The invention relates to a device for bringing together substances, in particular for reconstitution of injection solutions. These types of devices are required, for example, for injection solutions, the constituents of which are not able to be stored in mixed form, such that, for example, a lyophilized medicinal drug is not mixed with a solvent until administration and is then drawn up into a syringe.
Numerous devices are already known and used in the prior art in order to prepare these types of injection solutions. EP 2 559 414 has disclosed an adapter for a transfer device for a fluid. Said adapter serves for the purpose of supplying first of all to a container with a lyophilisate a dilution liquid and then to draw up the injection liquid prepared in this manner into a syringe. WO 2013/003951 describes a reconstitution device with two different chambers which are arranged in one common cylinder and can be connected together by means of piston movements.
A disadvantage of the known systems is that sometimes up to 20 operating steps have to be carried out before the injection solution is drawn up into the syringe and is ready for the injection. In this case, a certain attention and manual dexterity is also necessary, faulty manipulations frequently occurring. Finally, in the case of many systems, different components also have to be stored separately, which increases the overall expenditure.
Consequently, it is an object of invention to create a device of the type mentioned the introduction, by means of which the reconstitution of the substances can be simplified and automated. In this case, handling should take place as simply and safely as possible.
Said object is achieved according to the invention with a device which comprises the features in claim 1. The flexible bag, which is arranged in a housing, serves for receiving a liquid, generally a solvent. A dispensing device, generally an injection syringe, is arranged in the same housing and is removable from said housing. However, other dispensing devices such as, for example, drop counters, spray receptacles or the like would be easily conceivable. As a result of being accommodated in a common housing, the bag and the dispensing device are protected against contamination and damage. A transfer channel for the direct or indirect transfer of the liquid leads from the bag into the dispensing device. The hydraulic pressure for the transfer of the liquid is applied by at least one pressure plate which is pressable against the bag for squeezing out the bag. Said at least one pressure plate is also accommodated in the mentioned housing, such that the device forms a compact unit which is able to be stored and transported in a simple manner.
In a particularly advantageous manner, the device is provided with two pressure plates, between which the bag is arranged. In this way, the bag can be squeezed out in such a manner that it always remains approximately in the same plane, each of the two pressure plates having to carry out a smaller movement than if there were just one single pressure plate.
Further advantages can be achieved if each pressure plate comprises two pivotably interconnected portions which are movable out of an angled rest position into an extended squeezing position. In this way, the pressure plates do not have a plane-parallel effect on the flexible bag, but rather squeezing out is effected from the, outer edge toward the center of the bag. The two portions, in this case, can be connected together, for example by means of a film hinge. The pressure plates can consist of plastics material and can be produced, for example, using an injection molding method. In this case, it is also possible for the pressure plates to be structured on the side remote from the bag and to comprise functional elements such as, for example, reinforcement ribs, cams or the like.
The housing can comprise a connecting piece for the connection of a container containing a second substance, wherein the connecting piece communicates with the transfer channel and/or with the flexible bag by means of a valve device. Said connecting piece can be provided with coupling means for holding a container mouth as well as with a hollow needle for penetrating the closure element on the container. In this way, a container with a freely selectable substance can be connected to the device.
As an alternative to this or in addition to it, however, it is also possible for an additional container, preferably also a flexible bag, which communicates with the transfer channel by means of a valve device, to be arranged in the housing. In this way, it is possible to store the second substance already in the additional container inside the housing. The second substance, in this case, could also be a liquid.
Further advantages can be achieved when a valve device for blocking the fluid connection between the flexible bag and the dispensing device is arranged in the transfer channel, wherein the valve device is movable into the open position as a result of a lifting movement. A valve device which is activatable by means of a lifting movement can be controlled in a particularly simple manner. As an alternative to this, however, other valve functions would also be conceivable such as, for example, a flap valve or a friction tap.
A particularly advantageous function can be achieved when a mechanical energy storage device, in particular a spring mechanism, is arranged as driving means in the housing, by way of which the pressure plate is pressable against the bag. An energy storage device of this type causes the pressure plate to be acted upon with always approximately the same force irrespective of the position, the transfer of the liquid always occurring at the same time. A spring mechanism is particularly advantageous for this purpose because sufficient forces are able to be applied in a risk-free and loss-free manner. Alternative energy storage devices such as, for example, compressed air storage devices or batteries for driving a micromotor would also be conceivable. The pressure plate could also be actuated, in principle, in a magnetic manner.
