rotary movement of the piston. In this context this is referred to as a “reciprocating/rotary piston”.
However, such devices are expensive because the piston and the valves need to be driven separately, or a complicated reciprocating/rotary movement of such a reciprocating/rotary piston needs to be generated.
Furthermore, in devices of this kind the inlet opening and the outlet opening are, as a rule, quite narrow. In the case of highly-viscous masses this is disadvantageous. In order to achieve acceptable pumping capacity, it is then necessary to operate with substantial pumping forces. This requires larger dimensioning of the device and greater expenditure of energy during pumping.
It is the object of the invention to overcome the above-mentioned disadvantages of the known devices.
In order to meet the above object, the invention provides a device for pumping a flowable mass, with the device comprising:
The two bodies that can be moved relative to each other and relative to the main body make it possible to achieve a simple design of the device. The volume of the chamber within the main body can be varied by moving at least one of the two bodies, and the position of the chamber within the main body can be varied by moving both bodies. Thus the chamber can be brought to fluid connection with the inlet opening or with the outlet opening. Furthermore, the inlet opening or the outlet opening can be blocked in that one of the bodies is positioned in front of this opening. Since the first body and the second body in each case rest sealingly against an inside wall and slidingly against said inside wall, they can in a slide-like manner block openings provided on said inside wall. The chamber volume can be enlarged in order to cause a suction effect into the chamber in that the two bodies are moved away from each other, or the chamber volume can be reduced in order to cause a discharge effect out of the chamber in that the two bodies are moved towards each other.
The device according to the invention distinguishes itself not only by its simple design, but also by its ability to be used in a very flexible manner for various tasks. Since the two bodies can be moved independently of each other, many different effects can be achieved by the device. For example, it is readily possible to achieve a suction effect or a discharge effect both at the inlet opening and at the outlet opening, and consequently the direction of pumping or conveying can be reversed. Likewise, changing the pumping volume per cycle or the pump stroke can readily be changed in that the minimum distance and the maximum distance between the two bodies is determined accordingly.
In order to set the time-dependent positioning, necessary for the aforesaid, of the first and of the second body, the first body and the second body can each be connected to a servomotor drive. The excellent positioning accuracy, reproducibility and programmability of servomotors can thus be directly transferred to the device according to the invention.
Instead of servomotors, it is also possible to provide pneumatic drives for the back-and-forth movement of the first body and of the second body. Preferably, in this case the device comprises end stops for limiting the movement of the two bodies. In particular, for each of the two bodies an end stop for limiting its movement forwards, and an end stop for limiting its movement backwards can be provided. While due to the elasticity of such a pneumatic drive the chronological sequence of the movement of the two bodies between their two extreme positions varies, the pump stroke or the pumping volume per pump cycle however doesn't vary. In many applications in which the pumping volume or the dosing accuracy and the total time of a pumping cycle between sucking in and discharging a defined volume of the flowable mass are predetermined, pneumatic drives are thus sufficient.
Driving the forwards movement and the backwards movement of the two bodies can also take place in that with the use of a spring means each of the bodies is pushed in a direction (e.g. in the direction of its movement forwards, or in the direction of its movement backwards) and with the use of a cam means, eccentric means or the like is moved in the opposite direction (i.e. in the direction of its movement backwards or in the direction of its movement forwards) against the force of the spring means. The spring means can be a pneumatic spring arrangement or a spring arrangement comprising coil springs, leaf springs, membrane springs or the like.
Expediently, a multitude of devices according to the invention are provided, which devices are connected in parallel. In this arrangement all the devices are connected in parallel by means of a first transverse link and a second transverse link and are driven in parallel, wherein the first body of the respective device is driven by way of the first transverse link (“pump bar”, “piston bar”, “nozzle bar”, etc.) together with the first bodies of the other devices, and the second body of the respective device is driven by way of the second transverse link (“pump bar”, “piston bar”, “nozzle bar”, etc.) together with the second bodies of the other devices. In this arrangement the first transverse link and the second transverse link are driven by means of a first drive or by means of a second drive. These drives can, for example, be selected from one of the design types mentioned above. In this arrangement, for both bodies, drives of an identical design type or of a different design type can be used. In particular, for the first bodies a hard-elastic, i.e. quasi-rigid or “hard” drive can be used, e.g. a servomotor, a cam drive or an eccentric drive, while for the second body a soft-elastic, e.g. flexible or “soft” drive can be used, e.g. a pneumatic drive.
