The proposed invention relates to a device for measuring the level of a reducing agent contained in a vessel. The invention also relates to a method for controlling the injection of the reducing agent into the exhaust gases of a motor vehicle.
Transport-related pollutant emissions have for nearly thirty years been at the forefront for prompting progress in the industry. Increasingly more stringent emission limits for the four regulated pollutants (CO, HC, NOx, particles) have allowed a significant improvement in air quality, in particular in large cities
The ever increasing use of motor vehicles requires continued efforts to further reduce these pollutant emissions. Therefore, the reduction of nitrogen oxides (NOx) remains a complex problem within the context of more stringent European thresholds expected in 2015 when the Euro 6 standard comes into force. To have available highly efficient depolluting technologies under all driving conditions remains a major challenge for the transport industry.
Secondly, fuel consumption directly linked with CO2 emissions has become a major concern. For example, regulations will be introduced at European level beginning in 2012 relating to passenger vehicle CO2 emissions. It is henceforth accepted that this limit will be regularly lowered over the coming decades. CO2 reduction has therefore become an obvious necessity for the entire transport industry.
This dual issue of reducing local pollution (NOx) and reducing fuel consumption (CO2) raises particularly difficulties for diesel engines whose lean-burn combustion is accompanied by NOx emissions that are difficult to treat.
Devices already exist, such as that disclosed in EP1977817, which allow a reduction in NOx quantities by means of a selective catalytic reduction (SCR) catalyzer via ammonia stored in a storage material of the alkaline-earth chloride salt type arranged inside a vessel. The injection of ammonia into exhaust gases is controlled by means of a heating device used to heat the storage material to allow a reversible absorption/desorption reaction of ammonia, since this reaction is directly related to the temperature within the storage material.
In practice, ammonia is injected into the exhaust continuously in stoichiometric proportions of the NOx reduction reaction. It is thus advisable to be able to store on-board a sufficient quantity of ammonia. To limit the size of the vessel containing the storage material, automobile manufacturers favor filling or replacing the vessel periodically, for example during engine maintenance (oil change) or when refueling. Depending on the vehicles (passenger vehicles, heavy trucks, etc.), it is necessary to expect between 10 and 100 vessel filling or vessel replacement operations over the vehicle's lifespan.
This periodic maintenance service, needed to ensure effective depollution of NOx throughout the life of the vehicle, is the object of specific regulations in the various countries where SCR technology is used. A point common to all these regulations is the need to be able to determine the quantity of ammonia remaining in the vessel so as to be able to inform the driver when refueling is needed. For example, in European legislation for passenger vehicles, it is necessary to be able to measure at least two thresholds of remaining range, at 2400 km and 800 km (corresponding to about 3 fill-ups and 1 fill-up of fuel, respectively).
Furthermore, if several vessels each comprising an ammonia storage material are on-board the vehicle so as to simplify integration of the ammonia storage system in the vehicle, or to improve its operation (introduction of a cooling unit), it is necessary to know the quantity of ammonia remaining in each vessel so that the engine computer can optimally control the injection of ammonia contained in these various vessels.
The document DE 10 2009 022884 A1 discloses for its part a device for measuring the quantity of ammonia on the basis of the variation of capacitance of a capacitor.
The document US 2006/184307 A1 discloses a method for controlling the injection of a reducing agent by comparing average consumption and a threshold value so as to, if need be, limit this consumption.
An objective of the present invention is to propose a device for measuring the level of a reducing agent, preferably ammonia, contained in a vessel.
According to the invention, this objective is achieved by means of a device for measuring a quantity of a reducing agent, preferably NH3, contained in a vessel containing a crystal lattice (hereafter storage material) in which the reducing agent is stored, the volume of the storage material varying depending on the quantity of reducing agent which it contains. The measuring device comprises means associated with the vessel, said means being suitable for measuring the quantity of reducing agent stored in the storage material depending on the volume of the latter. Said means are arranged on the one hand for measuring mechanical stress generated by expansion of the storage material, and on the other hand for converting the stress measurement into a quantity of reducing agent stored in the storage material.
