The present invention relates to a device for obtaining a multicrystalline semiconductor material, in particular silicon, by melting of the semiconductor material and subsequent directional solidification thereof, as well as to a method for obtaining a better control of the temperature of the semiconductor material.
The demand for semiconductor material, in particular silicon, with a high degree of purity, referred to as “solar purity”, is increasingly higher, in so far as said material serves for the production of high-efficiency photovoltaic cells.
To obtain such a material refinements are first made by means of traditional metallurgical processes and, finally, an ingot is formed, from which the wafers necessary for production of the photovoltaic cells can then be sectioned. Said ingot is formed with a methodology known as “Directional Solidification System” (DSS), i.e., by melting the semiconductor material in a crucible, and then causing a directional solidification thereof, obtaining, at the end, multicrystalline silicon.
To obtain the directional solidification it is necessary to bring about said solidification in the crucible by maintaining a vertical thermal gradient in the ingot being formed so as to obtain a rate of cooling such as to obtain advance of the solidification front at a rate of 1-2 cm/h. An advantage of said technology is that the impurities present in the starting material remain preferentially in the molten material and consequently rise upwards together with the solidification front. Once the ingot is solidified, it is consequently sufficient to eliminate the top part of the ingot itself to obtain refined multicrystalline silicon at the desired degree of purity.
To obtain said result it is necessary to be able to exert a very precise control of the thermal flows. Furthermore, the step of melting of the solid semiconductor material to be refined requires long times and high levels of energy consumption.
The aim of the present invention is to overcome the drawbacks of the known art by providing a device made of a semiconductor material, typically multicrystalline silicon with “solar” degree of purity, as well as a method for controlling the temperature thereof that will be simple and inexpensive to implement, will enable a reliable and effective control of the thermal flows, and will enable reduction of the overall dimensions and the levels of energy consumption of the necessary equipment.
Here and in what follows by “solar” degree of purity is meant the degree of purity necessary for producing high-efficiency photovoltaic cells.
The invention hence regards a device for melting and subsequent directional solidification of a semiconductor material, typically to obtain multicrystalline silicon with solar degree of purity, according to claim 1, and to a method for carrying out control of the temperature in a process of refinement of a semiconductor material in which the semiconductor material is melted and is subsequently subjected to directional solidification, according to claim 9.
In particular, the device of the invention comprises: at least one crucible for the semiconductor material, preferably made of quartz or ceramic material, removably housed in a cup-shaped graphite container; a possible openable and fluid-tight casing, housing inside it the graphite container; one or more top induction coils, the induction coil being set facing, with interposition of a graphite plate, a mouth of the graphite container; one or more lateral induction coils, arranged around a side wall of the graphite container; one or more bottom induction coils, set facing a bottom wall of the graphite container; a.c. electrical-supply means for supplying the induction coils separately and independently of one another; and cooling means for supplying a coolant within respective hollow turns of the induction coils.
According to one aspect of the invention, the bottom block of induction coils comprises a plurality of windings arranged alongside one another in one and the same plane of lie defined by an insulated supporting plate, and electrical switching means are prearranged between the windings of the bottom induction coil and the respective a.c. electrical-supply means for selectively connecting the windings to one another according to different configurations, which differ from one another as regards the direction of circulation of the electric current in the respective windings set alongside one another.
Consequently, according to the method of the invention, the melting step is performed by heating the semiconductor material contained in a crucible by means of graphite susceptors, each operatively associated to at least one respective induction coil and arranged so as to surround the crucible, and, in order to obtain the desired control of the temperature, the following steps are performed:
In this way, it is possible to vary with extreme simplicity and in a way that can be implemented a number of times during one and the same process the heat that the bottom graphite susceptor supplies to the crucible, without substantially altering any other operating parameter of the device, and in particular of the induction coils.
Preferably, moreover, the bottom induction coil is mobile so that its distance from the susceptor associated thereto can be varied both during the step of melting and during the step of solidification. In particular, during the latter, the bottom induction coil is deactivated and brought into contact with the susceptor, continuing to supply in the turns thereof a coolant so as to remove the heat present in the susceptor directly.
Further characteristics and advantages of the invention will appear clearly from the ensuing description of a non-limiting example of embodiment thereof, illustrated purely by way of example with reference to the figures of the annexed drawings, wherein:
With reference to
The device 1 comprises: at least one crucible 3 for the semiconductor material 2, preferably made of quartz or ceramic material, removably housed in a cup-shaped graphite container 4; and a fluid-tight casing 5, housing inside it the graphite container 4 and delimited by a bottom half-shell 6 and by a top half-shell 7, which are cup-shaped; the latter, which are preferably made of steel, are normally coupled on top of one another (
The device 1 further comprises means 10 for moving away the top half-shell 7 vertically from the bottom half-shell 6, in the case in point so that the casing 5 will assume an “open” configuration for enabling access to the graphite container 4.
