The present invention relates to a device and a method for marking a set of products, for example to detect counterfeit goods. More specifically, the present invention relates to a marking method and device enabling to properly trace the products.
In many fields, especially in the luxury goods industry (for example, perfumery, jewelry or leather goods), or in the field of drugs, fighting against the imitation of branded products is an everyday concern. Several methods are currently used to attempt to guarantee the authenticity of branded products. The simplest is to reproduce or to affix a brand logo on the products. However, an ill-intentioned person can easily reproduce a logo.
Other marking methods, which are more difficult to detect and to copy, are known. One of them comprises placing an identification chip, invisible for the naked eye, on each of the products of a batch. For this chip to be invisible, a hologram may be formed on a transparent chip placed on the products. The hologram may be obtained by calculating the Fourier transform of an image representing, for example, the brand logo. The origin of the products is thus guaranteed by the presence or the absence of the hologram.
A bottle 10, for example, for perfume, is formed of a container 12 and of a cap 14. In the shown example, two chips 16 are placed on bottle 10, one on container 12 and the other on or inside of cap 14. Chips 16 are formed of a thin transparent plate on which is formed a hologram 18.
Identification chips such as chips 16 of
A disadvantage of known hologram marking structures, even invisible and miniature, is that a person knowing the existence of the marking may, with appropriate means and by reverse engineering, obtain the initial image of the marking by studying the hologram and thus reproduce the hologram on copied products.
U.S. Pat. No. 5,801,857 describes a method for marking products, especially bank cards. This method comprises gluing, on each card of a batch of bank cards, a label comprising a hologram. The hologram is the same on each label. An image is superposed to the hologram to differentiate the labels from one another and thus individualize the card marking. However, such a marking may be easily detected and reproduced.
An object of an embodiment of the present invention is to provide a method for marking a batch of products with a coded hologram, for which the decoding by a third party is impossible.
Another object of an embodiment of the present invention is to provide a method for marking by coded hologram in which the reproduction, even accurate, of the hologram is detectable.
Thus, an embodiment of the present invention provides a method for marking a batch of products comprising the forming of a synthetic hologram of an image on each product, said holo-gram being further coded by means of a phase key, the image comprising a first portion common to the different products of the batch and a second portion different from one product to another.
According to an embodiment of the present invention, the hologram is formed by an etching by electron beam or laser.
According to an embodiment of the present invention, the second portion of the image comprises a set of figures and/or letters incremented from one product to another, in a bar code or a data matrix.
According to an embodiment of the present invention, the coded synthetic hologram is directly formed on the product.
According to an embodiment of the present invention, the coded synthetic hologram is formed on a chip placed on the product.
According to an embodiment of the present invention, the chip has a surface area smaller than 1 cm2 and is formed of a thin etched platinum oxide layer.
An embodiment of the present invention provides a method for detecting products likely to be copies and supporting coded synthetic holograms, comprising sampling at least two products; decoding, by means of an adapted phase key, the synthetic holograms of the products; and verifying whether the images obtained by the decoding comprise a reference difference.
The foregoing and other objects, features, and advantages of the present invention will be discussed in detail in the following non-limiting description of specific embodiments in connection with the accompanying drawings:
For clarity, the same elements have been designated with the same reference numerals in the different drawings and, further, the various drawings are not to scale.
The inventors provide a device and a method for marking a product, the copying of this marking being easily detectable. To achieve this, the inventors provide placing, on all the products of a batch, a chip, transparent or not, containing a coded hologram, the coding of the hologram comprising a step involving a phase key. The decoding of the hologram is then impossible without using the phase key used for the coding. Further, the inventors provide a hologram for which a direct copy, even very accurate, is detectable. To achieve this, the inventors provide forming a hologram from an initial image comprising two portions: a first portion common to the different products of the batch and a second portion different from one product to another. Thus, a copy, even very accurate, of the hologram present on a product and the reproduction of this holo-gram on several other products are detectable. For this purpose, it is sufficient to verify that, on the products, the image portion reconstructed from the hologram, intended to be different between two products, is actually identical.
Initial image 20 comprises a first portion 22 and a second portion 24. First portion 22 comprises, in the shown example, a logo and initials (CGH). Second portion 24 comprises a sequence of figures and of letters (“AXB2008/00244”) which is different for each product, and thus for each hologram. For example, the second portion may be a serial number incremented for each product, a bar code, or again a data matrix.
A first step 30 comprises calculating the Fourier transform of an initial image, such as image 20 of
A step 36 comprises coding phase image 34 by means of a phase key. The phase key is formed of a pattern having its lines corresponding to phase-shift areas of image 34. The same phase key is then necessary to decode the hologram formed.
