All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The eye is one of the most sensitive areas of the human body. Many ophthalmic medical procedures can cause pain and discomfort for a long period of time, even after patients leave the hospital. For example, the pain at the cornea region associated with photorefractive keratectomy (PRK), laser sub-epithelial keratomileusis (LASEK), or Laser-Assisted In Situ Keratomileusis (LASIK), or the pain at sclera region associated with an intravitreal injection therapy (IVT), use of povidone iodine irrigator, or surgical scission can be quite severe and tends to remain for a few days even after the treatment.
In general, in one embodiment, a device for cooling a tissue includes a reservoir having fluid therein, a nozzle fluidically connected to the reservoir and configured to pass the fluid from the reservoir therethrough, and a cooling element configured to cool the fluid from the reservoir such that it exits the nozzle at a temperature of between −100° C. and 15° C.
In general, in one embodiment, a hand-held or wearable device for cooling tissue of an eye of a patient includes a reservoir having fluid therein, a support connected to the reservoir and configured to be positioned on a face of the patient, a nozzle positioned proximate to the support and fluidically connected to the reservoir, a cooling element configured to cool the fluid from the reservoir such that it exits the nozzle at a temperature of between −100° C. and 15° C., and an ultrasonic vibrator positioned near the nozzle and configured to generate mist from at least part of the fluid. The nozzle is configured to pass the fluid from the reservoir onto a surface of the eye.
This and other embodiments can include one or more of the following features. The temperature can be between −10° C. and 10° C. The temperature can be between 0° C. and 15° C. A mass flow rate of the fluid as it exits the nozzle can be between 5 and 500 mg/sec. A cooling power of the fluid can be greater than or equal to 0.3 W. The fluid can include a fluid particle that has a volume smaller than 1 mm3. The device can further include a pump configured to pump fluid from the reservoir to the nozzle. The pump can be a manual pump. The cooling element can includes one or more Peltier modules. The total cooling power of the one or more Peltier modules can be between 0.3 W and 100 W. The cooling element can include a vapor compression chiller. The cooling element can include a Joule-Thomson cooler. The cooling element can include a Stirling cycle cooler. The cooling element can include a passive cooling element. The device can further include a temperature sensor configured to detect a temperature of the fluid at the nozzle. The device can further include a controller configured to regulate the cooling element based upon the detected temperature. The fluid may not include a pharmacological anesthetic. The reservoir and cooling element can be part of a hand-held elongate body configured to be held by the user. The device can further include a cone-shaped end piece around the nozzle. The cone-shaped end piece can be configured to be positioned on tissue outside of the patient's eye while maintaining the nozzle spaced away from the eye. The reservoir and cooling element can be part of a device configured to be worn by the user. The device configured to be worn by the user can be a pair of eyeglasses.
In general, in one embodiment, a method of anesthetizing the ocular tissues includes applying a chilled fluid directly onto the surface of the eye so as to anesthetize the cornea or sclera, the chilled fluid is at a temperature of between −100 and 15 degrees Celsius.
This and other embodiments can include one or more of the following features. The fluid can be applied off-axis relative to a central axis of the cornea. The temperature can be between −10° C. and 10° C. The temperature can be between 0° C. and 15° C. A mass flow rate of the fluid as it exits the nozzle can be between 5 and 500 mg/sec. A cooling power of the fluid can be greater than or equal to 0.3 W. The fluid can include a fluid particle that has a volume smaller than 1 mm3. The fluid may not include a pharmacological anesthetic. The method can further include generating mist from the fluid in the reservoir.
So that the manner in which the above recited features can be understood in detail, a more particular description of the described technology, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Generally, a layer of an eye that is treated by PRK, LASEK, or LASIK may be positioned underneath a protective artificial device (e.g., bandage lens) or an outer surface of the eye (e.g., underneath an outer epithelial layer (flap) of the eye). As a result, it can be difficult to deliver of pharmacological anesthetic agents to the underlayer. In addition, pharmacological anesthetics are not adequate to control the prolonged post-treatment pain, which may continue for more than 10 hours, as their frequent use is known to slow down cornea recovery. Accordingly, improvements are needed to reduce pain without the adverse effects of pharmacological anesthetics after ophthalmic procedures.
