This application claims priority to U.S. Provisional Application Ser. No. 60/577,329 filed on Jun. 5, 2004, and U.S. Utility application Ser. No. 11/143,278 filed Jun. 1, 2005 now U.S. Pat. No. 7,478,779, and U.S. Utility application Ser. No. 12/332,631, filed Dec. 11, 2008, all of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to the field of accessory lights for illuminating balloons.
2. Description of the Background Art
It has been proposed to use a light to illuminate balloons from the inside. Internally illuminated balloons are attractive and therefore desired by adults and children. Illuminated balloons have been used as novelty items at fairs and circuses to arrangements placed outside during evening events.
The present invention advantageously provides a device and method for sealing, inflating and lighting latex balloons. The light comprises a housing for connecting the light to the neck of the balloon; a power source positioned within the housing; a light source positioned within the housing and connected to the power source; and a switch positioned within the housing and connected to the power source and to the light source so as to energize the light source responsive to airtight seal between the housing and the balloon; a flow control system to allow gas into the balloon but not to exit the balloon.
The housing provides an enclosure for protecting the other components of the balloon light and, preferably, also serves to connect the balloon light to the balloon at the neck of the balloon. The housing comprises a material and optical shape that allows light emitted by the light source to shine through so that it reduces a bright spot and provide even illumination of the balloon.
The switch is activated when the housing is inserted into the neck of the balloon creating and airtight seal between the balloon and the housing of the balloon light. The light source is energized when the switch is activated, thereby lighting the balloon.
The balloon light may comprise a shape for forming a visually perceptible light image when the light source is energized by the insertion of the device into the neck of a balloon.
The present invention advantageously provides a device and method for sealing, inflating and lighting latex balloons. The device, when inserted into the neck of the balloon, creates an airtight seal between the housing of the device and the balloon. The balloon light energizes responsive to the airtight seal between the balloon and the housing, so that the light is off when the device is not in the balloon. The end of the device exposed to the outside of the balloon contains a one-way valve to allow gas into the balloon but preventing gas from exiting the balloon. Air paths within the housing of the device allows gas to flow pass the flow control system and into the balloon. Further, the end of the device within the balloon contains a light to illuminate the balloon from its interior. The housing material and optical shape helps refract the light which prevent a concentrated bright spot or hot spot within the balloon and provide even illumination of the balloon. The overall weight of the device with the power source is light enough to be lifted by a helium-filled latex balloon for the life of the helium contained within the balloon. The present invention permits the balloon to be deflated when the device is inserted into the neck of the balloon and creating an airtight seal between the housing of the device and the balloon. Then the balloon may be inflated repeatedly as needed without removing the device.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein. Rather, these illustrated embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout, and prime notation when used indicates similar elements in alternative embodiments.
The skilled artisan will know that balloon 30, particularly in currently used latex balloons, has a cylindrical or slightly tapered neck 31 that will stretch to at least twice its relaxed size. Balloon 30 is also available in various sizes, as an example, 12″ diameter, 14″ diameter, 16″ diameter, etc. The housing 11 and 12 of the balloon light 10 may have different diameters to accommodate different sized balloon 30. The present invention is intended to connect to any such type balloon neck 31.
The housing 9 for the balloon light 10, best shown in
The flow control system 25 may contain three parts: the lower housing 12, 12′, the lid cover 16, and a membrane 17 that covers the one-way air path opening 36. The membrane 17 may be formed from an elastic material capable of being deformed by a pressure of a human breath. In an embodiment, the membrane 17 may be formed from silicone, and may be coated, for example, on a portion 56 of the membrane 17 that contacts the lower housing 12 with a sealant, such as a petroleum jelly, to improve a sealing ability of the membrane 17. The membrane 17 may be displaced from contact with the lower housing 12, by pressure exerted by an inflation gas 38 and allowing the inflation gas 38 to enter through the opening 36. The configuration of the lid cover 16 with the lower housing 12 and 12′ limits movement of membrane 17 between the lid cover 16 and housing 12 and 12′ so that the membrane 17 is displaceable, for example, at portion 56, to allow the inflation gas 38 to enter while preventing the membrane 17 from becoming misaligned so as to defeat a flow controlling capability, such as becoming lodged in an unsealed position. In an aspect of the invention, a chamber 58 formed between the lower housing 12 and the lid cover 16 may be configured to limit horizontal and vertical movement of the membrane 17 within the chamber 58. The elastic property of the membrane 17 wanting to lay flat, along with the sealant creates a seal against the inner surface of housing 12 and 12′ even with little or no internal pressure. However, with internal pressure available after minimal inflation of the balloon 30, the pressure will provide additional push to membrane 17 against the inner surface of housing 12 and 12′ and create an airtight seal over the opening 36. Accordingly, the membrane 17 is responsive to a first pressure (represented by arrow 52) of the inflation gas 38 within the balloon 30 to cover and seal the opening 36 and is responsive to a second pressure (represented by arrow 54), greater than the first pressure, of the inflation gas 38 being injected into the opening 36 to move the membrane 17 away from covering the opening 36, thereby allowing entry of the inflation gas 38.
