The present invention relates to devices for use with wine bottles, and more specifically to a device and method to preserve or refresh gas in sparkling wine.
Sparkling wines are carbonated alcoholic beverages. Consumers, restaurants, wine shops, and other serving establishments, may desire to open a bottle of sparkling wine but not serve the entire bottle. In commercial establishments, patrons may desire a taste or a glass of sparkling wine. The ability of a commercial establishment to serve tastes of wine would allow a consumer to sample a bottle prior to purchase. For expensive sparkling wines that are not familiar to a consumer, the ability to offer tastes enhances the sales and marketing of wines.
One limitation for the consuming of the wine is preventing the sparkling wine from going flat. Keeping the bottle chilled will help the sparkling wine maintain its carbonation for a short period of time. For longer periods of time, some additional solution is required.
U.S. Pat. No. 5,172,821 discloses a bottle closure including a central stopper portion configured to be retained within the neck of a bottle of sparkling wine. The stopper both allows a sealing fit and is sufficiently resilient to be displaceable. The interior bore of the stopper is a gas injection valve with a non-return valve. The top of the stopper flares outward. A dual flange retainer having a lower set of arms to be held on the flange of the bottle retains the stopper and an upper set of arms to fit over the flared top of the stopper. This separate device retains the stopper on the bottle and allows a fill mechanism to be introduced into the stopper.
U.S. Pat. No. 6,530,401 discloses a device to allow a gas to be introduced into a wine or sparking wing container. The device includes a resilient stopper to be retained with a wine bottle. A pair of plate springs and downward extending flexible arms allow the device to be retained on the bottle. A valve at the top of the stopper allows a gas from a gas source to be introduced into the bottle.
It is an object to provide a simple stopper device that would allow a gas to be introduced into a bottle of sparkling wine. This stopper device should be able to work at relatively high pressure to maintain the carbonation of the bottle. The device should work with conventional gas dispensing equipment.
The device is a sparkling wine closure device having an arm cap having a bottom plate spring biased within the cap. The arms may be lowered such that a curved retaining lip on each arm may be retained on an annular lip of a sparkling wine bottle neck. The spring biases the plate against the top of the arm cap and the top of the plate, retaining the cap in positioned. Mounted in the center of the arm cap is a shaped piston. The shaped piston has a one-way valve mounted in an upper end and a plurality of o-rings in a plurality of slots allowing a resilient tapering configuration at the other end. The shaped piston is secured onto the plate. The resilient tapering structured is retained within the neck of the sparkling wine bottle.
With reference to
The shaped piston is shown in greater detail in the cross sectional view of
The lower shaft 92 includes three o-ring slots, an upper slot 84, a middle slot 86, and a lower slot 88. In this illustrated embodiment, each of these slots has the same width, but the depth of the slots varies. The upper slot 84 is the most shallow, the lower slot 88 is the deepest, and the middle slot 86 is an intermediate depth between the upper slot 84 and the lower slot 88. When 3 o-rings of the same size are inserted into the slots 84, 86, 88, a tapering structure is formed. The shaped piston is made of a non-resilient material (such as machined aluminum) and the o-rings are made of a resilient material (such as a resilient, rubber-like polymer). This tapering structure allows the closure device to be retained within a sparkling wine bottle. Bottles having various size openings may be securely closed with this device. In one exemplary embodiment, the difference in depths is 0.06 inches. Because wine will react with aluminum, the part may be anodized or otherwise treated to prevent reaction with the closure device.
Returning to
Bottom plate 62 has a central hole allowing it to fit over the end of shaped piston 30 and be retained against lip 89. Plate 62 is then locked in place by retainer washer 42. This attaches shaped piston 30 to plate 62, making these two components move together. Flat o-ring 44 is then fit below retainer washer 42. Bottom plate is secured by retaining clip 62, which fits into lip 59 of arm cap 50. A clip ensures that plate 62 does not come out of arm cap 50, but may move up within cap 50. Spring 60 is located within arm cap 50, positioned around shaped piston 30 and retained at an upper end on top surface 51 on arm cap 50 and at the lower end of spring 60 by plate 62. Thus plate 62 is biased downward, but may move upward if force is exerted on the bottom of plate 62 and top surface 51 of arm cap 50.
The arms 54, 52 of arm cap 50 are attached at two hinges 58 on opposite sides of arm cap 50. Each of the arms has a curved shaped and a curved retaining lip 56.
With reference to
With reference to
When the device is inserted, o-rings 46, 48, 49 will be frictionally retained within the neck of the bottle. As pressure is applied to the top of arm cap 50, the spring will compress, allowing shaped piston to move within the cap. The arms are then lowered over the annular lip 72 of the wine bottle, and the arm cap 50 covers the top of the bottle. The only passage into the bottle for gas is through one-way valve 20. Standard gas providing equipment may then be used to supply gas into the bottle.
It has been found that either air or CO2 may negatively alter the taste of sparkling wine. It is preferred that an inert gas, such as Argon or Nitrogen be added. The valve stem incorporated into the shaped piston allows use of standard gas dispensing equipment. For example, a standard Schrader valve may be used. A gas tank which a regulator is then used to pressurize the opened bottle of sparkling wine with 60 psi of inert gas. Between 55-120 psi may be used to pressurize the bottle. To pour additional sparkling wine after the closure device has been secured onto a bottle, the arms are pivoted to the sides and the closure device removed from the bottle, much in the same manner as would be done with the opening of a fresh bottle of sparkling wine.
This invention could be characterized in a number of ways. The first is of a device for closing a bottle of wine. Second, the device enables a new method of preserving or reintroducing carbonation into sparkling wine. The invention could also be seen as the way of making this device. The arm cap, sold with a closed top surface and a solid bottom plate, is a currently marked device. By slightly modifying the arm cap with a hole in the top for receiving the shaped piston, and adding a hole in the lower plate, the currently available closure caps may be used with the shaped piston. The remaining parts (valve stem, o-rings, locking washer, etc.) are all commercially available parts. The shaped piston, which may be machined, is the only part that must be specially manufactured.
The amount of psi pressure in the bottle can be checked by using a common pencil air gauge which is the same method used to check air pressure in an automobile tire. The pencil air gauge is to be used to depressurize the bottle before removing the bottle cap. For safety reasons, the protrusion on the head of the air gauge is inserted into the Schrader valve to release pressure from the bottle.