The invention concerns a device and a method for ultrasonic non-destructive testing using a laser. The invention is more particularly adapted to the testing of a structural workpiece made from fibrous reinforced composite material, the said workpiece comprising notably of assemblies according to various bonding and soldering techniques. For purpose of an example, non-limiting, the device and the method according to the invention allows the testing of workpieces including composite panels assembled in honeycombs, or coated composite structures, coatings such as ceramic layers. The applications of the invention are mainly, but not exclusively, adapted to testing large structural workpieces in the aeronautic or aerospace domain.
It is known from prior art, to use non-destructive testing techniques based on the analysis of the propagation of ultrasonic waves in an environment making up an workpiece. The testing devices of this type comprise of means of generating an ultrasonic wave, coupled acoustically with the workpiece, to transmit a mechanical wave there, and means of detection to measure the characteristics of propagation of this wave. The presence of discontinuities in the environment of propagation creates echoes or reductions of the wave, these discontinuities can thus be detected. Examples of discontinuities are holes, delamination, variations of density etc. The adjustment of the sensitivity of detection allows the detecting of discontinuities likely to show damaging faults in the quality of the thus tested workpiece. The frequency of the ultrasonic wave also allows the differentiation of discontinuities according to their nature.
In the case of a workpiece comprising of assemblies, there are actually discontinuities of the interfaces between different elements making up the assembly. Thus, it is difficult to test the presence of faults, or discontinuities, inside the assembled elements and the cohesion of the assembly interface, which are not shown by the same wave frequencies, during the same operation. Thus, faults of cohesion to the interfaces influence the propagations of long wavelengths, that is to say low frequencies, in the kilohertz range (103 Hertz or kHz), while the intrinsic faults of the workpieces influence rather the propagations of the short wavelengths, that is to say high frequencies around the megahertz (106 Hertz or MHz). There is a correlation between the average dimension of the faults detected and the wavelength of the acoustic signal which allows their detection.
It is also known from prior art, to use a photoelastic impulse on the surface of the workpiece, by means of a laser beam, known as excitation laser beam, to generate the ultrasonic wave.
It is also known that the prior art of using a two-wave photorefractive interferometer, commonly designed by TWM interferometer, as an acronym of the English expression, “Two Wave Mixing”. This type of interferometer uses a photorefractive crystal, the crystal being excited, or pumped, by a beam known as reference beam. The reflection of the detection signal beam on the surface of the workpiece is also directed towards the photorefractive crystal or the two beams are disturbed. For this purpose, a small part of the power of the detection beam is directed to be used as a pump for the TWM interferometer. The use of one part of the detection laser beam itself as a reference, allows to always have a reference available, consistent with the said detection laser beam. The TWM interferometer has the advantage of having a distinctly constant sensitivity over a large range of frequency, from kHz to MHz. Thus, by adjusting the characteristics, particularly the intensity, of the reference signal beam, it is possible to measure the response of the workpiece to the excitation produced by the excitation beam for different ranges of frequency and, consequently, to test the assembled workpieces, as much as on the planar of their intrinsic faults, at a high frequency, as on the planar of the cohesion of assembly interfaces to the lowest frequency. Later, faults such as delamination of fibres for a workpiece made from composite material, known as intrinsic faults, are conventionally shown, as they are located inside of a same workpiece and are detected by the analysis of frequency in the MHz domain, according to an ordinary and common technique in the non-destructive testing by ultrasound. By interface cohesion we mean faults which are produced particularly on the interface between two environments or two different workpieces, the faults being commonly detected by non-destructive testing at a low frequency, commonly shown by the English term of “Tap Testing”. This non-destructive testing consists of applying stress to the structure by an impact using a lightweight hammer, generally instrumented, and by analysing the acoustic response, either by ear, or by spectrum analyser, by comparing the response of the stress-applied structure with that of a reference structure. This procedure allows the detection of cohesion faults which affect the acoustic response of the structure in its entirety, that is to say, in a range of frequency in the kHz region.
According to this method of the prior art, a first scanning of the workpiece is, for example, carried out by using a high frequency detection, then, the characteristics of the detection beam are modified, in order to carry out a low frequency detection, and a new scanning of the workpiece is carried out with these new conditions.
The document US 2008/0316498 describes a device and a method for the non-destructive testing of a workpiece, notably made from a composite material, wherein the method uses ultrasound generated by a laser impulse on the surface of the workpiece, and means of generating a detection laser beam and a reference laser beam, using the same source.
The document US 2009/0168074 describes a method and a device suitable for carrying out a “tap test” type test, from an excitation by a laser impulse of the surface.
None of these methods or devices of prior art provides a method or a device for the simultaneous carrying out of the two types of tests during a same illumination of the area targeted by the test.