In an aspect of the invention depicted in
In an aspect of the invention depicted in
As shown in
An aspect of the present invention includes the ability to form a visually perceptible image when the light source 21 is energized. For example, to enhance the light image, the balloon light 10 may be configured to emit light in one or more colors. The light source 21 itself may emit colored light, or the housing 11 and 12 may comprise material having one or more colors to thereby produce a visually perceptible image in color inside the balloon 30. Particularly useful and aesthetic applications of this aspect of the invention include forming emblem images which appear perceptible to the eye as the balloon 30 is back lit from the inside. The image may advantageously form an advertisement which is displayed as the balloon 30 is illuminated. Such an advertisement may include a company logo.
Another embodiment of the invention is shown in
A light source 21 may be mounted in conjunction with the housing 9, and a power source 23, such as one or more batteries, may be disposed within the housing 9 for providing power to the light source 21. The switch 20 may be mounted in conjunction with the housing 9 and may be operable to selectively connect the power source 23 to the light source 21 by completing a circuit between the power source 23 and the light source 21. A switch activating member 46, such as an o-ring, may be annularly disposable around the housing 9 to selectively operate the switch 20. For example, a portion of the switch 20, such as the cantilever switch contact 22, is configured to protrude radially outward from housing 9 so that when the switch activating member 46 is positioned around the housing 9 over the protruding portion, the switch 20 is operated to close the circuit and connect the power source 23 to the light source 21.
In an aspect of the invention, the housing 9 includes a switch activating member annular recess 48 formed in an outer surface of housing 9 for receiving the switch activating member 46. A portion of the switch 20, such as the cantilever switch contact 22, protrudes radially into the recess 48 so that when the switch activating member 46 is positioned in the recess 48 as shown in
The housing 9 may further include a second annular recess 50 formed in an outer surface of housing 9 for receiving at least one of the switch activating member 46 and the marginal bead 44 of the balloon. For example, the second annular recess 50 may be spaced apart from the switch activating recess 48 on a side away from the outlet 40 to provide, for example, a place to keep the switch activating member 46 when it is not being used to activate the switch 20. In this position, as shown in
In another aspect of the invention, the upper housing 11 and/or lower housing 12 may be formed from, or include, a florescent material that fluoresces in response to ultraviolet (UV) light, such as UV light emitted by a UV light emitting diode used as the light source 21. In another embodiment, the balloon 30 attached to the balloon light 10 may be formed from, or include, a florescent material that fluoresces in response to UV light.
In another exemplary embodiment depicted in
In the drawings and specification, there have been disclosed a typical preferred embodiment of the invention, and although specific terms are employed, the terms are used in a descriptive sense only and not for purposes of limitation. The invention has been described in considerable detail with specific reference to these illustrated embodiments. It will be apparent, however, that various modifications and changes can be made within the spirit and scope of the invention as described in the foregoing specification and as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4737133 | Neumier | Apr 1988 | A |
4794498 | Neumier | Dec 1988 | A |
4890203 | Watson | Dec 1989 | A |
5070438 | Marshall | Dec 1991 | A |
5215492 | Kubiatowiez | Jun 1993 | A |
5496203 | Murray | Mar 1996 | A |
5795211 | Carignan et al. | Aug 1998 | A |
5807157 | Penjuke | Sep 1998 | A |
5879219 | Penjuke | Mar 1999 | A |
5947581 | Schrimmer et al. | Sep 1999 | A |
6106135 | Zingale et al. | Aug 2000 | A |
6238067 | Hirsch | May 2001 | B1 |
6371638 | Zingale et al. | Apr 2002 | B1 |
6467939 | Deutsch et al. | Oct 2002 | B2 |
6482065 | Blackman | Nov 2002 | B1 |
6602105 | Sussell | Aug 2003 | B1 |
6719020 | Bisotto | Apr 2004 | B1 |
7108446 | Clark | Sep 2006 | B2 |
20060291217 | Vanderschuit | Dec 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20100147994 A1 | Jun 2010 | US |