According to a first embodiment of the device according to the invention, the hollow space of the main body comprises a channel with a constant channel cross section; the first body and the second body are designed as sliding bodies that extend over the entire channel cross section and rest sealingly against the inside wall of the main body channel and slidingly against said inside wall; and the two sliding bodies in the channel are movable independently of each other along a line that extends along the longitudinal direction of the channel, so that between the two sliding bodies a chamber is defined whose volume and/or position relative to the main body can be varied by moving the two sliding bodies independently of each other along the longitudinal direction of the channel.
This serial arrangement of the sliding bodies (see
According to a second embodiment of the device according to the invention, the hollow space of the main body comprises a main body channel with a constant channel cross section; wherein the first body is designed as a first sliding body that comprises a first longitudinal section that extends over the entire cross section of the main body channel and rests sealingly against the inside wall of the main body channel and slidingly against said inside wall; and wherein the first sliding body comprises a second longitudinal section that comprises a sliding body channel with a constant channel cross section; wherein the second body is designed as a second sliding body that has a longitudinal section that extends over the entire cross section of the sliding body channel of the second sliding body and rests sealingly against the inside wall of the sliding body channel and slidingly against said inside wall, and in that the two sliding bodies are movable independently of each other in the channel along a line that extends along the longitudinal direction of the channel so that between the two sliding bodies a chamber is defined whose volume and/or position relative to the main body can be varied by moving the two sliding bodies independently of each other along the longitudinal direction of the channel.
This telescopic arrangement of the sliding bodies (see
According to a third embodiment, the device according to the invention comprises a main body with a hollow space that by way of a first inlet opening is in fluid connection with a first mass source and by way of a second inlet opening is in fluid connection with a second mass source, and wherein said main body by way of a first outlet opening and by way of a second outlet opening is in fluid connection with a mass destination in the surroundings of the sliding body, wherein on the one hand the first inlet opening and the second inlet opening are disposed along a direction at a distance from each other on the main body, and wherein on the other hand the first outlet opening and the second outlet opening are disposed along the direction at a distance from each other on the main body. Furthermore, this embodiment comprises a first body, a second body and a third body, wherein the first body, the second body and the third body can be moved in the main body hollow space relative to the main body and relative to each other along said direction, and rest sealingly against an inside wall and slidingly against said inside wall. The first body and the second body delimit a first chamber, wherein by moving the first body and/or the second body both the volume of the first chamber and the position thereof relative to, or in, the main body can be varied. The first body and the third body delimit a second chamber, wherein by moving the first body and/or the third body both the volume of the second chamber and the position thereof relative to, or in, the main body can be varied.
This “three-piston arrangement” or “two-piston arrangement” makes it possible to individually drive each of the three movable bodies (sliding bodies or pistons) and thus to individually control the pumping volume and the pumping speed at each of the two chambers. It is possible, with this arrangement, to pump a different mass through each of the three chambers, in other words three different masses, to a destination.
Expediently, in this arrangement with three movable bodies the hollow space of the main body comprises a channel with a constant channel cross section; wherein the first body and the second body are designed as sliding bodies that extend over the entire channel cross section and rest sealingly against the inside wall of the main body channel and slidingly against said inside wall; and wherein the first sliding body and the second sliding body in the channel are movable independently of each other along a line that extends along the longitudinal direction of the channel, so that the volume and/or the position of the first chamber relative to the main body can be varied by moving the two sliding bodies independently of each other along the longitudinal direction of the channel.
In this embodiment one of the two chambers is formed by the serial arrangement, as described above, of the sliding bodies and comprises its advantages.
Preferably, in this arrangement the first body and the third body, too, are designed as sliding bodies that extend over the entire channel cross section and rest sealingly against the inside wall of the main body channel and slidingly against said inside wall; wherein the first sliding body and the third sliding body in the channel are also movable independently of each other along a line that extends along the longitudinal direction of the channel, so that the volume and/or the position of the second chamber can also be altered by independently moving the two sliding bodies relative to the main body along the longitudinal direction of the channel.
In this “double serial” embodiment the two chambers are formed by a serial arrangement of the sliding bodies and both comprise its advantages.
