This application represents the national stage entry of PCT International Application No. PCT/EP2014/063560 filed Jun. 26, 2014 and claims priority to German Patent Application No. 10 2013 217 952.9 filed Sep. 9, 2013. The contents of both applications are hereby incorporated by reference as if set forth in their entirety herein.
The invention relates to a device for feeding a stream of hot gas to a printed circuit board.
It is known to connect, when producing printed circuit board assemblies, the components arranged on the printed circuit board to the printed circuit board by hot-air soldering.
In reflow or convection soldering installations, hot gas soldering devices fitted, for instance, with hot gas nozzles are used for this. In this respect, hot air or hot gas is blown through the hot gas nozzles to the soldering points in the area of the contact pins of the components, the solder thus being melted.
The hot gas nozzles, hereunto, may for instance be arranged on nozzle sheets or nozzle plates, wherein the nozzle sheets or nozzle plates may typically be arranged beneath, but also above the circuit boards transported through the soldering installation. Here, it is required for a good heat transfer, while the energy input is as low as possible, that the printed circuit boards are positioned at a location as close as possible to nozzle plates having the hot gas nozzles arranged thereon, in order to achieve the most direct application possible of hot gas to the soldering points in this manner.
However, in printed circuit boards whose width-thickness relation is relatively large, as well as in flexible or film-based printed circuit boards, deflections may occur in the center of the printed circuit boards as the temperature rises in a soldering machine. In order to counteract such undesired deflections, reflow or convection soldering installations commonly possess appliances for the purpose of central support of the printed circuit boards when being transported through the hot gas area. Such appliances for central support purposes commonly support the printed circuit boards at a position between the opposite lateral edges of the circuit boards. Known systems for central support purposes utilize, for instance, a circumferential rope or a circumferential chain, which, for instance, centrally supports the printed circuit boards. Revolving supporting bolts for selective support are also known.
Such appliances for the purpose of central support of printed circuit boards, however, occupy installation space in the hot gas feeding area. In particular when adjusting the central support transversely with respect to the direction of transport of the circuit boards, or also when other disruptive contours are present in the area of the circuit board surface or of the hot gas nozzles, it is additionally required that the central support or the circuit boards have a sufficient distance to the known nozzle plates having the hot gas nozzles arranged thereon. Thus, the nozzles are prevented from colliding with the central support or with any other disruptive contours when the circuit boards are transported through the hot gas area or when the central support has to be adjusted transversely with respect to the direction of transport of the circuit boards.
The associated increased distance between the nozzle plates or the outlet openings of the hot gas nozzles and the circuit board surface, however, leads to a loss of energy and to a suboptimal heat transfer onto the circuit boards or soldering points to be melted.
The present invention is accordingly based on the object of creating a device for feeding a stream of hot gas to a printed circuit board, with which the aforementioned advantages or restrictions can be overcome. In particular, a distance between the nozzle plate or the hot gas nozzles on the one hand and the circuit board surface on the other hand that is as small as possible is also to be made possible in soldering installations having a central support.
This object is attained by a device according to the teaching of claim 1. Advantageous embodiments of the invention are the subject-matter of the dependent claims.
The device for feeding a stream of hot gas in accordance with the present invention, in an initially known manner, features a nozzle plate having at least one drilled hole. In this respect, a hot gas nozzle arranged on the nozzle plate is assigned to the at least one drilled hole, in such a way that the drilled hole opens into the hot gas nozzle.
If hot gas is hence applied to the nozzle plate from the back, the same flows through the at least one drilled hole of the nozzle plate as well as through the hot gas nozzle and exits from the nozzle opening of the hot gas nozzle.
In accordance with the invention, the hot gas feed device is, however, defined in that the at least one hot gas nozzle is formed by a helical spring. Due to the hot gas nozzle being implemented as a helical spring, the hot gas nozzle can be embodied flexibly. This makes it possible that objects or groups of components, which would collide with a rigid hot gas nozzle, can push aside the flexible hot gas nozzle, which is embodied as a helical spring, in accordance with the invention, without damaging it. This is in particular also true for the central support of the transporting appliance, with which the circuit boards are transported through the hot gas area.
The circuit board surface can thus, for instance, be positioned at a location very close to the nozzle plate having the hot gas nozzles embodied in accordance with the invention even when a central support is present or when other disruptive contours are present in the area of the circuit board surface or the hot gas nozzles, the desired direct heat transfer ensuing with only very small losses of energy. As the applicant has discovered in experiments, thanks to the hot gas nozzles being embodied as helical springs in accordance with the invention, the same amount of heat can be transferred in this manner onto the circuit boards as with a nozzle plate having rigid hot gas nozzles and thereby having a larger distance between the nozzle openings and the circuit boards or soldering points to be heated, the energy being significantly reduced, sometimes up to half of the original amount.
Even while a central support for the circuit boards is operated or is advanced more or less transversely with respect to the direction of transport of the circuit boards for adjustment, an increased distance from the nozzle plate having the hot gas nozzles does not have to be kept anymore thanks to the invention. Instead, the central support can be operated or advanced despite a potential collision with the hot gas nozzles since the same are embodied, in accordance with the invention, as resilient helical springs.
The hot gas nozzle embodied as a helical spring can transport the hot gas particularly efficiently to the nozzle outlet when the helical spring, as it is envisaged in accordance with a particularly preferred embodiment of the invention, is a tension spring wound to block thickness. This means that the windings of the helical spring, in the force-free state of the helical spring, directly rest on top of one another, whereby the hot gas is inhibited from exiting to the side between the windings of the helical spring.