Described herein are devices and methods for cooling target mucocutaneous (e.g., the cornea or sclera of the eye) or cutaneous (e.g., skin) tissues to induce anesthesia and analgesia. The devices and methods described herein can be used after treatment of the target tissue, e.g., after ophthalmic surgeries such as PRK, LASEK, LASIK, or IVT. Further, the devices and methods can use fluid as a cooling medium for cooling and thereby anesthetizing the target tissue. Such a fluidic cooling medium can cool sub-tissues (e.g., the lower layers of cornea or sclera) with the minimum mechanical stimulus to sensitive and/or treated tissue, thereby allowing for effective and comfort anesthetizing of the tissue.
The device 100 can be configured to cool the target area (e.g., cornea) of the eye 100 by chilled fluid that is at a temperature below 15° C. (measured at the nozzle 111 or the temperature regulator 107).
The chilled fluid can be, for example, water, oil, saline solution, tear-replacing solution, lubricating solution, or a solution containing a steroid, an antihistamine, a sympathomimetic, a beta receptor blocker, a parasympathomimetic, a parasympatholytic, a prostaglandin, a nonsteroidal anti-inflammatory drug (NSAID), an antibiotic, a povidone-iodine, an antifungal, a topical anesthetic, or a mydriatic agent. In some embodiments, the chilled fluid does not include a pharmacological anesthetic (i.e., only the chilled fluid acts to anesthetize the tissue). In other embodiments, the chilled fluid can include a pharmacological anesthetic and its cold temperature synergistically anesthetizes the target tissues with a pharmacological anesthetic.
In some embodiments, the temperature regulator and the fluid reservoir can be combined. For example, a combined passive regulator/ reservoir can include an insulative fluid container with a pre-cooled substance such as ice, dry ice, or pre-chilled fluid that melts and is then supplied to the nozzle.
In some embodiments, the temperature regulator and the nozzle can be combined. For example, the nozzle can simultaneously chill and dispense fluid.
In some embodiments, the nozzle can mechanically couple with a vibrator and atomize chilled fluid to small mist droplets. For example, the nozzle can simultaneously atomize and dispense the chilled fluid.
In some embodiments, the fluid in the fluid reservoir can be pressurized or can be driven by gravity such that no pump is necessary.
In some embodiments, the fluid reservoir can be an eye drop bottle (e.g., a commercially available eye drop bottle) or replaceable liquid bottle that is configured to mechanically couple and decouple with the cooling device.
In some embodiments, the chilled fluid can be air, and the fluid reservoir can be an open inlet of air.
In some embodiments, the temperature regulator can increase its temperature to evaporate and thereby remove residual fluid inside the fluid channel.
In some embodiments, referring to
Referring to
Referring to
Referring to
Referring to
In some embodiments, the chilled liquid in the temperature regulator 107, the nozzle 111, or the combined cooling transfer channel/nozzle 311 can be pressurized by the pump 105 and thereby have a pressure greater than atmosphere pressure. Such chilled liquid at a pressure above the atmosphere pressure can have a large pressure drop at the nozzle outlet, and thereby be further cooled down by Joule-Thompson effect, which can lead to the formation of small solid ice particles and therefore provide a greater cooling capacity.
In some embodiments, the cooling devices described herein can be wearable. For example, as shown in
A more detailed view of the cooling devices aligned on-axis (
Referring to
Referring to
Similarly, referring to
In some embodiments, the cooled gas can have a temperature lower than the freezing point of the fluid (e.g., between 0° C. and −100° C., such as between 0° C. and −75° C., such as between 0° C. and −10° C.), which may change the phase of the mist from liquid to solid (ice) and therefore can increase the cooling capacity of the chilled fluid with latent heat.
In some embodiments, electric current with an opposite polarization can feed the Peltier modules of the temperature regulator. With such current of opposite polarization, the Peltier modules heat the fluid cooling channel 221 and thereby fluid therein. In this configuration of the opposite polarization, the fluid applied to a target area can have a high temperature, aiming at different therapeutic effects such as extensibility of collagen tissues; decreasing joint stiffness; reducing pain; relieving muscle spasms; reducing inflammation, edema, and aids in the post acute phase of healing; and increasing blood flow. In some embodiments, the opposite polarity can be applied to evaporate and hence remove residual fluid in the fluid channel.
The devices described herein can cool the tissue, e.g., the entire of thickness of the cornea, to between 8 and 12° C. A temperature within this range is effective in minimizing chronic pain. It should be noted that the calculations below can be similarly applied to find the parameters such as mass flow rate, cooling power, and temperature of the chilled liquid for the cooling of the sclera region or other areas of the human body.