As an alternative, in the arrangement comprising three movable bodies the first body can be designed as a first sliding body that comprises a first longitudinal section that extends over the entire cross section of the main body channel and rests sealingly against the inside wall of the main body channel and slidingly against said inside wall; wherein the first sliding body also comprises a second longitudinal section that comprises a sliding body channel with a constant channel cross section; and wherein the third body is designed as a third sliding body that has a longitudinal section that extends over the entire cross section of the sliding body channel of the first sliding body and rests sealingly against the inside wall of the sliding body channel and slidingly against said inside wall, wherein the first sliding body and the third sliding body are movable independently of each other in the channel along a line that extends along the longitudinal direction of the channel, so that the volume and/or the position of the second chamber relative to the main body can be varied by moving the two sliding bodies independently of each other along the longitudinal direction of the channel.
In this embodiment one of the two chambers is formed by the telescopic arrangement, as described above, of the sliding bodies and comprises its advantages.
Preferably, in this arrangement the second body, too, is designed as a second sliding body that comprises a first longitudinal section that extends over the entire cross section of the sliding body channel and rests sealingly against the inside wall of the sliding body channel and slidingly against said inside wall; wherein the second sliding body comprises a second longitudinal section that comprises a sliding body channel with a constant channel cross section; and wherein a fourth body is provided that is designed as a fourth sliding body, wherein the second body and the fourth body delimit a third chamber; and wherein the fourth sliding body has a longitudinal section that extends over the entire cross section of the sliding body channel of the second sliding body and rests sealingly against the inside wall of the sliding body channel and slidingly against said inside wall, wherein the second sliding body and the fourth sliding body are movable independently of each other in the channel along a line that extends along the longitudinal direction of the channel, so that the volume and/or the position of the third chamber relative to the main body can be varied by moving the two sliding bodies independently of each other along the longitudinal direction of the channel.
In the above “double telescopic arrangement” two of the three chambers are formed within the respective telescopic arrangement of the sliding bodies, and one of the three chambers is formed between the two telescopic arrangements. This arrangement combines the advantages of the serial arrangement with the advantages of the telescopic arrangement. In this embodiment three chambers are provided, for which a total of four sliding bodies are required. Despite its compact design, this arrangement is very versatile in use. As far as driving the sliding bodies and thus the volume and the position of each of the chambers is concerned, in this embodiment there are even four degrees of freedom, which can be implemented by means of a respective independent drive, in particular by means of servomotor drives. In order to further improve the compact design and to obviate the need for one of the four drives, it is also possible to interconnect two of the four drives. This still leaves three degrees of freedom for positioning the sliding bodies, which is adequate in most applications.
In a further advantageous embodiment the hollow space of the main body comprises a channel with a constant channel cross section; wherein the first body and the second body are designed as sliding bodies that extend over the entire channel cross section and rest sealingly against the inside wall of the main body channel and slidingly against said inside wall; and wherein the first sliding body and the second sliding body in the channel are movable independently of each other along a line that extends along the longitudinal direction of the channel, so that the volume and/or the position of the first chamber relative to the main body can be varied by moving the two sliding bodies independently of each other along the longitudinal direction of the channel; and wherein the first body is designed as a first sliding body that comprises a first longitudinal section that extends over the entire cross section of the main body channel and rests sealingly against the inside wall of the main body channel and slidingly against said inside wall; wherein the first sliding body comprises a second longitudinal section that comprises a sliding body channel with a constant channel cross section; wherein the third body is designed as a third sliding body that has a longitudinal section that extends over the entire cross section of the sliding body channel of the first sliding body and rests sealingly against the inside wall of the sliding body channel and slidingly against said inside wall, wherein the first sliding body and the third sliding body are movable independently of each other in the channel along a line that extends along the longitudinal direction of the channel so that the volume and/or the position of the second chamber relative to the main body can be varied by moving the two sliding bodies independently of each other along the longitudinal direction of the channel.
This “serial/telescopic arrangement” of the three sliding bodies (compare
Preferably, in the serial arrangement (first embodiment) the inlet opening is arranged in the region of the inside wall of the main body channel along which the first sliding body is movable. Thus apart from its piston function the first sliding body at the same time carries out the function of a slide for opening and closing the inlet opening. Analogously to this, preferably, the outlet opening is arranged in the region of the inside wall of the main body channel along which the second sliding body is movable. Thus apart from its piston function the second sliding body, too, at the same time carries out the function of a slide for opening and closing the outlet opening.