The invention is furthermore realized independently of how the helical spring and the nozzle plate are connected to each other. In accordance with a particularly preferred embodiment, the helical spring, however, penetrates its assigned drilled hole of the nozzle plate and preferably has been pressed into the drilled hole of the nozzle plate. In this manner, the hot gas nozzles embodied as helical springs can easily and rapidly be mounted on the nozzle plate.
In accordance with an embodiment alternative to the above, the drilled hole of the nozzle plate features a thread concurrent with the helical spring in terms of its diameter and its lead. This embodiment makes it possible that the helical spring can easily be screwed into the nozzle plate, without additional elements for fastening or fixing being required.
Another embodiment of the invention envisages that the drilled hole of the nozzle plate, in the area of the runout on the side of the helical spring, is widened in a conical or rounded fashion. In this manner, stress peaks upon deflection of the helical springs in the case of a collision, for instance with the central support of the soldering installation, are avoided, and the durability of the helical springs is thus increased.
According to a further possible embodiment of the invention, it is ultimately envisaged that the helical spring, in the area of the hot gas outlet, is shaped so as to be tapered in a conical fashion or in the shape of a nozzle. In this manner, the heat transfer through the stream of hot gas onto the circuit board is effected in an even more effective manner.
Hereinafter, the invention will be explained with the help of drawings only illustrating exemplary embodiments.
In the figures:
In
This means that mounting the nozzle plate having the elastic hot gas nozzles in accordance with the invention only causes correspondingly low effort and costs. Simultaneously, the hot gas feed device in accordance with the invention, obtained in this manner, is particularly robust during operation since collisions of the hot gas nozzles 2 with other groups of components of the soldering installation cannot cause damage anymore. As a whole, the solution of the problem in accordance with the invention thus ensues, in particular an improved heat transfer or a considerably lower energy absorption while the heat transfer is the same, due to the reduced distances rendered possible with the aid of the invention, between the nozzle openings 4 and the circuit boards or soldering points to be heated.
In addition, a helical spring such as shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2013 217 952 | Sep 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/063560 | 6/26/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/032517 | 3/12/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1323999 | Baker | Dec 1919 | A |
2608421 | Schnepp | Aug 1952 | A |
2648567 | Brennan | Aug 1953 | A |
2874741 | Brancato | Feb 1959 | A |
3088756 | May | May 1963 | A |
3370599 | Ciaccio | Feb 1968 | A |
3478967 | Horton | Nov 1969 | A |
3959840 | Sato | Jun 1976 | A |
4257139 | Yeo | Mar 1981 | A |
4420852 | Bowlsby | Dec 1983 | A |
4466788 | Nitta | Aug 1984 | A |
4569420 | Pickett | Feb 1986 | A |
4644140 | Hillinger | Feb 1987 | A |
4771929 | Bahr | Sep 1988 | A |
4775775 | Spigarelli | Oct 1988 | A |
4813866 | Eun | Mar 1989 | A |
4822971 | Peterson | Apr 1989 | A |
4926028 | Fortune | May 1990 | A |
5018965 | Ichikawa | May 1991 | A |
5054106 | Fortune | Oct 1991 | A |
5345061 | Chanasyk | Sep 1994 | A |
5358166 | Mishina | Oct 1994 | A |
5862561 | Irwin | Jan 1999 | A |
5862588 | Heim | Jan 1999 | A |
5971246 | Aun | Oct 1999 | A |
6152495 | Hoffmann | Nov 2000 | A |
6347734 | Downes | Feb 2002 | B1 |
6508414 | Matsumoto | Jan 2003 | B2 |
7389942 | Kenyon | Jun 2008 | B2 |
7780057 | Kishi | Aug 2010 | B2 |
9511379 | Hiyama | Dec 2016 | B2 |
9751146 | Kagaya | Sep 2017 | B2 |
20020116090 | Fischer | Aug 2002 | A1 |
20060197040 | Brieske | Sep 2006 | A1 |
20070210034 | Mather | Sep 2007 | A1 |
20090134142 | Nakamura | May 2009 | A1 |
20110219743 | Johnson | Sep 2011 | A1 |
20120088202 | Willemen | Apr 2012 | A1 |
20120100668 | Jeon et al. | Apr 2012 | A1 |
20120178039 | Kagaya | Jul 2012 | A1 |
20150290736 | Zhang | Oct 2015 | A1 |
20150382482 | Hiyama | Dec 2015 | A1 |
20160050740 | Zhang | Feb 2016 | A1 |
20160052074 | Hueste | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
1173801 | Feb 1998 | CN |
39 15 778 | Nov 1989 | DE |
38 79 529 | Mar 1993 | DE |
10 2011 111 489 | May 2012 | DE |
0 279 604 | Mar 1993 | EP |
1 870 191 | Dec 2007 | EP |
2 324 058 | Oct 1998 | GB |
9921676 | May 1999 | WO |
Entry |
---|
The International Search Report as dated Oct. 9, 2014 for International Application No. PCT/EP2014/063560. |
The International Preliminary Report on Patentability as dated Mar. 24, 2016 for International Application No. PCT/EP2014/063560. |
Eberhard Schmauch et al., Reflow Soldering of RoHS-Compliant Groups of Components in Power Electronics, Technical Journal of Advanced Packaging & Electronics Manufacturing, Mar./Apr. 2010, Published by SMT. |
English Translation of first office action and search report of State Intellectual Property Office of People's Republic of China, dated Nov. 16, 2017. |
Number | Date | Country | |
---|---|---|---|
20160207131 A1 | Jul 2016 | US |