This application claims priority to foreign French patent application No. FR 1857235, filed on Aug. 2, 2018, the disclosure of which is incorporated by reference in its entirety.
The field of the invention is that of piezoelectric materials that crop up in many applications. The most important applications are notably: RF filters, actuators, (MEMS) transducers.
The piezoelectric materials used industrially are typically:
Regarding AlNSc (with Sc between 10% and 40%): this material from the AlN family should not pose any deposition problems; however, difficulties are encountered in manufacturing targets using the element Sc. Furthermore, Sc is an element which is not very abundant and is therefore expensive.
Other promising materials are currently being studied such as: KxNa1-xNbO3 (KNN) for actuator applications and LiNbO3 (LNO) for RF filter applications.
Regarding KxNa1-xNbO3(KNN): this material is difficult to deposit. Currently, a single Japanese company (SIOCS), specialized in provision of substrates, proposes well crystallized KNN layers deposited on Pt (100 mm wafers).
Regarding LiNbO3 (LNO): developments have already been achieved with bulk LNO substrates (100 mm in diameter) used as donor substrate for transferring, to an acceptor substrate, crystalline thin layers of LNO (Smart Cut™ process). However, this material is difficult to deposit according to currently published processes.
Regarding the processes for depositing piezoelectric material, the most well known are in particular:
Regarding the aforementioned devices (filters, actuator, transducer generally), all use Metal-Insulator-Metal (MIM) structures.
With regard to the metal/piezoelectric material compatibility, it is in particular known to use:
These metals are the most used, even though other metals are possible, in particular Ti in the case of AlN.
For the filters, it is also possible to use depositions on insulator and to only use surface electrodes, in order for example to produce a surface acoustic wave device, commonly known as SAW, these devices however being used less and less for the production of RF filters because they are limited in terms of power and frequency.
A report of certain studies carried out by the company SIOCS is summarized below regarding the performance of a piezoelectric device using the deposition of KNN by sputtering on Pt metal and more particularly a device such as the one illustrated in
The table below is taken from the reference:
https://www.sciocs.com/english/products/KNN.html
The authors obtained very satisfactory results in terms of a well-oriented crystalline phase, as
The deficiency in alkali metal elements of a layer made of KNN material is furthermore known in the literature. Notably, the publication: “Alkali ratio control for lead-free piezoelectric films utilizing elemental diffusivities in RF plasma” by Hussein Nili, Ahmad Esmaielzadeh Kandjani, Johan Du Plessis, Vipul Bansal, Kourosh Kalantar-zadeh, Sharath Sriram and Madhu Bhaaskaran, provides less satisfactory results.
Within this context, the applicant has sought to understand the phenomena involved during the formation of the layer of piezoelectric material.
In order to obtain a satisfactory quality of the layer of piezoelectric material in contact with the metal layer on which it must be deposited, it is necessary that the metal layer, for example made of Pt or Mo, be of good quality itself. In this regard, the production of a well-oriented Pt (111) layer, that can thus be used for depositing piezoelectric material, is controlled.
The quality and also the orientation of the layer of piezoelectric material throughout its thickness is dependent on the deposition of the first layers deposited by sputtering.
It is therefore necessary to control the composition of the first layers but the prior art described in certain publications demonstrates depositions that are substoichiometric (lack of Na and K especially at the interface) and that relate to depositions of KNN by RF plasma.
The schematic representation of
Reality is more complex and various species are formed as illustrated by the schematic representation of
As soon as the first layers are deposited, the Li diffuses and reacts with the Pt, thus creating an Li deficiency in the first layers deposited. This Li deficiency leads to the formation of other phases. Furthermore, the reaction of Pt with Li leads to the formation of a Pt—Li compound which changes the configuration of the surface on which the remainder of the deposition is carried out. The reactivity of Li with Pt is entirely likely. Indeed, the authors J. Sangster and A. D. Pelton from the Ecole Polytechnique de Montrëal, in “The Li-Pt (Lithium-Platinum) System”, Journal of Phase Equilibria Vol. 12 No. 6 1991, described the formation of PtLix eutectics starting from 290° C.
The same behaviour was described with the other alkali metals (Na, K) and the noble metals: “Reactions between Some Alkali and Platinum Group Metals” by O. Loebich, Jr. and Ch.J. Raub, Forschungsinstitut für Edelmetalle and Metallchemie, Schwäbisch Gmünd, Germany, in Platinum Metals Rev., 25, (3), 113-120. The diffusion of the alkali metals into the metals was also described as very rapid starting from 100° C., in “Diffusion of Alkali Metals in Molybdenum and Niobium”, M. G. Karpman, G. V. Scherbedinskii, G. N. Dubinin, and G. P. Benediktova.
To prevent the diffusion and the reaction of alkali metals (Li, Na, K) with the bottom electrode, the applicant proposes to incorporate a barrier layer at the surface of the bottom electrode. In order to be effective, this barrier must be inert (non-reactive) with respect to the alkali metals and the metal of the bottom electrode (Pt, Mo, etc.). This barrier must also be capable of preventing the diffusion of the alkali metals towards the bottom electrode.
More specifically, one subject of the present invention is a piezoelectric device comprising at least one upper layer of piezoelectric material based on alkali metal niobate and one lower layer of metal located above a substrate, characterized in that it comprises a barrier layer of material that is a barrier to the diffusion of alkali metals into said metal and which layer is inert to the alkali metals of said niobate and that said barrier material layer being located between the lower layer of metal and the upper layer of piezoelectric material.
