The invention applies to the field of avionics racks intended to receive electronic modules and more particularly to the devices for cooling such racks.
In an aircraft, the management of flight controls and all the information necessary for the proper functioning of the aircraft is carried out by electronic modules plugged into one or more avionics rack(s) distributed throughout the aircraft. In operation, the electronic modules generate heat that must be removed in order not to compromise the integrity of the modules and/or their performance. This removal is typically done using a device for cooling an electronic module placed in an aircraft rack that includes means to force a flow of ventilation air into the avionics rack. This air flow is extracted and returned to a ventilation circuit that runs through the aircraft. The miniaturization of the components and therefore their concentration in the electronic modules increases the amount of heat to be evacuated. It is then necessary to also increase the volume of ventilation air passing through the rack. It has been considered to increase the air flow rates in the ventilation circuit, but such a solution is noisy and requires increasing the diameter of the ventilation ducts as well. The routing of the ventilation ducts then increases in complexity, and therefore in cost and the weight of the ducts increases accordingly.
The purpose of the invention is to reduce the size of a device for cooling an electronic module placed in an aircraft rack.
For this purpose, a device is provided for cooling at least one electronic module placed in an avionics rack of an aircraft including a ventilated cabin. The cooling device comprises a closed circuit for circulating a heat-transfer fluid, first means for circulating the heat-transfer fluid in the closed circuit, and a first heat exchanger comprising a cold circuit which is provided with first means for connecting to the closed circuit for circulating the heat-transfer fluid and which is thermally connected to a hot source in the aircraft rack. According to the invention, the device comprises a second heat exchanger comprising a hot circuit provided with second means for connecting the closed circuit for circulating a heat-transfer fluid and a cold circuit thermally connected to an air exhaust of the ventilated cabin.
A previously lost resource is then exploited as a cold source, namely the air flow at the outlet of the air exhaust of the ventilated cabin.
The reliability of the cooling device is improved when the first heat exchanger includes first means for forcing an air flow and/or the second heat exchanger includes second means for forcing an air flow.
A particularly robust and economical device is obtained when the first and/or second means for forcing an air flow include a fan.
The reliability of the cooling device is further improved when the first heat exchanger includes second means for circulating the heat-transfer fluid in the closed circuit.
Advantageously, the cooling device comprises means for controlling and supplying the first means for forcing an air flow, which allows the latter to be activated only when necessary, thus reducing the power consumption of the cooling device.
Advantageously, the first means for circulating the heat-transfer fluid comprise a turbine whose rotor acts as a short-circuited armature. This design is advantageous due to its simplicity of construction, use and maintenance, as well as its robustness and low manufacturing cost. In case of turbine failure, the fluid flow is not blocked, further improving the reliability of the cooling device.
The invention also relates to a method for cooling an electronic module of an aircraft rack comprising a first step of transferring heat from the electronic module to a closed circuit for circulating a heat-transfer fluid and a second step of removing the heat from the heat-transfer fluid to an air flow extracted from an air exhaust in an aircraft cabin.
The invention also relates to an avionics rack comprising a first heat exchanger whose cold circuit is provided with first means for connecting a closed circuit for circulating a heat-transfer fluid, as well as such an avionics rack in which the first heat exchanger is arranged to exchange a heat by conduction with the heat-transfer fluid.
Finally, the invention also includes an aircraft with a previously described cooling device and/or an avionics rack of a type described above.
Other characteristics and advantages of the invention will become apparent from the following description of a non-restrictive embodiment of the invention.
Reference will now be made to the appended drawings, wherein:
With reference to
The cooling device 100 consists of a closed circuit 10 for circulating glycol water 11 made of aluminium tube and a circulation pump 12. The closed circuit 10 includes a first flat flange 13 and a second flat flange 14 respectively connected to homologous flanges 20 and 21 of an inlet 22 and an outlet 23 of a first aluminium coil 24. The first coil 24 is placed opposite an air exhaust 30 of an air-conditioned cabin 31 designed to accommodate passengers. A first fan 32 connected to a control unit 40 is arranged to force an air flow on the first coil 24.