The lifting movement at the valve device and the pressure plate are preferably activated with the same driving means. As a result of corresponding control means, said movements can be carried out one after another. Obviously, however, it would also be conceivable, for example, for the lifting movement, or even another movement for the valve actuation, to be carried out manually and for just the pressure plate to be activatable by means of the driving means.
In a particularly advantageous manner, a spring mechanism with at least one spiral spring is arranged in the housing. A spring mechanism of this type can be produced in a simple and cost-efficient manner and, depending on the development of the spiral spring, there is sufficient energy available for different functions. Spring mechanisms of this type are also known and used generally in other areas of the technology. The drive axis of the spring mechanism can be connected to a cam disk for converting the rotational movement into at least one linear force component. The torque of the spring mechanism can be converted into a linear force in a relatively simple manner by means of the cam disk. This would obviously also be possible by means of a gear wheel transmission or with another type of transmission.
The at least one pressure plate can be mounted together with the bag in the housing and in particular can be mounted so as to be linearly displaceable relative to the cam disk. A lifting movement is produced in this way, by way of which a valve device is able to be activated. In the event of using a cam disk, said cam disk can interact in such a manner with engagement members on the pressure plate that initially it carries out a linear movement and is then pressed against the bag maintaining the reached end position. This produces a composed movement, by means of which the valve is actuated initially in order then to bring about the transfer of the liquid.
Obviously, the squeezing out of the bag could also be effected using other mechanical means, for example by means of a bar mechanism or by means rollers or pins which are pressable against the pressure plate or even directly by means of a spring which presses directly against the pressure plate.
The housing can comprise a cover or a handle element, the driving means being activatable as a result of opening the cover or as a result of actuating the handle element. In particular the dispensing device, which is removable out of the housing, is protected and held in position by means of the cover. The advantage of activating the driving means by means of the cover movement is that the transfer of the liquid out of the flexible bag is executed automatically without further actuating means having to be activated. Activation of the driving means would obviously also be conceivable by means of a push-button or the like.
A particularly advantageous transfer of the liquid into an injection syringe which is mounted in the housing can be effected as a result of the injection syringe comprising a needle holder which communicates with the transfer channel, wherein the fill opening is closable when the injection syringe is removed out of a syringe holder. When the injection syringe is mounted in the housing in the injection holder, the piston is retracted. The injection solution is drawn up via the fill opening as a result of actuating the piston and when the injection syringe is removed out of the injection holder, the fill opening is automatically closed such that the only way the injection solution can still be dispensed is via the needle. These types of mechanisms are known per se and are, for example, also described in EP 2 559 414.
In principle, it is also conceivable for an injection syringe or another type of dispensing device, which already contains a second substance, to be mounted in the housing. In this way, the reconstitution of the liquid to be dispensed would be directly effected in the dispensing device itself.
The flexible bag is arranged in an advantageous manner between two pressure plates, said pressure plates being activable either via a common driving means or via individual driving means which are assigned to the pressure plates. For example, each pressure plate can have a spring mechanism with an own cam disk associated therewith. Said two cam disks can also comprise cam portions which are realized differently in such a manner that the pressure plates are pressable against the bag in a non-symmetrical movement. As a result, it can be ensured that the bag is squeezed out in such a manner that no liquid pockets remain behind.
An advantageous development of the mechanical energy storage means device can be achieved when at least one spring clamp is mounted in the housing in such a manner in a rest position which is tensioned against the spring force that, as a result of a lifting movement, it is movable out of the rest position into a pressing position in which the pressure plate is pressable against the bag. A spring clamp of this type can be produced in a simple manner and mounted in the rest position. In order to exert a symmetrical pressing force onto the pressure plate, two spring clamps, for example, can cooperate at the side on each side of the pressure plate.
Further advantages can be achieved when the pressure plate is displaceable in the housing as a result of opening the cover or as a result of actuating the handle element and when by means of said displacement the spring clamp is movable into the pressing position and when, at the same time, a valve device which is arranged in the transfer channel for blocking the fluid connection between the flexible bag and the dispensing device, is movable into the open position. Obviously the releasing of the spring clamp is effected by a movement of the pressure plate in the housing, said lifting movement not being effected by the mechanical energy storage device but in a manual manner. As no particularly high forces have to be exerted, said solution results in a reduction in movable components and consequently in a simplification.