As shown in
The governing equation that dictates the balance between body heat from the inner surface of cornea and cooling power provided by the cooling medium fluid is given by Equation 1:
qfluid=hcorneaAcornea(37−Tcornea)=mfluidcfluid(Tlens−Tfluid) (Equation 1)
where Acornea, Tlens, and Rtot are the area of cornea inner surface, temperature at the outer surface of the bandage lens and the total thermal resistance across the cornea and the lens, respectively, and given as:
By inserting typical values to the above equations and choosing water as an exemplary cooling medium fluid, the mass flow rate can be calculated as 8.4 mg/sec when the temperature of the cooling medium fluid is set to be 1° C. It should be noted, however, that the mass flow rate of 8.4 mg/sec can differ for water at a different temperature to deliver the same amount of cooling power. For example, water at a temperature larger than 1° C. requires a mass flow rate larger than 8.4 mg/sec to deliver the same amount of cooling power.
From this calculation, the temperature of the fluid (Tfluid) should be 0˜15° C. and the mass flow rate (mfluid) at the nozzle outlet should be 5˜50 mg/sec to cool the cornea for reduction of chronic pain. It should be noted, however, that initial cooling requires a larger cooling power than that of steady cooling to rapidly cool the cornea, and therefore requires a larger fluid mass flow rate. For example, in some embodiments, the mass flow rate at the nozzle outlet that can cool the cornea down to 12° C. in 5 seconds can be 5˜500 mg/sec.
In some embodiments, the chilled air cooled by the cooling device 1300 can make the temperature of the fluid (Tfluid) lower than the freezing point of the fluid. For such case, latent heat of the fluid can increase the rate of cooling of the fluid.
Equation 1 can further be simplified by using typical thermal properties of cornea and lens and thereby using Rtot=6.5 K/W. With Rtot=6.5 K/W, Tlens is calculated to be 10° C. Additionally, the variables qcooling=hcornea(37−Tcornea)=0.31 W for Tcornea=12° C. can be set, resulting in Equation 3:
0.31=mfluidcfluid(10−Tfluid) (Equation 3)
If the cooling temperature at the outer surface of cornea is set at lower than 12° C. for effective control of chronic pain (i.e., Tcorena is set at lower than 12° C. for effective analgesia), then the minimum cooling power of the fluid (Pfluid) should be accordingly to Equation 4:
Pfluid=mfluidcfluid(10−Tfluid)>=0.3 W (Equation 4)
In some embodiments, the total cooling power of Peltier modules or other types of cooling element to deliver Pfluid>=0.3 W is greater than 0.3 W.
The minimum initial cooling power to cool cornea from its normal temperature (e.g., 33° C.) to the anesthesia temperature (12° C.) in tinitial can be calculated by:
Pfluid,initial=mcornea,lensccornea,lens(33−12)/tinitial>=3W (Equation 5)
where mcornea,lens and ccorena,lens are the total mass of cornea and the bandage lens and effective heat capacity of cornea and the bandage lens, respectively. For example, the minimum initial cooling power of the fluid (Pfluid,initia) should be larger than 3 W (Equation 5), when mcornea,lens and ccornea,lens are 0.1 g and 3 J/g-K, respectively. In some embodiments, the total cooling power of Peltier modules or other types of the cooling element to deliver Pfluid>=3 W is between 3 W and 100 W. Accordingly, the initial mass flow rate of the fluid should be 93 mg/sec when the temperature of the cooling medium fluid and tinitial are set to be 1° C. and 5 seconds, respectively. It should be noted that the cooling medium fluid at a temperature larger than 1° C. or tinitial smaller than 5 seconds requires the initial mass flow rate larger than 93 mg /sec. From this calculation, in some embodiments, the temperature of the fluid (Tfluid) is between 0˜15° C. and the mass flow rate (mfluid) at the nozzle outlet is 5˜500 mg/sec to cool the cornea down to 12° C. in 5 seconds for reduction of chronic pain during the initial cooling period. In some embodiments, the initial mass flow rate can be 5˜500 mg/sec.
In some embodiments, the cooling devices described herein can continuously deliver mist to the eye for a set period of time (e.g., for 1-2 hours). In other embodiments, the cooling devices described herein can be configured to deliver fluid automatically at set times (e.g., to deliver fluid for 15-60 seconds every 1-60 minutes). In other embodiments, the cooling devices described herein can be completely manually operated.