With reference to
The second coil 86, with the first frame 83 of the first avionics rack 80, produces a first heat exchanger 50 whose cold circuit 51, consisting of the second coil 86, is connected to the closed circuit 10. The second coil 86 is thermally connected to the first frame 83 which is a hot source 52 of the first heat exchanger 50, and exchanges heat, mainly by conduction, with the first electronic modules 81 and 82. Thus the glycol water 11 entering at an inlet temperature T91 in the first inlet pipe 91 of the second coil 86 cools the first frame 83 by conduction, and exits the second coil 86 through the first outlet pipe 92 at an outlet temperature 92 higher than the inlet temperature T91.
Similarly, and with reference to
The third coil 186, with the second frame 183 of the second avionics rack 180, produces a second heat exchanger 150 whose cold circuit 151, consisting of the third coil 186, is connected to the closed circuit 10. The third coil 186 is thermally connected to the second frame 183, which is a hot source 152 of the second heat exchanger 150, and exchanges heat, mainly by conduction, with the second electronic modules 181 and 182. Thus the glycol water 11 entering at an inlet temperature T191 in the second inlet pipe 191 of the third coil 186 cools the second frame 183 by conduction, and exits the third coil 186 through the second outlet pipe 192 at an outlet temperature T192 higher than the inlet temperature T191.
The first coil 24 produces, with the air exhaust 30 of the cabin 31, a third heat exchanger 60 whose hot circuit 61, consisting of the first coil 24, is connected to the closed circuit 10. The first coil 24 is thermally connected to the air exhaust 30, which is a cold source 62 of the third heat exchanger 60, and exchanges heat by conduction with the air exhaust 30. Thus, the glycol water 11 entering at an inlet temperature T22 in the first coil 24 cools by convective exchange with an air flow 33 from the air exhaust 30 and exits the first coil 24 at an outlet temperature T23 lower than the inlet temperature T22.
With reference to
In operation, the control unit 40 controls the start-up of the circulation pump 12. The first and second power supply and communication units 70 and 170 respectively keep the first and second circulators 93 and 193 and the second fans 94 and 194 off and monitor the temperature inside the first and second avionics racks 80 and 180 using the first and second temperature sensors 95 and 195. The heat generated by the first modules 81 and 82 during their operation is transmitted to the first frame 83 in the following modes:
This heat is then transmitted by conduction to the second coil 86, which transmits it by convection to the flow of glycol water 11 circulated in the circuit 10 by the circulation pump 12. The glycol water flow 11 is cooled as it passes through the first coil 24 by a convection exchange between the first coil 24 and the air flow 33 from the exhaust air 30. The cooled glycol water 11 is then returned to the avionics rack 80. Identical heat exchanges take place between the second modules 181 and 182, the second avionics rack 180 and the closed circuit 10.
Glycol water temperature sensors 11 can be added at various points in the closed circuit 10 and connected to the control unit 40 to control the operation of the circulation pump 12 and/or the operation of the fan 32.
In case of failure of the circulation pump 12, the heating of the interior of the first avionics rack 80 is measured by the first temperature sensor 95 and detected by the first power and communication unit 70, which then controls the start-up of the first circulator 93 or even the second fan 94. The second rack 180 operates in the same way in case of failure of the circulation pump 12.
In case of failure of the cabin ventilation 31, the control unit 40 starts the first fan 32 to ensure air circulation around the first coil 24. This situation can only occur on the ground because the cabin 31 is generally ventilated by external RAM intake when the aircraft 1 is flying. The second rack 180 operates in the same way in case of failure of the ventilation system in the cabin 31.
Of course, the invention is not limited to the described embodiments but encompasses any alternative solution within the scope of the invention as defined in the claims.
More particularly:
Number | Date | Country | Kind |
---|---|---|---|
17 55242 | Jun 2017 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/064528 | 6/1/2018 | WO | 00 |