Preferably, in the telescopic arrangement (second embodiment) the first sliding body comprises a first opening on the sliding body channel and a second opening on the sliding body channel, wherein the first opening in a first position of the sliding body along the longitudinal direction of the channel (L) can be lined up with the inlet opening of the main body so that the chamber in the interior of the main body is in fluid connection with the mass source by way of the inlet opening, and wherein the second opening in a second position of the sliding body along the longitudinal direction of the channel (L) can be lined up with the outlet opening of the main body so that the chamber in the interior of the sliding body is in fluid connection with the mass destination in the surroundings of the main body by way of the outlet opening.
When compared to the state of the art, the device according to the invention supports relatively large inlet openings and outlet openings, which is advantageous in particular for pressure-sensitive masses, for example foamed masses. A maximum diameter DE of the inlet opening, which diameter extends orthogonally to the movement line (L), can have a value that is in the region of 1/10 to 10/10 of the maximum diameter of the first body orthogonally to the movement line (L) along which the first body is movable in the main body hollow space relative to the main body. Analogously, a maximum diameter DA of the outlet opening, which diameter extends orthogonally to the movement line (L), can have a value that is in the region of 1/10 to 10/10 of the maximum diameter of the second body in the serial arrangement, or in the region of 1/10 to 10/10 of the first body in the telescopic arrangement orthogonally to the movement line (L) along which the second body or the first body is movable in the main body hollow space relative to the main body.
Preferably, circular or oval openings are used, wherein their diameter DE or DA ranges from 5/10 to 10/10 of the maximum diameter of the second body or of the first body. This prevents a high fluid resistance along the conveyance path in the interior of the device according to the invention, thus largely preventing “bottlenecks” at which sensitive masses could be damaged. Furthermore, these large opening cross sections make it possible to pump masses that contain larger solid materials, for example chocolate masses comprising whole hazelnuts or nut fractions.
The first body and the second body can have a circular cross section orthogonally to the movement line (L) along which the first body and the second body are movable in the main body hollow space relative to the main body. This geometry is easy to produce and is not prone to interference.
In the device according to the invention the hollow space can be in fluid connection with several fluid sources by way of several inlet openings. By means of a suitable movement of the first and of the second bodies, in this way a mixture of various fluids can be produced during a pumping cycle. Preferably, such inlet openings are spaced apart on the hollow space of the main body along a direction along which the first body and/or the second body are movable. Thus during movement of the two bodies along the movement line (L) at one or several inlet openings a respective fluid can be sucked in that a movement component is imposed on the movement of the two bodies, which movement component increases the distance between the two bodies along the movement line (L). In this way during a pumping cycle consecutively various masses can be sucked in and brought together. It is also possible for inlet openings to be spaced apart on the hollow space of the main body along a direction that extends across, in particular orthogonally to, the direction (L) along which the first body and/or the second body are movable. Thus during a pumping cycle almost concurrently, or concurrently, various masses can be sucked in and brought together.
In the serial arrangement (first embodiment) the main body channel can be a straight-line channel, and the sliding bodies can be straight-line bodies that have been formed so as to be complementary to the channel. In the telescopic arrangement (second embodiment) in a similar manner the main body channel and the sliding body channel of the first sliding body can be straight-line channels, and the first sliding body and the second sliding body can be straight-line bodies. In these cases the movement line (L) is a straight line.
For the function of the device according to the invention it is perfectly adequate if the two bodies are only movable to and fro in a translatory movement along the movement direction (L). Solely by this straight-line movement forwards and movement backwards of the two bodies all the functions of a pumping cycle are made possible, namely sucking in, conveying or transporting, and discharging, wherein the valve function, too, i.e. opening and closing the inlet opening and the outlet opening, is caused by the two bodies. In particular, no additional rotational movement of the bodies is necessary, as is the case in the reciprocating/rotary piston described in the introduction.
Instead of a straight movement line (L) it is also possible to provide a movement line that is curved in a circular arc shape for the two bodies in the channel. In the serial arrangement (first embodiment) the main body channel can be a channel curved in a circular arc shape or a torus section along the torus circumferential direction, and the sliding bodies can be bodies that are curved in a circular arc shape or in a torus section shape complementary to the channel. In the telescopic arrangement (second embodiment) the main body channel and the sliding body channel of the first sliding body can be channels curved in a circular arc shape or in a torus section shape along the torus circumferential direction, and the first sliding body and the second sliding body can be bodies that are curved in a circular arc shape or in a torus section shape.
