Device for providing fluid to a receptacle

Information

  • Patent Grant
  • 9309020
  • Patent Number
    9,309,020
  • Date Filed
    Tuesday, November 26, 2013
    11 years ago
  • Date Issued
    Tuesday, April 12, 2016
    8 years ago
Abstract
A device for providing sterilized or cleaned fluid to a receptacle and thereby facilitating conveyance of a substance out of the receptacle, comprising a connector and a container which form an integrated unit. The connector is provided with a first means for connection to a receptacle. Sterilized or cleaned fluid is transferred from the container to the receptacle.
Description
TECHNICAL FIELD

The invention relates to a device for providing cleaned fluid i.e. gas and/or liquid to a receptacle.


The invention can be implemented in aseptic preparation of drugs, for example for providing sterilized/cleaned air to a medical receptacle, such as a bottle or vial, with the purpose of drawing a solution or another liquid used in medicine applications out from the medical receptacle.


BACKGROUND OF THE INVENTION

In the field of drug preparation for injection or infusion generally two basic problems have to be considered. Firstly, certain demands are made on aseptic conditions so as to avoid contamination of the drug, and, secondly, the drug has to be handled in such a way that drug leakage to the environment is prevented or minimized. By a sterile or aseptic handling of the drug, the risk for transferring bacteria or any other undesired substance to the patient is reduced. By preventing drug leakage to the environment, the exposure of medical and pharmacological staff to hazardous drugs is decreased.


In order to achieve aseptic conditions special safety boxes, cabinets or isolators are being used where the air is filtered through HEPA filters to prevent contamination during preparation of drugs. Ventilated cabinets are also used to reduce uncontrolled leakage to the environment and prevent occupational exposure to possibly hazardous drugs. Such facilities, however, require a lot of space and are associated with relatively high costs. Furthermore, the offered protection can be insufficient and working environment problems due to accidental exposure to drugs, for example cytotoxins, have been reported.


Another solution of the problems mentioned above is to create a so called “closed” or “non-vented” system for handling the drugs during preparation. Such systems exist and enable the preparation to be accomplished without the use of special safety boxes, cabinets or isolators. In such a closed system the drugs are handled isolated from the environment during every single step so as to avoid contamination of the drug and undesired drug leakage to the environment.


A known problem associated with the preparation of drug solutions is the fact that medical bottles or vials normally are made of a non-compressible material, such as glass or plastic. To enable the vial to be drained off, air has to flow into the vial so as to avoid negative pressure in the vial which negative pressure would otherwise counteract or prevent further transportation of liquid from the vial to another receptacle such as syringe.


A system for providing sterilized gas is disclosed in WO 00/35517. A flexible bag containing sterilised gas is provided. The bag has an opening covered by a gas and liquid-impervious membrane which can be punctured by a needle in order to draw the sterilised gas out from the bag for further transportation of the gas to a bottle. A bottle connector is arranged on the current bottle and the bottle connector has a pressure compensation means for receiving gas. By use of a syringe and an injector device provided with a needle the sterilised gas is transferred from the flexible bag to the bottle and to the pressure compensation means arranged on the bottle connector. Thereafter the substance in the bottle can be drawn out from the bottle by means of the injector device while the sterilised gas flows from the pressure compensation means into the bottle.


However, the prior art system described in WO 00/35517 has drawbacks. The system comprises several components to be handled and further the sterilised gas has to be drawn from the flexible bag by means of an injector device provided with a needle, and subsequently transferred to the bottle and the pressure compensation means. Consequently, several manipulations have to be accomplished before the medical substance can be drawn from the bottle.


In WO 02/11794 a system for providing cleaned gas is described. This system works with an injection syringe and an air filter to be attached to a connection nozzle of the syringe. The container of the syringe is charged with air which has been forced through the filter so as to clean the air. Thereafter the air filter is removed and the syringe is connected to a coupling means (injector device) which in turn is connected to a capping means (bottle connector) arranged on a bottle. The capping means has a pressure-equalisation chamber whose volume can vary. The cleaned gas in the syringe is transferred from the syringe to the bottle and to the pressure-equalisation chamber arranged on the capping means. Thereafter the substance in the bottle can be drawn out from the bottle by means of the syringe and the coupling means, while the cleaned gas flows from the pressure-equalisation chamber into the bottle.


Also the prior art system described in WO 02/11794 has drawbacks. The system requires an adapter provided with an air filter being connected to and removed from a syringe in order to fill the pressure-equalisation chamber before the medical substance can be drawn from the bottle. In an alternative embodiment the air filter is fixedly attached to a syringe. However, in such a case a conventional syringe can not be used. In both cases, the cleaned gas has to be drawn from the environment and subsequently transferred to the bottle and the pressure-equalisation chamber before the medical substance can be drawn from the bottle.


SUMMARY OF THE INVENTION

An object of the invention is to provide a device for providing cleaned and/or sterilized fluid of the kind referred to in the introduction where at least one problem of such prior art devices discussed above is reduced to a substantial extent. In particular, the invention aims to indicate how to provide sterilized/cleaned fluid in a rational and safe way during preparation of drugs.


The invention is based on the insight that sterilized/cleaned air is advantageously provided by a connector system itself, rather than utilising additional equipments to fill an expansion container comprised in a connector system during drug preparation. However, a container has to be filled with the fluid either during manufacturing of the device or by the user, and these two options result in two aspects of the invention.