Another aspect of the invention relates to a method for controlling the injection of a reducing agent into the exhaust gases of a motor vehicle, comprising at least the following steps:
The characteristics of the invention will become more clearly apparent on reading the description of several variations of embodiments, given solely as examples which are in no way limiting, with reference to the drawings in which:
The various embodiments according to the invention which are disclosed below rest on the fact that during the absorption reaction, the fixing of ammonia in a salt of the metal chloride type is accompanied by an increase in volume, the ammoniate then occupying a much greater volume than the volume of the pure salt (up to a ratio of 4 to 5 times). The increase in the volume of the salt is due not only to expansion of its crystal lattice but also to its fractionation, thus leaving free space between the microcrystals of the ammoniate complex.
According to the invention, the storage material preferably comprises expanded natural graphite so that this material has better thermal conductivity on the one hand and is more robust on the other. According to the preparation of this storage material as illustrated by
Then, during desorption of ammonia, the network created by the recompressed expanded natural graphite forms a robust structure which maintains the salt particles emptied of ammonia. Depending on the quality of implementation, an expansion of between 1% and 10% according to the compression axis and on the order of 0.01% to 1% according to the axis perpendicular to the compression axis is observed.
According to a first embodiment as illustrated in
According to a second embodiment of the invention as illustrated in
According to a third embodiment of the invention as illustrated in
Let us specify that any other means suitable for measuring expansion of the storage material can be used in place of one or more piezoelectric sensors.
For these three embodiments of the invention, the change in mechanical stress caused by expansion of the storage material during a complete desorption cycle can be directly correlated with the ammonia present in the vessel. Thus, it is possible to define by calibration for the vessel considered the level of ammonia remaining by measuring the voltage at the terminals of the piezoelectric material as represented schematically in
Periodic maintenance service, preferentially scheduled with engine maintenance (oil change) or refueling, is carried out to fill the vessel comprising the storage material of the invention with ammonia. The vessel emptied of ammonia can also be replaced with a new vessel whose storage material is saturated with ammonia. The gauging of the remaining ammonia described above associated with acquisition of the maintenance service makes it possible according to the invention to determine by calculation an average consumption of ammonia since the last maintenance service. In the present invention, this measured average consumption is compared with various threshold values with the objective of adapting consumption strategies in order to, if need be, limit this consumption and thus to ensure a sufficient reserve of ammonia to reach the theoretical maintenance step of the vessel. In practice, the quantity of ammonia consumed since the last maintenance service measured via the use of one or more piezoelectric sensors determines a limit level by means of a map as defined in
Typically, as long as the consumption of ammonia remains below threshold level 1, limit level zero is active (i.e., no correction of the quantity of ammonia injected). If, after a certain distance traveled, the consumption of ammonia comes to exceed the level 1 threshold curve, limit level 1 is activated and the corresponding corrections are then applied.
For each limit level, a correction is applied to the quantity of ammonia to be injected calculated for the NOx conversion requirements of the SCR post-treatment device. This correction coefficient, applied in the form of a multiplicative coefficient of less than 1, is determined for each limit level by means of a pattern/load map as represented in
By establishing these successive limit levels it becomes possible to control the consumption of ammonia in a manner adapted to each customer's driving conditions. Given that most customers experience average driving conditions, the injection of ammonia is not corrected and the maximum efficiency of the system is obtained (
It goes without saying that the invention is not limited to the embodiments described above as examples but that, on the contrary, it embraces all variants of embodiments. For example, the measuring device can also be used to estimate the quantity of hydride of a fuel cell of a hydrogen storage system.
Number | Date | Country | Kind |
---|---|---|---|
11003978 | May 2011 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/058936 | 5/14/2012 | WO | 00 | 4/17/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/156371 | 11/22/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4600525 | Baker et al. | Jul 1986 | A |
6550250 | Mikkelsen et al. | Apr 2003 | B2 |
7393187 | Weigl | Jul 2008 | B2 |
7966811 | Reed | Jun 2011 | B2 |
8679209 | Korenev | Mar 2014 | B2 |
8943808 | Li et al. | Feb 2015 | B2 |
20060184307 | Kosaka | Aug 2006 | A1 |
20100154907 | Lecea et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
10 2009 022884 | Dec 2012 | DE |
1 977 817 | Oct 2008 | EP |
WO 2006012903 | Feb 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20140216010 A1 | Aug 2014 | US |