If the housing comprises a handle element, said handle element can be realized as a lever which is pivotable about a rotary joint and, in a closed position, secures the dispensing device in the housing and in an open position releases the dispensing device. In addition, the cover or the handle element can be operatively connected to the pressure plate in such a manner by means of a lever gear unit that a rotational movement at the cover or at the handle element is transferable into a linear movement at the pressure plate.
The flexible bag is preferably arranged between two pressure plates which are pressable against one another as a result of being guided by complementary guide elements.
Further advantages and individual features of the invention are produced from the subsequent description of exemplary embodiments and from the drawings, in which:
According to
The function of the spring mechanism and the control of the pressure plates are described more precisely by way of
A similar spring mechanism, which also has associated therewith a pressing wedge segment 21′, is arranged on the symmetrically rear pressure plate. Said pressing wedge segment, however, has a somewhat flatter wedge inclination such that the two pressure plates are acted upon with forces in a non-symmetrical manner.
The two pressure plates with the flexible bag arranged between them are displaceable in a linear manner relative to the two spring mechanisms, it being possible for them to cover a lift of, for example approximately 2-3 mm.
The valve functions and the fluid connections are shown in
The filling of the liquid into the flexible bag 3 is effected in the completely mounted state via a filling channel 44. Said filling channel is then permanently closed by means of a plug 46. The connection between the flexible bag 3 and the valve device 12 is effected via a dispensing channel 45.
After said operation, the piston 25 of the syringe can be pulled out such that the contents of the container are sucked into the injection syringe via the transfer channel 6 and the fill opening 28. A venting opening 42 ensures that no vacuum builds up in the container. As a result of removing the injection syringe out of the syringe holder 29, a rotational movement is effected in the region of the needle holder 27, as a result of which the fill opening 28 is blocked from the outside atmosphere and the contents of the syringe can be emptied by means of the needle 26. The fluid flow when the liquid is drawn from the container into the injection syringe is shown by the dot-dash line F2. The dotted line L indicates the air flow via the venting opening 42. Said venting opening consists of a filter which does allow air through but not liquid.
According to
According to a, a device 1 according to the invention and a closed container 10 with a lyophilisate 11 are provided. The container 10 is pressed into the connecting piece 9 such that the centrally arranged spike penetrates the closure of the container and the container is held fixedly in the device (representation b). According to c, the cover 24 can now be opened, the squeezing out operation described previously occurring. Once the bag has been completely squeezed out according to d, all the liquid 4 is situated in the container 10 and the lyophilisate has dissolved in the liquid. Now, according to e, the injection solution can be transferred out of the container 10 into the injection syringe by drawing out the piston 25, in any arbitrary position, preferably, however, in an overhead position. The injection syringe is then removed out of the housing 2, it being possible to put the empty syringe back into the housing again after the application for reasons of safety. Afterwards, the entire unit can be disposed.
By way of illustration,
An alternative exemplary embodiment, where the squeezing mechanism differs from that of the previously named exemplary embodiment, is shown in
Analogous to
Two spring clamps 60, only one of which can be seen in
The two pressure plates are suspended at their top end so as to be laterally displaceable, as can be seen from
The flexible bag 3 is provided at its bottom end with a bag closure 69, which is a component part of a valve device 12, as can be seen from
When the handle element 61 is pivoted up, an operation occurs which is described more precisely by way of
Once the abutments have been left, the two spring clamps 60 are relaxed and the two pressure plates are acted upon by the spring force and pressed against one another. Said situation is shown in
The raised position can be seen again from
Number | Date | Country | Kind |
---|---|---|---|
13176031 | Jul 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/064441 | 7/7/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/004056 | 1/15/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6223944 | Gehl | May 2001 | B1 |
8292848 | Kriesel | Oct 2012 | B2 |
20090126825 | Eliuk | May 2009 | A1 |
20130221030 | Middleton | Aug 2013 | A1 |
20140020790 | Yuyama et al. | Jan 2014 | A1 |
20140305527 | Weibel | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2 559 414 | Feb 2013 | EP |
2012133052 | Oct 2012 | WO |
2013003951 | Jan 2013 | WO |
Entry |
---|
International Search Report Corresponding to PCT/EP2014/064441 dated Aug. 22, 2014. |
Written Opinion Corresponding to PCT/EP2014/064441 dated Aug. 22, 2014. |
Number | Date | Country | |
---|---|---|---|
20160136053 A1 | May 2016 | US |