The invention consists of a device for the non-destructive testing of an workpiece, notably made from a fibrous reinforced composite material, which the device includes:
Thus, the workpiece that is the subject of the invention, allows to vary the characteristics of the reference laser beam used as a TWM detector pump, without modifying the characteristics of the detection beam, so that the detection at a high frequency and the detection at a low frequency can be carried out one after the other in a very short space of time during the same measurement. A single scan then allows to completely test the assembled workpiece so that the productivity of the device is at least double that of the devices known from prior art. The type of source allows to release a very stabilised frequency, and is thus particularly well adapted as master laser for a later single-frequency amplification, and in the case of the device that is the subject of the invention, for a double amplification. This type of source is also adapted for use in a Fabry-Pérot confocal type interferometer. Thus, these characteristics are advantageously built on to generate the two laser beams, that is of detection and of reference, from the two distinct amplifiers of the said source. Thus, by coming from a unique laser source, the device that is the subject of the invention, allows to generate three types of detection beams, allowing to use, according to the circumstances and the envisaged type of measurement, a confocal interferometer or the TWM interferometer, and by modifying, if necessary, the bandwidth of the TWM interferometer, and all in an automatic way.
The invention can be implemented according to the advantageous embodiments exposed hereinafter, which can be considered individually or according to every technically operating combination.
Advantageously, the device that is the subject of the invention includes scanning means to move the excitation laser beam and the first detection laser beam at the surface of the workpiece in order to carry out a scanning of its surface. It is remarkable that the device that is the subject of the invention does not modify the part carrying out the scan of the surface of the workpiece, so that the device that is the subject of the invention can be easily adapted to a testing device of the prior art, by adding means to generate and drive the reference laser beam in order to test the pumping of the photorefractive crystal. These means are fixed and do not modify the head of the scanning of an installation conventionally including an excitation laser and a detection laser.
Advantageously, the means of modification of the reference laser beam act on the intensity of the said beam. Thus, the modification of the measuring conditions is carried out in a simple way by driving the amplification of the reference laser beam.
According to an advantageous embodiment, the device that is the subject of The invention includes, additionally, a Fabry-Përot confocal type interferometer. This type of interferometer does not show as large a range of measuring frequencies as the TWM interferometer, on the other hand, it is more precise and more sensitive than it, and allows particularly the carrying out of measurements relating to the presence of intrinsic faults.
The invention also concerns a method of non-destructive testing for the testing of a workpiece, notably made from a fibrous reinforced composite material, using the device that is the subject of the invention, according to any one of its embodiments exposed above, and including the following steps:
Thus, the combination of the device and the method that are the subject of the invention allows the carrying out in a measurement point different types of tests, by optimising the cut-off frequency to detect particular faults, these measurements being carried out in a same sequence of illumination of the target area by the detection laser. Thus, the measurement being quick, the method that is the subject of the invention allows to reach a heightened productivity for the testing of a workpiece, likely to make the two types of concerned faults appear.
Advantageously, the second cut-off frequency is less or equal to 10 kHz. Thus, it is possible to combine a test by ultrasound of the intrinsic faults and a test of the cohesion of the interface at a same measurement point, and this in an automated way.
Advantageously, the steps a/ to c/ of the method that is the subject of the invention, are repeated for a second point on the surface of the workpiece. Thus, besides the fact of automating the measurement, this cooperation between the device and the method allows to resolve one of the main shortfalls of the prior art, concerning the testing by the overall acoustic response, to know that this way of testing is, above all else, considered as qualitative as it does not allow the qualification of the size of the cohesion faults detected, and their localisation. The taking of measurement with an analysis according to the multiple ranges of frequency and over numerous points of the workpiece, in an automated way, opens up the possibility, by a computerised processing of the signal, to draw up a complete cartography of intrinsic faults as well as the cohesion of the interface.
According to an advantageous embodiment, the method that is the subject of the invention, includes a step involving measuring the response of the workpiece in the target area with the Fabry-Pérot type interferometer with a low cut-off frequency higher than or equal to 1 MHz.
The invention is described hereinafter according to its preferred embodiments, not limitative, and in reference to
The second amplifier is preferentially a fibre amplifier, pumped by diode laser in a Yb:YAG doped fibre optic. It receives less than 5% of the initial power (202) of the master laser. The resulting laser beam (221) is used as a reference laser beam, directed towards the TWM interferometer (230).
Alternatively, the reflection (213) of the detection laser on the surface of the workpiece can be collected and directed towards a Fabry-Përot confocal type interferometer (240).
The control effector (460) also supports the laser head (411), known as detection, for measuring distortions of the surface in interferometry.
The control effector (460) is supported by a robotic arm (450) which allows the carrying out of scanning of the surface to test. A computerised device (470) allows to guide the movement of the robotic arm, to drive the reference laser amplifier, and to carry out the processing and the acquisition of the measurements. The guiding of the robotic arm is carried out from a digital description file of the surface of the tested workpiece (401), commonly from the digital model of the said workpiece.
The description above clearly shows that the invention reaches the targeted objectives, in particular it allows the achievement in an automated way, of a complete cartography of an assembled workpiece, combining measurements by ultrasound relating to material wholeness, or intrinsic faults, and to the cohesion of the assembly interfaces, according to a similar method in its principle of tap testing, but which brings to this testing method, the capacity of localisation and cartography of the cohesion faults.
Number | Date | Country | Kind |
---|---|---|---|
1151183 | Feb 2011 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/052481 | 2/14/2012 | WO | 00 | 9/10/2013 |