Even solely by this curvilinear movement to and fro of the two bodies all the functions of a pumping cycle are made possible, namely sucking in, conveying or transporting, as well as discharging, wherein also the valve function, i.e. opening and closing the inlet opening and the outlet opening is caused by the two bodies. In particular, no additional rotary movement of the bodies is necessary (or even possible) as is the case in the reciprocating/rotary pistons described in the introduction.
It is particularly advantageous if a foaming unit is arranged upstream of the device, with the exit of said foaming unit being in fluid connection with the inlet opening of the device. In this way it is possible to locally produce foamed masses and to provide them in a dosed and/or portioned manner for further use.
The method according to the invention for pumping a flowable mass M1, in particular a flowable consumable item, with the use of a device comprising two sliding bodies, as described above, comprises the following steps:
The method according to the invention for pumping a first flowable mass M1 and a second flowable mass M2, in particular flowable consumable items, with the use of a device comprising three sliding bodies, as described above, comprises the following steps:
This method makes possible gentle sucking in and discharging of sensitive masses. They can thus be gently pumped and dosed.
In step d) after discharging the mass by reducing the chamber volume to the fourth chamber volume the chamber volume can be slightly increased in that the two sliding bodies in the channel of the main body are slightly moved away from each other. By means of this “retention step” it is possible to prevent uncontrolled dripping of mass at the outlet opening. In this arrangement the slightly increased chamber volume can be the first chamber volume of step a) before said chamber volume is further or again increased in step b).
Expediently, after completion of a step sequence a) to d) a further step sequence a) to d) is implemented.
Particularly advantageously the method according to the invention is used in conjunction with a foaming step, wherein the flowable mass is foamed to form a foamed flowable mass prior to carrying out the step sequence a) to d). Said flowable mass can then be gently pumped so that practically no foam cells or only few foam cells in the mass are destroyed during pumping.
In a particularly advantageous embodiment of the method according to the invention, with the use of the arrangement with three independent sliding bodies or pistons the absolute cyclical or periodic movements of the three sliding bodies (i.e. the movement sequence relative to the stationary main body) take place in a phase-shifted manner. In particular, the cycles or periods of the movement of at least one of the three sliding bodies in terms of the cycles or periods of movement of the other sliding bodies take place in a phase-shifted manner. As a result of this the chronological sequence of the pumping capacity (transported mass volume per unit of time) is different for the two chambers. It is thus, for example, possible to feed a first “shot” of a first dosed quantity of mass M1 to the mass destination, and to feed a second “shot” of a second dosed quantity of mass M1 to the mass destination.
In this arrangement the two masses are preferably supplied to the mass destination by a first channel and a second channel which lie close together, wherein the mass M1 is pumped from the first chamber by way of a first channel, and the mass M2 is pumped from the second chamber by way of a second channel. It is particularly advantageous if one of the two channels is arranged concentrically within the other channel. The channels can comprise circular, oval, triangular or polygonal cross sections. The mass destination can be a hollow shape or alveole. With this arrangement it is possible to produce in the one-shot method confectionary products (pralines, spherical shaped chocolates with smooth centres, etc.) that comprise two different masses.
The invention is not limited to the described arrangements comprising two or three independent sliding bodies but also covers arrangements comprising four or more independently movable sliding bodies or three or more chambers whose position and/or volume can be changed independently of each other. Consequently with each chamber a specific chronological sequence of the pumping capacity or a specific “profile” of the shot of this chamber can be defined. With these arrangements it is possible to produce in the one-shot method confectionary products (pralines, spherical shaped chocolates with smooth centres, etc.) that comprise three or more different masses.
Further advantages, characteristics and application options of the invention are stated in the following description of two exemplary embodiments of the invention, which are not to be interpreted as being limiting, with reference to the drawing, wherein:
The hollow space of the main body comprises a channel 7 with a constant channel cross section. The first body 1 and the second body 2 are designed as sliding bodies that extend over the entire channel cross section and rest sealingly against the inside wall of the main body channel 7 and slidingly against said inside wall. The two sliding bodies 1, 2 in the channel 7 are movable independently of each other along the longitudinal direction L of the channel, so that between the two sliding bodies 1, 2 a chamber 8 is defined whose volume and/or position relative to the main body 3 can be varied by moving the two sliding bodies 1, 2 independently of each other along the longitudinal direction of the channel. This serial arrangement of the sliding bodies 1, 2 makes it possible to provide a functional pumping device with only three essential components 1, 2, 3, of which two 1, 2 can be of identical Shape.