Advantageously, the devices described here can provide chilled fluid directly to the surface of the eye to cool and anesthetize the cornea thereunder (i.e., anesthetize the entire cornea at all depths). By applying the fluid (e.g., in mist, liquid, or a mixture of cold gas and ice particles form) to the surface of the eye, the tissue of the cornea can be cooled enough to be anesthetized without touching the eye with a solid device that would be painful or irritating to the eye, e.g., after PRK surgery or IVT. Additionally, the devices described herein can advantageously anesthetize the tissue without the use of pharmacological anesthetics, of which a prolonged use can slow down cornea or sclera recovery or can cause irritation of eye.
In some embodiments, the devices described herein can be used to cool tissues other than the tissues of the eye. For example, the devices described herein can be used to control chronic pain associated with arthritis in finger and toe joints (e.g., Gout arthritis) or pain associated with burn wounds. In particular, the chilled mist can cool burn wounds with the minimum mechanical stimulus to sensitive tissues.
In some embodiments, the devices described herein can be used to optimize the therapeutic effects of a nebulizer by controlling the temperature of a medication liquid or mist droplets. For example, the particle sizes of medication mist droplets, the viscosity of the medication liquid, respiration rate, or the functions of medication protein can be optimized by controlling the temperature of the medication liquid, mist droplets, or both medication liquid and mist droplets.
In some embodiments, the devices described herein can be used to optimize the quality of spray coating on a target surface by controlling temperature of the coating fluid. For example, the coating liquid with a lower temperature can evaporate slowly, allow the coating liquid to evenly spread on a hydrophilic surface, and thereby increase the uniformity of the resultant coating on a hydrophilic surface. On the other hand, the coating liquid with a high temperature can evaporate rapidly, reduce the congregation of the coating liquid on a hydrophobic surface, and therefore increase the uniformity of resultant coating on a hydrophobic surface.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This application claims the benefit of U.S. Provisional Patent Application No. 62/719,695, filed Aug. 19, 2018, and titled “Device for Cooling Anesthesia by Chilled Fluidic Cooling Medium”, and U.S. Provisional Patent Application No. 62/756,018, filed Nov. 5, 2018, and titled “Device for Cooling Anesthesia by Chilled Fluidic Cooling Medium.” The entire disclosure of the above applications is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2044823 | Whiteside | Jun 1936 | A |
4646735 | Seney | Mar 1987 | A |
6099521 | Shadduck | Aug 2000 | A |
6141985 | Cluzeau et al. | Nov 2000 | A |
6632219 | Baranov et al. | Oct 2003 | B1 |
6669688 | Svaasand et al. | Dec 2003 | B2 |
7037326 | Lee | May 2006 | B2 |
7780656 | Tankovich | Aug 2010 | B2 |
7963959 | Silva et al. | Jun 2011 | B2 |
8083734 | Steinfatt et al. | Dec 2011 | B2 |
D658775 | Jiangminhui | May 2012 | S |
8177827 | Shapiro | May 2012 | B2 |
8256233 | Boyden et al. | Sep 2012 | B2 |
8409184 | Baust et al. | Apr 2013 | B2 |
8652131 | Muller et al. | Feb 2014 | B2 |
8672879 | Grant et al. | Mar 2014 | B2 |
