(1) Field of the Invention
The present invention relates to a device used for measuring the permittivity of insulating materials over a broad range of frequencies.
(2) Description of the Prior Art
The electrical property of an insulator is an important piece of information that gives the designer the ability to choose the most appropriate material for a given application of the numerous electric characteristics that describe a given insulator, the relative permittivity (Symbol: ∈r) receives attention because the relative permittivity describes an insulator's ability to store and/or dissipate electric field energy. This is symbolized by writing ∈r, explicitly as the complex quantity.
∈r=∈r′−j∈r″ (1)
In the above, ∈r′ is called the dielectric constant and ∈r″ is the loss factor, both quantities varying with applied frequency. The symbol j indicates that there is a (90°) phase lag between ∈r″ and ∈r″. In a good dielectric, ∈r′ is much larger than ∈r″; the converse is true for a highly dissipative (lossy) insulator. Thus materials with loss factors large compared to the dielectric constant exhibit a temperature rise when exposed to intense field or high frequencies.
In certain applications, the magnetic properties of a material are required. For example: the magnetic properties of radar absorbing material (RAM). In this case, the relative permeability (Symbol μr) must be known for the absorption capability of the RAM.
The permeability of a material is also a complex quantity and is written in the same way, that is,
μr=μr′−jμr″ (2)
as it analogously describes the manner in which the material interacts with magnetic fields.
As described above, there exists a need for a device for measuring the permittivity and leading to a future method for measuring the permeability of either dielectric or magnetic materials or composites thereof over a wide band of frequencies. The important feature of the device is that it be nondestructive, so that the material to be tested does not require machining to any particular shape as required with other methods. Only a smooth flat surface is required for the device.
Accordingly, it is a general purpose and object of the present invention to provide a device for measuring the permittivity of either dielectric or magnetic materials or composites over a wide band of frequencies.
It is a further object of the present invention to provide a measuring device that does not require the material to be tested to be machined to any particular shape.
It is a still further object of the present invention to provide a measuring device only requires a smooth flat surface for operation.
In order to attain the objects described above, a measurement device is disclosed. The device is preferably constructed of Navy brass and can be made in different sizes scalable to alternate surfaces of a material under test.
The device utilizes two transmission line conduits that each terminate to open ends. Annuli formed by the open ends each encompass portions of a flange. The flange as well the portions makes firm contact with the material under test (MUT). When an electromagnetic field is launched from a connector port and propagates along the interior of one of the transmission line conduits to an open end and partially to the other conduit, simultaneous measurements of the complex scattering (or S) parameters s11 and s21 (which describe reflection and transmission, respectively) are gatherable. The scattering parameter s11 for reflection is gatherable at the launching or loading connector port, whereas the scattering parameter s21 is gatherable by being transmitted to the other connector port. From the measurements, the characteristics of the material in question can be computed by either a network analyzer or any other analyzer familiar to those skilled in the art.
The amount of field reflection and transmission depends on the electrical properties of the material under test and frequency, which is to say that factors such as capacitance are modified by the presence of the material under test relative to the absence of a material where the electromagnetic field is exposed to air.
Alternative devices would have different open end shapes and spacing for improved coupling and sensitivity. Size adjustment of the open ends for higher or lower frequency ranges is practicable. Also, improvements to the experimental models achievable with the device are possible with more elaborate networks that include the addition of components such as coils and resisters, to be represented in the model.
Shorting screws of the device are retractable for selectively opening or shorting the conduits for calibrating the device. The device is visually calibrated by shorting the transmission line conduits in conjunction with a Smith Chart which is electronically calculable as part of a network analyzer.
A more complete understanding of the invention and many of the attendant advantages thereto will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein like reference numerals and symbols designate identical or corresponding parts throughout the several views and wherein:
An exterior view of the measurement device 10 of the present invention is shown in
Physically, the measurement device 10 utilizes two transmission line conduits 12 and 14 that each terminate to open ends 16 and 18. The open ends 16 and 18 each form annuli to encompass portions 23 and 24 of a flange 26. The portions 23 and 24 maintain their position within the device 10 with the use of plastic standoffs 28 and 29. With the portions 23 and 24 maintained in position, the conduits 12 and 14 remain dimensionally stable. In operation, the flange 26 as well the portions 23 and 24 make firm contact with the material under test (MUT) 50.
The shorting screws 30 and 32 retract for selectively opening or shorting the two transmission line conduits 12 and 14 for calibration purposes. When calibrating, a network analyzer 100, shown diagrammatically in
The shorting screws 30 and 32 also allow the length of the conduits 12 and 14 from the connector ports 34 and 36 to be short enough that the phase from the connector ports to the open ends 16 and 18 is invariant. If the shorting screws 30 and 32 were absent, the length of the conduits 12 and 14 would have to be accounted for.
In operation, simultaneous measurements of the complex scattering (or s−) parameters s11 and s21 (which describe reflection and transmission, respectively) are permitted from which the characteristics of the material under test 50 can be computed. The operation of the device is understood by referring to the general electrical equivalent circuit shown in
In the
Za is the impedance of an isolated open end (that is, with no neighbor, either the open end 16 or 18) and Zm is the mutual impedance between the open ends, this value depending on their proximity to each other.
