This application is the U.S. National Stage of International Application No. PCT/EP2011/002,062, filed Apr. 21, 2011, which designated the United States and has been published as International Publication No. WO 2011/144,291 and which claims the priority of German Patent Application, Serial No. 10 2010 021 031.5, filed May 19, 2010, pursuant to 35 U.S.C. 119(a)-(d).
The invention relates to a device for energy management in an electric vehicle and to a method for energy management in an electric vehicle.
In a vehicle-type-dependent control of a motor vehicle, in particular the dynamic driving characteristic of the vehicle can be adapted to an economical or a sporty driving style of the driver. Information about the specific driver-type is required to enable the control system to set the appropriate operating parameters.
DE 10 2004 023 512 A1 discloses a generic electric vehicle with a device for energy management. The vehicle has at least one electric machine for driving the vehicle wheels. The electric machine is supplied with electrical energy from an energy storage device, wherein the state of charge of the energy storage device varies during charging and discharging. Moreover, the vehicle control includes driver-type recognition capable of detecting a sporty driver or an economical driver.
The driver-type recognition can be derived from the operation of the accelerator pedal during driving. For this purpose, the angular positions as well as the rate of change upon actuation of the accelerator pedal can be detected. Alternatively or in addition, information about the driver-type may also be derived from the operation of a manual transmission. Measurements of these parameters require extensive sensor-related technical measures which are also associated with a substantial component expenditure.
The object of the invention is to provide a device or a method for energy management in an electric vehicle, which enables a simple and reliable detection of the driver-type.
According an aspect of the invention, a device for performing energy management in an electric vehicle, which can be at least partially driven by an electrical machine which can be supplied with electrical power from a rechargeable battery, wherein the state of charge (SOC) of the rechargeable battery varies during charging and discharging, includes a driver-type recognition device for determining a driver-type. The driver-type recognition device monitors during a driving operation the discharge process of the energy storage device, i.e. the high-voltage battery supplying power to the electric machine, and determines therefrom the driver-type. Upon detection of an accelerated discharge process, a sporty driver-type can thus be determined. Conversely, upon detection of a delayed discharge process, an economic driver-type can be determined.
The invention is therefore based on the observation that the course of the discharge process during a driving interval allows conclusions about the manner in which the driver demands power. Because the power electronics of the energy storage device monitors charge and also discharge process of the energy storage device anyway, the recognition of the driver-type according to the invention can be implemented with little expenditure and does not require the installation of additional sensor elements.
For monitoring the discharge process, the driver-type recognition device may include a measuring device. This measuring device may preferably measure the temporal course of the state of charge of the energy storage device or measurement values correlating therewith, for example the current or the voltage of the energy storage device. Such measuring devices may already be integrated into the power electronics of the energy storage device, so that the existing measuring devices instruments may be used according to the invention in a dual function also for recognizing the driver-type.
To obtain a measure of the vehicle power demanded by driver over a certain time span, the recognition device may detect the state of charge at the beginning of a driving interval and the state of charge at the end of the driving interval and determine therefrom a difference value. The driver-type can be derived from the difference value with an evaluation device receiving signal from the recognition device.
Preferably, the recognition device may determine from the difference value a gradient over the driving interval. This gradient may be compared in the evaluation device with a threshold value stored therein, wherein the evaluation device can detect the driver-type based on the comparison. The evaluation device is also in signal communication with a central electronic control device of the motor vehicle. Subsequent to the identification of the driver-type, a corresponding driver-type signal is then transmitted to the control device. The control device can then adapt, in particular, the dynamic behavior of the vehicle commensurate with the driver-type signal.
The state of charge of the energy storage can be measured in its power electronics by measuring the current flowing out of the energy storage device upon a power demand from the driver, which is then integrated over time. Alternatively and/or in addition, the aforementioned evaluation device may also measure the discharge process of the energy storage device in a different manner and compare the discharge process with corresponding stored threshold values, and recognize the driver-type based on the comparison.