However, in the second embodiment the two bodies 1′ and 2′ are designed differently and interact in a manner that differs from that of the first embodiment. The first body 1′ and the second body 2′ are arranged in such a manner that they rest sealingly against an inside wall 3a of the main body 3, i.e. in the main body channel 7 or against an inside wall 3a′ of the first sliding body 1′, i.e. in the sliding body channel 7′, and slidingly against said inside wall 3a or 3a′. The body 1′ comprises a hollow space that is designed as a sliding body channel 7′. This first body 1′ also comprises a first opening 7a′ and a second opening 7b′, by way of which the hollow space of the sliding body channel 7′ is connected to the surroundings of the first body 1′.
The first body 1′ is designed as a first sliding body that comprises a first longitudinal section 1a′ that extends over the entire cross section of the main body channel 7. This longitudinal section 1a′ rests sealingly against the inside wall of the main body channel 7 and slidingly against said inside wall. This first sliding body 1′ also comprises a second longitudinal section 1b′ that comprises the sliding body channel 7′ with a constant channel cross section.
The second body 2′ is designed as a second sliding body that has a longitudinal section 2a′ that extends over the entire cross section of the sliding body channel 7′ of the second sliding body 2′ and rests sealingly against the inside wall 3a′ of the sliding body channel 7′ and slidingly against said inside wall.
The two sliding bodies 1′, 2′ extend in the channel along a longitudinal direction L of the channel and are also movable independently of each other so that between the two sliding bodies 1′, 2′ a chamber 8′ is determined whose volume and/or position relative to the main body 3 can be altered by moving the two sliding bodies 1′, 2′ independently of each other along the longitudinal direction L of the channel.
By moving the first body 1′ and/or the second body 2′ it is possible, as is the case in the first embodiment, to alter both the volume of the chamber 8′ and its position relative to, or in, the main body 3. In this embodiment, too, the mass source 6 is in a funnel-shaped container 4, and it is also possible for several of these devices according to the invention to be arranged parallel to each other. In this embodiment, too, the mass source 6 can then be designed as an elongated trough-shaped container 4 that extends across all the individual devices and that is connected to the inlet opening 7a of each device.
The telescopic arrangement of the second embodiment distinguishes itself from the serial arrangement of the first embodiment by being more compact in the direction L of the stroke movements.
The device furthermore comprises a first body 1′, a second body 2 and a third body 2′, which are all movable in the main body hollow space 7 relative to the main body 3 and relative to each other along the direction L.
The first body 1′ and the second body 2 are arranged in such a manner that they rest sealingly against an inside wall 3a of the main body 3 and slidingly against said inside wall 3a, and together with the main body hollow space 7 delimit a first chamber 81. By moving the first body 1′ and/or the second body 2, both the volume of the chamber 81 and the position thereof relative to, or in, the main body 3 can be varied. The first mass source 61 is located in a first funnel-shaped container 41.
The first body 1′ and the third body 2′ are arranged in such a manner that they rest sealingly against the inside wall 3a of the main body 3 and slidingly against said inside wall 3a, and together with the main body hollow space 7 delimit a second chamber 82. By moving the first body 1′ and/or the third body 2′, both the volume of the chamber 82 and the position thereof relative to, or in, the main body 3 can be varied. The second mass source 62 is located in a second funnel-shaped container 42.
In this embodiment, too, the hollow space of the main body 3 is a channel 7 with a constant channel cross section. The first body 1′ and the second body 2 are designed as sliding bodies that extend over the entire channel cross section and rest sealingly against the inside wall of the main body channel 7 and slidingly against said inside wall. The two sliding bodies 1′, 2 in the channel 7 are movable independently of each other along the longitudinal direction L of the channel, so that between the two sliding bodies 1′, 2 the first chamber 81 is defined whose volume and/or position relative to the main body 3 can be varied by moving the two sliding bodies 1′ 2 independently of each other along the longitudinal direction of the channel. This serial arrangement of the sliding bodies 1′, 2 makes it possible to provide a functional pumping device with only three essential components 1′, 2, 3.
However, in this third embodiment the first body 1′ and the third body 2′ are of a different design. Their interaction differs from the interaction of the first body 1′ and of the second body 2. The first body 1′ and the third body 2′ are arranged in such a manner that they rest sealingly against the inside wall 3a of the main body 3, i.e. in the main body channel 7, or against an inside wall 3a′ of the first sliding body 1′, i.e. in the sliding body channel 7′, sealingly and slidingly against said inside wall 3a or 3a′. The body 1′ comprises a hollow space that is designed as a sliding body channel 7′. The first body 1′ also comprises a first opening 7a′ and a second opening 7b′, by way of which the hollow space of the sliding body channel 7′ can be made to be in fluid connection with the surroundings of the first body 1′.