At a next step 38, an image gathering image 32 and the image obtained in step 36 of coding of phase image 34 is calculated. The calculation may be performed in different known fashions, for example, by following the holographic calculation method discussed in publication “Binary Fraunhofer holograms, generated by computer” by A. W. Lohmann and D. P. Paris, Appl. Opt., 1967, pp. 1739-1748. This method comprises associating, with each pixel of the hologram image, an opaque area comprising an opening of variable size according to the pixel amplitude and more or less centered according to the pixel phase. According to the calculation performed, pixels having a large number of possible states that may be assimilated to different grey levels (for example, 256) are formed. As non-limiting examples, images 32 and 34, and thus the obtained coded holograms, may comprise 500×500 pixels, 800×800 pixels, or again 1000×1000 pixels. The association of coding and calculation steps 36 and 38 provides a hologram which is currently called coded synthetic hologram.
The time taken by the coding and the calculation of a hologram depends on the number of pixels that it comprises. For example, the time taken by the coding and the calculation of a hologram comprising 500×500 pixels lasts for approximately 0.1 s, with the Matlab program, on a personal desktop computer of 64-bit Dell Precision 490 MT Dual Core Xeon 515 type.
At a next step 40, the hologram obtained by the coding is etched either on a chip or directly on an object. The etching may be performed by electron beam or laser beam, which provides an accuracy greater than a fraction of a micrometer. As an example, for a hologram comprising 500×500 pixels, the etching may be carried out on a 1.25×1.25-mm chip. The etched chips preferably have a surface area smaller than 1 cm2. By laser beam etching, approximately 200 are etched in approximately 30 minutes, that is, a few seconds per chip. An electron beam etching provides similar results. Thus, the calculation time is negligible as compared with the etch times. The method provided herein is thus advantageously no more time-consuming than known methods for forming holograms on wafers.
Preferably, before etch step 40, steps 30 to 38 are repeated several times to obtain a set of coded synthetic holograms corresponding to different initial images different from one another in their portions 24. Many chips to be placed on the objects to be marked can then be obtained in a single wafer etch step, each chip comprising a different hologram.
At a next step 42, the different chips are diced, after which, at a step 44, they are affixed on the products to be authenticated. As an example, the chips may be affixed on the products by molecular bonding.
The hologram shown in
In difference image 70, each grey-colored pixel corresponds to a pixel for which the difference between the corresponding pixels of the two considered holograms is smaller than the maximum error value equal to 2.3%, that is, smaller than 6 grey levels if the coding comprises 256 grey levels. It should be noted that the grey-colored pixels are distributed substantially across the entire surface of the image and that the maximum error remains low. Thus, a small modification of the initial image is distributed throughout the entire obtained hologram. It is thus impossible to reconstruct, from several holograms, a hologram having its different portion 24 incremented artificially.
A counterfeiter who detects the presence of a hologram on the product and who attempts to decode it will not succeed due to the use of the phase key. The difference between two obtained holograms of two slightly different images does not enable to know the coding technique either. The only remaining solution to copy a marking by a synthetic hologram then is to directly copy, as accurately as possible, the hologram formed on the object. The inventors have noted that an imperfect copy of the hologram can easily be detected since the image decoded from such a hologram is blurred and of poor quality.
Even if a counterfeiter is able to perfectly copy the coded synthetic hologram, such a copy of the hologram can also be detected. Indeed, to achieve this, it is sufficient to seize two copied products and to decode the synthetic holograms formed on these products. If the serial numbers of the images obtained by decoding are identical, this means that the holograms are copies.
A transmission reading device is here considered. A light beam 80 crosses a blade 82 comprising the phase key used for the decoding, and then crosses hologram 84 formed on a chip 86. Beam 88 diffracted by the hologram 84 crosses a lens 90 which enables the forming of decoded image 92 in a plane 94. Due to the sampling of the hologram, several images are reconstructed in plane 94. The camera performing the acquisition selects a single one.
A laser beam 94 crosses a blade containing a phase key 96 then enters a beam splitter 98. Splitter 98 provides a beam, perpendicular to beam 94, towards synthetic hologram 100. The beam reflected by synthetic hologram 100 reenters beam splitter 98 to reach a lens 102 which enables to form the decoded image in a read plane 104. Preferably, beam splitter 98 is positioned on a mobile support enabling to accurately illuminate hologram 100.
It should be noted that the alignment of the phase key and of the hologram must be accurate in order to obtain the decoded image from the hologram. For this purpose, the hologram may comprise characteristic points making this alignment possible.
Specific embodiments of the present invention have been described. Various alterations and modifications will occur to those skilled in the art. In particular, it should be noted that the read devices illustrated in
Number | Date | Country | Kind |
---|---|---|---|
0950183 | Jan 2009 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2010/050041 | 1/12/2010 | WO | 00 | 10/11/2011 |