8747397 | Baust et al. | Jun 2014 | B2 |
8788060 | Nebrigic et al. | Jul 2014 | B2 |
8858583 | Shtram et al. | Oct 2014 | B2 |
9017318 | Fourkas et al. | Apr 2015 | B2 |
9039688 | Palmer, III et al. | May 2015 | B2 |
9066712 | Fourkas et al. | Jun 2015 | B2 |
9113855 | Burger et al. | Aug 2015 | B2 |
9155584 | Fourkas et al. | Oct 2015 | B2 |
9398975 | Müller et al. | Jul 2016 | B2 |
9522031 | Anderson et al. | Dec 2016 | B2 |
9549773 | Anderson et al. | Jan 2017 | B2 |
9642741 | Feng et al. | May 2017 | B2 |
9801677 | Anderson et al. | Oct 2017 | B2 |
9855166 | Anderson et al. | Jan 2018 | B2 |
9956355 | Besirli et al. | May 2018 | B2 |
9974684 | Anderson et al. | May 2018 | B2 |
D822841 | Cheng | Jul 2018 | S |
10085881 | Karnik et al. | Oct 2018 | B2 |
10154870 | Ottanelli | Dec 2018 | B2 |
10188444 | Fourkas et al. | Jan 2019 | B2 |
10213244 | Fourkas et al. | Feb 2019 | B2 |
10322248 | Besirli et al. | Jun 2019 | B2 |
10349997 | O'Reilly | Jul 2019 | B1 |
10363080 | Elkins et al. | Jul 2019 | B2 |
10543032 | Babkin | Jan 2020 | B2 |
20040102768 | Cluzeau et al. | May 2004 | A1 |
20040111087 | Stern et al. | Jun 2004 | A1 |
20050005626 | McMahon | Jan 2005 | A1 |
20050059940 | Weber et al. | Mar 2005 | A1 |
20050261753 | Littrup et al. | Nov 2005 | A1 |
20060200117 | Hermans | Sep 2006 | A1 |
20060213509 | Marin et al. | Sep 2006 | A1 |
20070005048 | Niedbala et al. | Jan 2007 | A1 |
20080164296 | Shelton et al. | Jul 2008 | A1 |
20080221561 | Geiger et al. | Sep 2008 | A1 |
20090036846 | Dacquay et al. | Feb 2009 | A1 |
20090062751 | Newman, Jr. | Mar 2009 | A1 |
20090124972 | Fischer et al. | May 2009 | A1 |
20090149930 | Schenck | Jun 2009 | A1 |
20090163902 | DeLonzor et al. | Jun 2009 | A1 |
20100010480 | Mehta et al. | Jan 2010 | A1 |
20100087805 | Citterio et al. | Apr 2010 | A1 |
20100196343 | O'Neil et al. | Aug 2010 | A1 |
20100198207 | Elkins et al. | Aug 2010 | A1 |
20110072834 | Ishikura et al. | Mar 2011 | A1 |
20110098791 | Kim | Apr 2011 | A1 |
20110137268 | Thomason et al. | Jun 2011 | A1 |
20110152850 | Niedbala et al. | Jun 2011 | A1 |
20110177474 | Jamnia et al. | Jul 2011 | A1 |
20110224761 | Manstein | Sep 2011 | A1 |
20120130458 | Ryba et al. | May 2012 | A1 |
20120191166 | Callister et al. | Jul 2012 | A1 |
20120232549 | Willyard et al. | Sep 2012 | A1 |
20120265278 | Fourkas et al. | Oct 2012 | A1 |
20130116719 | Shtram et al. | May 2013 | A1 |
20130184694 | Fourkas et al. | Jul 2013 | A1 |
20130296811 | Bangera et al. | Nov 2013 | A1 |
20130315924 | Hsu et al. | Nov 2013 | A1 |
20140012226 | Hochman | Jan 2014 | A1 |
20140187969 | Hunter | Jul 2014 | A1 |
20140200511 | Boyden et al. | Jul 2014 | A1 |
20140277023 | Sekino et al. | Sep 2014 | A1 |
20140303608 | Taghizadeh | Oct 2014 | A1 |
20150018781 | Rinderknect | Jan 2015 | A1 |
20150051545 | Henderson et al. | Feb 2015 | A1 |
20160058488 | Fourkas et al. | Mar 2016 | A1 |
20160135864 | Babkin | May 2016 | A1 |
20160143802 | Tranfaglia et al. | May 2016 | A1 |
20160183996 | Burger et al. | Jun 2016 | A1 |
20160242956 | Gomez | Aug 2016 | A1 |
20160262820 | Allison et al. | Sep 2016 | A1 |
20160279350 | Besirli | Sep 2016 | A1 |
20170014174 | Levine et al. | Jan 2017 | A1 |
20170062793 | Zakharyan et al. | Mar 2017 | A1 |
20170231816 | Ryan | Aug 2017 | A1 |
20170232243 | Herweijer | Aug 2017 | A1 |
20170304558 | Besirli et al. | Oct 2017 | A1 |