The first body 1′ is designed as a first sliding body that comprises a first longitudinal section 1a′ that extends over the entire cross section of the main body channel 7. This longitudinal section 1a′ rests sealingly against the inside wall of the main body channel 7 and slidingly against said inside wall. This first sliding body 1′ also comprises a second longitudinal section 1b′ that comprises the sliding body channel 7′ with a constant channel cross section.
The third body 2′ is designed as a third sliding body that has a longitudinal section 2a′ that extends over the entire cross section of the sliding body channel 7′ of the third sliding body 2′ and rests sealingly against the inside wall 3a′ of the sliding body channel 7′ and slidingly against said inside wall.
The two sliding bodies 1′, 2′ extend in the channel along a longitudinal direction L of the channel and are also movable independently of each other so that between the two sliding bodies 1′, 2′ the chamber 82 is determined whose volume and/or position relative to the main body 3 can be altered by moving the two sliding bodies 1′, 2′ independently of each other along the longitudinal direction of the channel L.
By moving the first body 1′ and/or the third body 2′ it is possible to alter both the volume of the chamber 82 and its position relative to, or in, the main body 3. The mass source 62 is located in the second funnel-shaped container 42.
It is also possible for several of these devices according to the invention according to the third embodiment to be arranged so as to be parallel to each other. The mass sources 61 and 62 can then be designed as elongated trough-shaped containers 41 or 42 that extend across all the individual devices and that are connected to the first inlet openings 71a or to the second inlet openings 72a of each device.
A degassing pipe 31 is affixed to the main body 3, which degassing pipe 31 by way of a third outlet opening 73b can be made to be in fluid connection with the first chamber 81. By way of this degassing pipe 31 a gaseous mass M1, which in particular is present as a foam, in the first chamber 81 can be degassed.
Furthermore,
Between these two ends of the sliding bodies 1′ and 2 and the inside wall 3a (see
The sliding body 1′ is positioned in the main body 3 in such a manner that the first opening 7a′ of the sliding body 1′ lines up with the second inlet opening 72a of the main body 3 or coincides with the aforesaid. There is thus a fluid connection between the second chamber 82 and the mass source 62. The second outlet opening 72b of the main body 3 is blocked by the first longitudinal section 1a′ of the first sliding body 1′. The facing ends or faces of the second sliding body 2′ and of the sliding body channel 7′ in the interior of the first sliding body 1′ are spaced apart from each other by a relatively small distance. The second inlet opening 72a of the main body 3 is situated between these two faces, namely that of the second sliding body 2′ and that of the sliding body channel 7′ of the first sliding body 1′. Between these ends or faces there is thus the second chamber 82, which by way of the second inlet opening 72a is in fluid connection with the mass source 62. In this embodiment, too, the chamber 82 is full of mass M2 that originates from the preceding pumping cycle. In this embodiment, too, the sliding body 1′ that blocks the second outlet opening 72b combines the function of a displacement piston with the function of a valve slide.
A study, in
The device of the fourth embodiment is symmetrical in design. The arrangement of the first sliding body or reversing piston 1′ and of the second sliding body or volume piston 2′ in
The respective first sliding body or reversing piston 1′ on the left-hand side and on the right-hand side of the symmetry plane SE is hooked into a respective first piston bar 9 that extends to the left-hand side or the right hand side of the symmetry plane and parallel thereof. The function of the two piston bars 9 consists of a plurality of reversing pistons 1′ that are arranged parallel to each other being hooked into the respective piston bar 9.
The respective second sliding body or volume piston 2′ on the left-hand side and on the right-hand side of the symmetry plane SE is hooked into a respective second piston bar 10 that also extends to the left-hand side or the right hand side of the symmetry plane and parallel thereof and is further removed from the aforesaid than is the respective first piston bar 9. The function of the two piston bars 10 consists of a plurality of volume pistons 2′ that are arranged parallel to each other being hooked into the respective piston bar 10.