The piezoelectric material may notably be KNN or LNO.
According to variants of the invention, the metal is Pt or any other metal such as Mo or Ti.
According to variants of the invention, said diffusion barrier material is a conductive oxide or a conductive nitride, it being possible for the oxide to comprise a Pt or Ru or Ir metal and preferably RuO2.
According to variants of the invention, said diffusion barrier material is a nitride that may be TiN or WN or TaN and preferably TiN.
According to variants of the invention, the barrier material is an insulating or semiconductor material that may be a piezoelectric material.
According to variants of the invention, the thickness of the barrier layer is greater than several tens of nanometres and preferably of the order of around a hundred nanometres.
According to variants of the invention, the device comprises, between the surface of the substrate and said lower layer of metal, when this metal is a noble metal, a layer for attachment of said noble metal, it being possible for the attachment layer to be made of TiO2.
According to variants of the invention, the thickness of the lower layer of metal, which may be a noble metal, being greater than several tens of nanometres, the thickness of the attachment layer is of the order of a few nanometres.
According to variants of the invention, the device comprises a conductive upper layer above the layer of piezoelectric material.
Another subject of the invention is a process for manufacturing a device according to the invention, comprising the following steps:
According to variants of the invention, the sputtering is carried out at a temperature above 300° C., preferably above 500° C.
According to variants of the invention, the process comprises at least one sputtering step carried out at a pressure of a few mTorr in order to deposit the piezoelectric material.
According to variants of the invention, the process comprises a first sputtering step carried out at a first RF power, and a second sputtering step carried out with a second RF power higher than the first power, in order to deposit the piezoelectric material.
According to variants of the invention, the first RF power is of the order of 200 W, the second RF power being of the order of 500 W.
According to variants of the invention, the process comprises the deposition of an attachment layer on the surface of the substrate, prior to the deposition of the lower layer of metal.
According to variants of the invention, the process comprises carrying out a deposition of upper layer of metal.
The invention will be better understood and other advantages will become apparent on reading the following description, which is given in a non-limiting manner, and by virtue of the figures wherein:
Generally, the device of the invention comprises, on the surface of a substrate, a conductive layer of metal, on which it is sought to deposit a good-quality layer of alkali metal piezoelectric material, through the intermediary of a barrier layer.
The stack, described in detail below, is deposited on a substrate suitable for the intended application and which may be a sapphire, MgO, glass or else silicon substrate or preferably an Si substrate covered with an insulating layer (preferably a layer of SiO2).
Before the deposition of the piezoelectric material, the metallic bottom electrode (i.e. the layer 200) is first deposited, followed by the deposition of the barrier layer 300. To form the bottom electrode of one of the aforementioned devices, use may preferably be made of Pt or Mo.
For the barrier material of the barrier layer, it is possible to use any material having the role of:
Since these barrier materials must be chemically inert with respect to the alkali metals, use is preferably made of oxides or nitrides.
In field of conductive nitrides and oxides, use may be made of oxides of noble metals (Pt, Ru, Ir) and preferably of RuO2.
In field of nitrides, it is possible to use TiN, WN, TaN and preferably TiN.
The use of an insulating barrier is also possible. However, so as not to degrade the response of the piezoelectric material, it is preferable to use a barrier which is also piezoelectric, such as aluminium nitride (AlN), for example.
It may be advantageous to provide an attachment layer that promotes the attachment of the metal layer to the substrate.
an attachment layer 210;
a metal layer 200;
a barrier layer of barrier material 300;
a layer of piezoelectric material 400.
a substrate 100;
an attachment layer 210;
a metal layer 200;
a barrier layer of barrier material 300;
a layer of piezoelectric material 400;
a top electrode 500.
To produce the aforementioned device illustrated in
Step 1:
To improve the adhesion of this Pt layer on the substrate, an attachment layer made of TiO2, for example, a few nm thick (5 nm) is deposited beforehand.
Step 2:
The deposition of a Pt electrode having a thickness of a few tens of nm, for example 100 nm, on the surface of said attachment layer is carried out.
Step 3:
On the Pt layer, the deposition of the barrier layer of barrier material, which may be RuO2, is carried out. In order to be effective against the diffusion of the alkali metals, the thickness of this barrier layer must be at least 80 nm (preferably 100 nm) for a deposition temperature of the piezoelectric material of between 500° C. and 700° C.
Step 4:
The piezoelectric material (LiNbO3 or KxNa1-xNbO3) is deposited by sputtering using a target corresponding to the material to be deposited. The deposition is carried out at a temperature above 300° C., preferably at 500° C. For the sputtering, use is made of an Ar:O2 mixture at a pressure of a few mTorr and preferably 5 mTorr. The Ar:O2 ratio may be adjusted in order to obtain the desired deposition velocity while limiting the amount of oxygen vacancies in the piezoelectric material. This Ar:O2 ratio is preferably around 4:1.
For the sputtering machine used notably within the context of a 200 mm Si wafer, the RF power is a few hundred watts, typically 500 W.
Another variant consists in depositing the piezoelectric material by sputtering using two RF powers. It is advantageous to begin the deposition of the first layers at a lower RF power (200 W, for example), then to increase the RF power to 500 W after 15 minutes.
Number | Date | Country | Kind |
---|---|---|---|
1857235 | Aug 2018 | FR | national |