20170354451 | Marin et al. | Dec 2017 | A1 |
20180116705 | Lee et al. | May 2018 | A1 |
20180235805 | Burger et al. | Aug 2018 | A1 |
20180310979 | Peled et al. | Nov 2018 | A1 |
20190000524 | Rosen et al. | Jan 2019 | A1 |
20190015146 | DuBois et al. | Jan 2019 | A1 |
20190038459 | Karnik et al. | Feb 2019 | A1 |
20190175394 | Kim | Jun 2019 | A1 |
20190175395 | Kim | Jun 2019 | A1 |
20190175396 | Kim | Jun 2019 | A1 |
20190239938 | Kazic et al. | Aug 2019 | A1 |
20190254866 | Whiteley et al. | Aug 2019 | A1 |
20190290881 | Kim | Sep 2019 | A1 |
20200007882 | Abe et al. | Jan 2020 | A1 |
20200007883 | Toresson | Jan 2020 | A1 |
20200100934 | Ariano et al. | Apr 2020 | A1 |
20200309436 | Kim | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
2660834 | Dec 2004 | CN |
1 030 611 | Sep 2004 | EP |
1 401 347 | Aug 2011 | EP |
2 010 087 | Nov 2014 | EP |
2 910 276 | Aug 2015 | EP |
2 759 272 | Nov 2018 | EP |
04-092663 | Mar 1992 | JP |
06-086818 | Mar 1994 | JP |
10-230435 | Sep 1998 | JP |
2002-505155 | Feb 2002 | JP |
4049358 | Feb 2002 | JP |
2004-515270 | May 2004 | JP |
2005-080832 | Mar 2005 | JP |
2008-212638 | Sep 2008 | JP |
2008-545462 | Dec 2008 | JP |
2009-034273 | Feb 2009 | JP |
2009-056320 | Mar 2009 | JP |
2011-077314 | Apr 2011 | JP |
2012-143279 | Aug 2012 | JP |
2013-142410 | Jul 2013 | JP |
2014-198238 | Oct 2014 | JP |
2015-510802 | Apr 2015 | JP |
2017-113635 | Jun 2017 | JP |
20-1998-0005117 | Mar 1998 | KR |
2019-980005117 | Mar 1998 | KR |
10-0200669 | Mar 1999 | KR |
10-2003-0068633 | Aug 2003 | KR |
10-2004-0093706 | Nov 2004 | KR |
10-0786539 | Dec 2007 | KR |
10-0790758 | Dec 2007 | KR |
10-2008-0045022 | May 2008 | KR |
10-0851274 | Aug 2008 | KR |
10-2010-0041207 | Apr 2010 | KR |
10-2010-0060222 | Jun 2010 | KR |
10-2010-0135863 | Dec 2010 | KR |
10-1053835 | Aug 2011 | KR |
10-2011-0119640 | Nov 2011 | KR |
10-2012-0115703 | Oct 2012 | KR |
10-2013-0087770 | Aug 2013 | KR |
10-1366126 | Feb 2014 | KR |
10-1386137 | Apr 2014 | KR |
10-2014-0052667 | May 2014 | KR |
10-2014-0069431 | Jun 2014 | KR |
10-2015-0030264 | Mar 2015 | KR |
10-2015-0062492 | Jun 2015 | KR |
10-2016-0048425 | May 2016 | KR |
10-2016-0146337 | Dec 2016 | KR |
10-1707659 | Feb 2017 | KR |
10-1719459 | Mar 2017 | KR |
10-2017-0041776 | Apr 2017 | KR |
10-2017-0083399 | Jul 2017 | KR |
10-2017-0089842 | Aug 2017 | KR |
10-1813652 | Aug 2017 | KR |
10-2017-0130470 | Nov 2017 | KR |
10-1819204 | Jan 2018 | KR |
10-2018-0054247 | May 2018 | KR |
10-1840346 | May 2018 | KR |
10-1862127 | May 2018 | KR |
10-2018-0109828 | Oct 2018 | KR |
10-1936890 | Jan 2019 | KR |
10-2019-0074150 | Jun 2019 | KR |
WO 2016154399 | Sep 2016 | WO |
WO 2018231868 | Dec 2018 | WO |
Entry |
---|
Chinese First Office Action dated Dec. 22, 2020 for CN 201780083128.0. |
European (EUIPO) Examination Report dated Jan. 11, 2021 for 008309504-003. |
European (EUIPO) Examination Report dated Feb. 5, 2021 for 008309504-003. |
International Search Report dated Mar. 4, 2021, for PCT/KR2020/012886. |
International Written Opinion dated Mar. 4, 2021, for PCT/KR2020/012886. |
Office Action dated Sep. 13, 2019 for U.S. Appl. No. 16/412,296. |
Final Office Action dated Jan. 31, 2020 for U.S. Appl. No. 16/412,296. |
Final Office Action dated Oct. 28, 2020 for U.S. Appl. No. 16/412,296. |
Office Action Dated Dec. 24, 2020 for U.S. Appl. No. 17/036,269. |