The device 1 further comprises, according to one aspect of the invention: at least one top induction coil 12, in the non-limiting example illustrated with plane development, comprising turns 13, shaped, for example, according to a plane spiral, the induction coil being set, with interposition of a graphite plate 14 operatively associated thereto, facing a mouth of the graphite container 4; at least one lateral induction coil 16, set, in use, in the form of half-shells 6, 7 coupled around a side wall 17 of the graphite container 4; and a bottom induction coil 18, set facing a bottom wall 19 of the graphite container 4.
The device 1 further comprises: a.c. electrical-supply means 20, which are known and are consequently represented schematically by blocks, for supplying the induction coils 12, and 18 separately and independently of one another; and cooling means 21, which are also known and are consequently represented schematically by blocks, for supplying a coolant within the turns 13, which are hollow in so far as they are constituted by tubular elements, of the induction coils 12, 16 and 18.
According to one aspect of the invention, the bottom induction coil 18 is vertically mobile so as to be able to vary in use its distance D (
According to a known technique, the side wall 17 and bottom wall 19 of the graphite container 4 and the graphite plate 14 have a composition and dimensions such as to constitute electromagnetic susceptors for the lateral induction coil 16, the bottom induction coil 18, and the top induction coil 12, respectively.
The cooling means 21 can be obtained so that the coolant used by them that circulates in the hollow turns 13 is a diathermic oil, instead of water. In this way, in the case of any leakage of coolant within the casing 5, during the process of melting or of directional solidification, or in the event of failure of the crucible 3 with consequent spilling of the molten silicon 2 in the bottom half-shell 6, there is no risk of explosions consequent upon the possible chemical reactions of silicon with water.
According to the main aspect of the invention, the bottom induction coil 18 (
Furthermore, according to the invention, electrical switching means 40, represented schematically with a block and not described in detail in so far as they are obvious for a person skilled in the art once their function has been identified and described, are prearranged between the windings 31-34 of the bottom induction coil 18 and the respective a.c. electrical-supply means 20 for connecting the windings 31-34 selectively to one another and to the means 20 according to different configurations, which differ from one another as regards the direction of circulation of the electric currents in the respective windings 31-34 set alongside one another, as represented schematically, for example, in
According to the preferred embodiment, the bottom induction coil 18 includes four windings, designated precisely by 31, 32, 33, 34, arranged alongside one another in twos, according to a chequered scheme.
The windings 31-34 are in particular shaped each as a plane spiral (
The switching means 40 are then such as to be designed to determine selectively between adjacent sectors a pattern of the lines of flux L that is, respectively, tangential (for example
As has been said, the cooling means 21 of at least the bottom induction coil 18 are designed to supply in the hollow turns 13 thereof a diathermic oil or else water, through the hub or stem 36, by means of respective pipe unions 50, for example, one in number for each winding 31-34; in particular, each winding 31-34 starts and terminates with a mouth 60 (
Possibly, there may be provided between the windings 31-34 and the cooling means 21 hydraulic-switching means 70 (
On the basis of what has been described it is clear that, by means of the device 1 it is possible to implement effectively a method for carrying out control of the temperature of the semiconductor material 2 in a process for directional solidification of said material, in which the latter is melted and is subsequently subjected to controlled solidification and in which the melting step is performed by heating the semiconductor material contained in the crucible 3 by means of graphite susceptors 14, 17, 19, each operatively associated to at least one respective induction coil, 12, 16, and 18, respectively, and arranged so as to surround the crucible 3.
In particular, the method for controlling the temperature of the silicon 2 in the crucible 3 comprises the steps of:
In particular, the windings 31-34 of the bottom induction coil are connected to one another so that each winding 31-34 defines a sector of the induction coil 18 in which respective lines of flux L of the magnetic field have a similar pattern, and so that, in combination, the lines of flux L of adjacent sectors have a pattern respectively always tangential (
Furthermore, the distance D between the bottom induction coil 18 and the respective graphite susceptor 19 associated thereto is varied according to the method of the invention, according to the need and, in particular, during the step of directional solidification, which is performed by interrupting the electrical supply of the bottom induction coil 18, keeping, however, in circulation a coolant in the hollow turns 13 thereof, and approaching the induction coil 18 to the susceptor 19 associated thereto until it is brought substantially into contact therewith, using as coolant a diathermic oil or else water, as already mentioned.
For this purpose, the induction coil 18 is set within a compartment defined by respective thermally insulating elements 100 that surround the susceptors 14, 17, 19, whereas the induction coils 12 and 16 are preferably arranged on the outside of said compartment and, hence, with the insulating elements 100 set between them and the susceptors 14, 17 associated thereto.
In this way, it has been experimentally found, as highlighted in
Furthermore, also the control of the temperature of the silicon 2 during solidification is markedly facilitated by the particular constructional configuration of the induction coil 18 and by its use as heat exchanger, once the latter has been deactivated by detaching its own a.c. electrical-supply means 20.
Number | Date | Country | Kind |
---|---|---|---|
TO2009A000794 | Oct 2009 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2010/002686 | 10/20/2010 | WO | 00 | 8/2/2012 |