For example, alternatively or in addition to measuring the state of charge, the temporal course of the voltage of the energy storage device, which correlates with the state of charge of the energy storage device, may also be measured, wherein the temporal characteristic of the state of charge is significantly more sluggish than the temporal characteristic of the voltage of the energy storage device during the driving operation. When monitoring the discharge process based on the temporal characteristic of the voltage, a particular phenomenon occurs wherein short-term voltage drops in the energy storage device occur in response to high power demands from the driver. These voltage drops are reproduced in the temporal characteristic of the voltage of the energy storage device, but not in the much more sluggish temporal characteristic of the state of charge of the energy storage device. The voltage drops can be used according to the invention for recognizing the driver-type. The evaluation device may compare the voltage drops occurring during the driving interval with respect to gradient, magnitude, duration and/or number and compare them with threshold values stored in the evaluation device.
By way of example, different profiles of driver-types may be stored in the evaluation device, each containing different threshold values for the gradient, the magnitude, the duration and/or the number of voltage drops. Upon a match with one of these profiles, the evaluation device may forward a corresponding driver-type signal to the central electronic control device.
Two exemplary embodiments of the invention will now be described with reference to the appended figures, which show in:
A central electronic control device 17 is provided for controlling the high-voltage battery 11 and the electric machine 5. The control device 17 detects via a pedal module 19 changes made to the accelerator pedal angle by the driver. Additionally, the control device 17 detects as input parameters, inter alia, available battery power, the efficiency characteristic curve fields of the electric machine, ambient and/or aggregate temperatures, driving dynamics limits, load points of the electric machine 5 as well as the vehicle speed, the engaged gear and the like.
Based on these input variables, the control device 17 calculates a desired torque MS with which the engine control device 13 is controlled.
The battery control device 15 of the high-voltage battery 11 is equipped with measuring devices (not shown in detail) configured to monitor a discharge process or the charge process of the high-voltage battery 11. For this purpose, the current flowing out to the electric machine 5, the battery voltage or the state of charge SOC can be monitored with the battery control device 15.
According to the invention, the battery control device 15 is part of a driver-type recognition device, with which the central electronic control device 17 can adapt the dynamic driving characteristic of the vehicle to the respective driver. To this end, the discharge process of the energy storage device 11 is monitored during driving and is then used as a measure for the power of the vehicle demanded by the driver over a certain time span.
According to the first exemplary embodiment illustrated in
Number | Date | Country | Kind |
---|---|---|---|
10 2010 021 031 | May 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/002062 | 4/21/2011 | WO | 00 | 11/16/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/144291 | 11/24/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6006151 | Graf | Dec 1999 | A |
6553301 | Chhaya et al. | Apr 2003 | B1 |
6588256 | Gassner et al. | Jul 2003 | B2 |
20020033059 | Pels et al. | Mar 2002 | A1 |
20030117113 | Takemasa et al. | Jun 2003 | A1 |
20030140905 | Nau et al. | Jul 2003 | A1 |
20050034451 | Miyashita | Feb 2005 | A1 |
20070075686 | Togashi et al. | Apr 2007 | A1 |
20080040016 | Fujishiro | Feb 2008 | A1 |
20080162059 | Murakami | Jul 2008 | A1 |
20090114463 | DeVault | May 2009 | A1 |
20090271132 | Furukawa et al. | Oct 2009 | A1 |
20100108415 | Tuli | May 2010 | A1 |
20100238006 | Grider et al. | Sep 2010 | A1 |
20100289451 | Tuffner et al. | Nov 2010 | A1 |
20110012424 | Wortberg et al. | Jan 2011 | A1 |
20120101674 | Wang et al. | Apr 2012 | A1 |
20120242466 | Stillfried et al. | Sep 2012 | A1 |
20120319833 | Fokkelman et al. | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
10038181 | Mar 2002 | DE |
10318882 | Nov 2004 | DE |
102004023505 | Dec 2005 | DE |
102004023512 | Dec 2005 | DE |
102006050096 | Nov 2007 | DE |
102007024471 | Nov 2008 | DE |
Number | Date | Country | |
---|---|---|---|
20130073132 A1 | Mar 2013 | US |