Office Action dated Dec. 8, 2020 for U.S. Appl. No. 17/036,311. |
Notice of Allowance dated Feb. 22, 2021 for U.S. Appl. No. 17/036,311. |
Office Action dated Nov. 5, 2020 for U.S. Appl. No. 29/701,630. |
Notice of Allowance dated Feb. 3, 2021 for U.S. Appl. No. 29/701,630. |
Office Action dated Nov. 5, 2020 for U.S. Appl. No. 29/701,631. |
Notice of Allowance dated Feb. 3, 2021 for U.S. Appl. No. 29/701,631. |
Korean Office Action dated Nov. 26, 2019 for KR 10-2018-0049108. |
Korean Office Action dated Nov. 27, 2019 for KR 10-2018-0049109. |
Korean Office Action dated Dec. 6, 2019 for KR 10-2018-0049110. |
Korean Office Action dated Dec. 9, 2019 for KR 10-2018-0049115. |
Korean Office Action dated Dec. 10, 2019 for KR 10-2018-0049117. |
International Search Report dated Jun. 4, 2018 for PCT/KR2017/012935. |
International Search Report dated Jul. 6, 2018 for PCT/KR2018/003773. |
International Search Report dated Aug. 8, 2018 for PCT/KR2017/013901. |
International Search Report dated May 30, 2019 for PCT/KR2018/016491. |
Korean Notice of Allowance dated Jun. 30, 2018 for KR 10-2016-0151947. |
Korean Office Action dated Oct. 22, 2018 for KR 10-2017-0162715. |
Korean Office Action dated Oct. 22, 2018 for KR 10-2017-0162716. |
Korean Office Action dated Jul. 29, 2019 for KR 10-2017-0162717. |
Korean Notice of Allowance dated Jul. 29, 2019 for KR 10-2017-0162716. |
Korean Notice of Allowance dated Aug. 29, 2019 for KR 10-2017-0162715. |
Korean Office Action dated Oct. 8, 2019 for KR 10-2018-0052601—no translation avail. |
International Search Report and Written Opinion dated Aug. 14, 2019 for PCT/KR2019/005105. |
International Search Report and Wrillen Opinion dated Nov. 15, 2019 for PCT/KR2019/009411. |
Korean Final Office Action dated Jan. 17, 2020 for KR 10-2017-0162717 with Translation. |
Korean Final Office Action dated May 10, 2020, for KR 10-2018-0049109 with Translation. |
Korean Notice of Allowance dated Jun. 24, 2020 for KR 10-2018-0049109—w/ Trans. |
Korean Final Office Action dated May 10, 2020 for KR 10-2018-0049110—w/ Trans. |
Korean Notice of Allowance dated Jun. 22, 2020 for KR 10-2018-0049110—w/ Trans. |
Korean Notice of Allowance dated Jul. 21, 2020 for KR 10-2018-0049115—w/ Trans. |
Korean Notice of Allowance dated May 10, 2020 for KR 10-2018-0049117. |
Korean Second Office Action, with translation, dated Oct. 28, 2019 for KR 10-2018-0052601. |
Korean Office Action dated Oct. 22, 2018, for KR 10-2018-0117138. |
Smith et al., “Ice Anesthesia for Injection of Dermal Fillers,” The American Society for Dermatologic Surgery Inc., Dermatol. Surg 2010;36:812-814, 2010. |
Sarifakiogiu, et al., “Evaluating the Effects of Ice Application on the Pain Feit During Botulinum Toxin Type-A Injections,” Annals of Plastic Surgery, vol. 53, No. 6, Dec. 2004. |
International Search Report dated Mar. 27, 2020, for PCT/KR2019/017328. |
Korean Notice of Allowance dated Apr. 2, 2020 for KR 10-2018-0052601 with Eng. Translation. |
Korean Office Action dated May 10, 2020 for KR10-2018-0049115, with Eng. Translation. |
Office Action dated Oct. 2, 2019 for U.S. Appl. No. 15/828,449. |
Office Action dated May 15, 2020 for U.S. Appl. No. 15/828,449. |
Office Action dated Jun. 26, 2020 for U.S. Appl. No. 16/412,296. |
Number | Date | Country | |
---|---|---|---|
20200054483 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
62756018 | Nov 2018 | US | |
62719695 | Aug 2018 | US |