When an electromagnetic field is loaded by the network analyzer 100, thru the co-axial cable section 204 and launched from port 34, the electromagnetic field propagates along the interior of the transmission line conduit 12, until the electromagnetic field reaches the open end 16. The discontinuity presented by the open end 16 causes the incident field (from the conduit 12) striking the material under test 50 to be partially reflected back into the conduit, accompanied by a (small) portion of the incident field that propagates from one open end 16 to the other open end 18, which is then guided by the other conduit 14 and measured at connector port 36. The measurement at the connector port 36 is monitored by the network analyzer 100. The electromagnetic field reflected back into the conduit 12 is measured at the connector port 34 and is also monitored by the network analyzer 100.
The amount of field reflection and transmission depends on the electrical properties of the material under test 50 and frequency, which is to say that the T-network shown in
Experimental VHF data (30-300 MHz) giving the scattering parameters s11 and s21 as a function of frequency and material type are shown in
The values for Pyrex and Neoprene are 30 MHz and 300 MHz. The relative sizes of the permittivities translate to measurable shifts in both the amplitude and phase of s11 and s21. The measurements shown in
The utility of the measurement device 10 is additionally shown by employing charts that correlate or “map” an arbitrary value of ∈r to a corresponding value of s11 (See
Derivation
To support the operation of the device 10, further explanation is provided as to how electrical measurements are derived. For admittance of the isolated and mutual conduits 12 and 14, the determination of admittances Ya and Ym in terms of s− parameters s11 and s21 begin with some properties of the device 10. Presented at the outset are simplified calculations: The physical dimensions of the probe apertures at the open ends 16 and 18 of the device 10 are small compared to the wave length at the highest frequency of operation; the electromagnetic coupling between connector ports 34 and 36 is due to the presence of the quasi-static fields within which energy is stored and not to radiation; and the probe apertures at the open ends 16 and 18 are identical in both shape and size.
The first assumption is depicted in
The second assumption follows from the first. When the perimeter is electrically small, losses due to radiation are neglected, greatly reducing the complexity of the electromagnetic analysis. The third condition yields a device, which is symmetrical with regard to power transfer between ports.
The third assumptions outlined now permit an analysis of the device 10 as a two-port network to yield the required admittances.
In
The voltage and current (V1, I1) at Port 1 are related to the corresponding quantities at Port 2 (V2, I2) through the relationship
V1=AV2+BI2
I1=CV2+DI2 (4)
and rewritten in matrix form as
where elements A, B, C and D are defined as follows:
The total ABCD matrix of the device 10 is matter of multiplying the ABCD matrices of each element comprising the device, starting from Port 2 and working toward Port 1:
where the probe is modeled as a bilateral network in which s11=s22 and s12=s21, and:
The admittances Ya and Ym are expressed in terms of the scattering parameters s11 and s21 by substituting
and solving the matrix equation
Yielding admittances Ya and Ym are given explicitly by:
For the permittivity of MUT, the dielectric properties of the MUT are determined with the aid of admittances Ya and Ym defined in equation (10). The remaining relationships which link the admittances with the dielectric properties of the MUT and frequency are now discussed.
The mutual or isolated admittance of the coaxial aperture at the open end 16 (or any aperture in general similar to the open end) is theoretically determined by utilizing a two-dimensional Fourier transform over the spectrum of plane waves radiated by or between apertures. This process is cumbersome for even the simplest aperture geometries. The admittances at low frequencies have simple algebraic forms of the type:
Ya≈j(a1k+a3k3)√{square root over (∈r)}
Ym≈−j[b1k′+b3(k′)3]√{square root over (∈r)} (12)
where
k=ko√{square root over (∈r)}
k′=ko√{square root over (∈r′)} (13)
In equations (12) and (13), coefficients an and bn (n=1, 3) are complex and frequency dependent. Moreover, the coefficients account for the aperture shape and their separation.
The permittivity of the unknown dielectric ∈M is then determined in the following way:
The dielectric constant ∈M′ and loss tangent tan δM of the MUT is initially determined by assuming that the measurement frequency is low enough so that the admittances in Equations (12) and (13) are linear functions of frequency, or
Ya≈ja1k√{square root over (∈M)} (18)
Ym≈−jb1k′√{square root over (∈M)} (19)
where the complex coefficients a1 and b1 are computed using Equations (16) and (17). The dielectric constant and loss tangent of the MUT is then found initially by
A refinement in the permittivity of the MUT can be obtained by substituting the initial values given in Equations (20) and (21) followed by numerical adjustment until the admittances given by Equation (11) agree with those computed using Equations (12) and (13). This last step can be performed with the aid of a complex root-finding technique, such as Müller's method. The flowchart in
Alternative devices would have different open end shapes and spacing for improved coupling and sensitivity. Size adjustment of the open ends 16 and 18 for higher or lower frequency ranges is practicable. Also, improvements to the experimental models achievable with the device 10 are possible with more elaborate networks that include the addition of components such as coils and resisters, to be represented in the model.
While the invention has been described in connection with what is considered to be the most practical and preferred embodiment, it should be understood that this invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
Number | Name | Date | Kind |
---|---|---|---|
4247815 | Larsen et al. | Jan 1981 | A |
4866371 | De | Sep 1989 | A |
5187443 | Bereskin | Feb 1993 | A |
5371468 | Pelster | Dec 1994 | A |
5625293 | Marrelli et al. | Apr 1997 | A |
6106563 | Stengel et al. | Aug 2000 | A |
6147502 | Fryer et al. | Nov 2000 | A |
6472885 | Green et al. | Oct 2002 | B1 |
6856140 | Talanov et al. | Feb 2005 | B2 |
7075314 | Ehata | Jul 2006 | B2 |
20050150278 | Troxler et al. | Jul 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080191711 A1 | Aug 2008 | US |