The respective first piston bar 9 is rigidly connected to a respective tie rod 11 by means of a pin 14. At its end facing the symmetry plane SE the respective tie rod 11 is connected in an articulated manner to a respective toothed rack 16. Both toothed racks 16 mesh with a centre pinion 15 that is arranged in the symmetry plane SE and whose axis extends in the symmetry plane. The left-hand side toothed rack 16 is arranged underneath the pinion 15 so as to mesh with it. The right-hand side toothed rack 16 is arranged above the pinion 15 so as to mesh with it. The two toothed racks 16 can be pushed without any play against the pinion 15 with the use of contact pressing means (not shown). When the pinion 15 rotates clockwise, the two toothed racks 11 and thus the two piston bars 9 are moved away from each other. When the pinion 15 rotates counter clockwise, the two toothed racks 11 and thus the two piston bars 9 move towards each other.
The respective second piston bar 10 is slidingly held on the respective tie rod 11. A respective outside pinion 13 is rotatably held in the respective second piston bar 10 and meshes with a respective toothed rack section 12 at the outer end, i.e. the end facing away from the symmetry plane SE, of the respective tie rod 11. When the respective pinion 13 rotates clockwise, the respective piston bar 10 moves relative to its toothed rack 11 towards the left-hand side. When the respective pinion 13 rotates counter clockwise, the respective piston bar 10 moves relative to its toothed rack 11 towards the right-hand side. In addition to these two movements of the piston bars 10 relative to the respective toothed rack 11, in this arrangement the two toothed racks 11 can at the same time carry out a movement relative to the stationary pivot point of the centre pinion 15 or relative to the symmetry plane SE.
The respective tie rod 11 to the left-hand side and the right-hand side of the symmetry plane SE is slidingly held in the centre pump block 17.
Below, an operating cycle or stroke of the fourth embodiment is described.
In the state of
In order to reach the state of
In the state of
In order to reach the state of
In order to get back to the state of
The device of the fifth embodiment is similar to that of the fourth embodiment. It differs from the fourth embodiment in that on the one hand it comprises two central pinions 15 that can be driven independently of each other, and in that on the other hand on the left-hand side and on the right-hand side of the symmetry plane SE differently dimensioned pistons 1′ and 2′ as well as differently dimensioned chambers 7′ and differently dimensioned lines 5 are provided.
Consequently the telescopic pump arrangements on the left-hand side and on the right-hand side can be driven fully independently of each other. Furthermore, the illustration shows that by simple exchange of the main body 3, of the reversing piston 1′ and of the volume piston 2′ within the pump bar the pumping volume of the respective telescopic pump arrangement can be altered. This is particularly advantageous in one-shot applications in which the two lines 5 of a pump pair are brought together at a respective mass destination (compare
The function of the fifth embodiment largely corresponds to that of the fourth embodiment. However, there is a significant difference in that the operating cycles (phases and volumes of the pumping action) of the pump arrangement on the left-hand side can differ from those on the right-hand side.
In the operating cycle shown in
However, in the context of the mentioned one-shot applications it is sensible, and most of the time also necessary, to operate the pump arrangements on the left-hand side and on the right-hand side in an out-of-phase manner relative to each other. Because of the doubly present centre pinion 15 of this design this is easily possible. The pumping volumes are possible by varying the chamber cross section, by exchanging the elements (piston 1′, 2′, main housing 3 and possibly the line 5) of the respective pump arrangement and/or by varying the piston stroke of the volume piston 2′ by means of a change in the control with the use of the pinions 13. The fifth embodiment is therefore particularly flexible in use.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2010/001606 | 7/1/2010 | WO | 00 | 4/12/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/001267 | 1/6/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2397106 | Haller | Mar 1946 | A |
4150759 | Bell, Jr. | Apr 1979 | A |
5507626 | Yang | Apr 1996 | A |
5639220 | Hayakawa | Jun 1997 | A |
7618251 | Steiner et al. | Nov 2009 | B2 |
20070261677 | Bennion | Nov 2007 | A1 |
20080110927 | Steiner et al. | May 2008 | A1 |
20100140289 | Knobel et al. | Jun 2010 | A1 |
20100291269 | Ouriev | Nov 2010 | A1 |
20100303656 | Lin et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
101290002 | Oct 2008 | CN |
10 2004 041 365 | Mar 2006 | DE |
10 2005 004 785 | Sep 2006 | DE |
10 2007 024 028 | Nov 2008 | DE |
0 369 991 | May 1990 | EP |
2 226 612 | Jul 1990 | GB |
WO 2008089949 | Jul 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20120189475 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
61222541 | Jul 2009 | US |