According to a first aspect of the invention the object is achieved by a device having a connector and a container which form an integrated unit, wherein the connector is provided with a first means for connection to a receptacle, and the container is pre-filled or adapted to be pre-filled with a sterilized or cleaned fluid to be transferred from the container to a receptacle interconnected with the connector during conveyance of a substance out of the receptacle, no additional flexible bag filled with sterilized/cleaned fluid is needed. The handling is simplified since no syringe provided with a needle is to be used for transferring sterilized/cleaned fluid into for example a vial before conveyance of a substance out of the vial. The pre-filled container replaces both the additional flexible bag and the pressure compensation means needed in the prior art devices. Conveyance of a substance out from the receptacle can be accomplished as soon as the connector is arranged on the receptacle.


According to a second aspect of the invention the object is achieved by a device having a connector and a container which form an integrated unit, wherein the connector is provided with a first means for connection to a receptacle, and the integrated unit is provided with a filter for cleaning fluid passing the filter during filling the container with fluid, for example before connection of the connector to a receptacle, no syringe provided with an air filter adapter or an air filter fixedly attached to the syringe is needed for transferring cleaned fluid into for example a vial before conveyance of a substance out of the vial. Instead a conventional syringe can be used for conveyance of a substance out from the receptacle as soon as the connector is arranged on the receptacle.


On comparison the two aspects of the invention it can be established that the device according to the first aspect does not exhibit any filter which saves costs as to the production of the device. Furthermore, the degree of purity which can be obtained during manufacturing of the device, for example by sterilization, is very high and in most cases very important. On the other hand the device according to the second aspect can have a decreased volume which could result in smaller package and save shipment costs. In many applications a cleaned fluid suitable for aseptic preparation of drugs can be achieved by filtering the fluid.





BRIEF DESCRIPTION OF THE DRAWINGS

With reference to the appended drawings, below follows a more detailed description of embodiments of the invention cited as examples.



FIG. 1 is a perspective view of a device according to a first aspect of the invention,



FIG. 2 is a view corresponding to FIG. 1 illustrating the device in another condition,



FIG. 3 is a perspective view of the device according to FIG. 1 connected to a vial,



FIG. 4 is an exploded view corresponding to FIG. 3,



FIG. 5 is a perspective view of a device according to a second aspect of the invention,



FIG. 5b is an alternative embodiment of the device illustrated in FIG. 5,



FIG. 6 is a view corresponding to FIG. 5 illustrating the device in another condition,



FIG. 7 is a perspective view of the device according to FIG. 5 connected to a vial, and



FIG. 8 is an exploded view corresponding to FIG. 7.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION

In FIGS. 1 and 2 a device 1 according to the first aspect of the invention is illustrated. The device 1 can be used for providing cleaned and/or sterilized gas, for example air, to a receptacle and thereby facilitate conveyance of a substance out of the receptacle. Such a substance can be various solutions and liquids constituting drugs, for example cytotoxic drugs and antibiotics, for use in the field of medicine. The device comprises a connector 2 and a container 3 which form an integrated unit 4. The connector 2 is provided with a first means 5 for connection to a receptacle or in other words a first connector portion 5 for connection to a receptacle. The container 3 is pre-filled or adapted to be pre-filled with a cleaned and/or sterilized gas to be transferred from the container 3 to a receptacle, which is connectable with the connector 2, during conveyance of a substance out of the receptacle. Se also FIG. 3 illustrating the device 1 connected to a medicine receptacle such as a bottle or vial 6, and the exploded view in FIG. 4. By the expression “pre-filled” is meant the container being already filled with gas before it is used for providing gas to a receptacle. The device is suitably already filled when delivered to the user, and preferably the container is filled during or after manufacture of the device for example just before or at the moment when the device is enclosed by a package or packing.


By the expression “cleaned” gas is meant that the gas has been filtered by a filter to remove particles and/or viable micro-organisms to such an extent that the gas is classified to be aseptic and accepted by the relevant authority and/or any standards. The degree of purity can be expressed in the largest particles allowed to pass the filter for a given flow rate of gas. In some cases no or very few particles having a size exceeding 5 μm are allowed to be present in the cleaned gas. However, the allowed particle size is determined by the requirements in the current application. Some drug treatments require that substantially all particles having a size exceeding 0.15 μm are removed from the gas by the particulate air filter. As an example, a filter with the mesh size 0.2 μm can be used to remove substantially all particles and micro organisms of that size or larger.


By the expression “sterilized” gas is meant that the gas has been subjected to a sterilization method to remove viable micro-organisms, which method is accepted for the current product by the relevant authority. Current regulations in Europe for medical devices to be designated “STERILE” may be found in the European standard EN 556-1. Other regulations may exist in other countries. The sterilization can be ethylene oxide sterilization, sterilisation by irradiation, or (moist) heat sterilization or any other accepted method. The European standard requirements imply that the theoretical probability of there being a viable micro-organism present on/in the sterilized device shall be equal to or less than 1×10−6.


In the case the gas is sterilized, it is not always necessary to clean the gas according to the cleaning process as described above, although such cleaning and the sterilization can be combined. However, other methods can be used to remove particles etc. from the gas if required or the sterilization process itself may be sufficient to bring the gas into a state where the gas is to be considered as both cleaned and sterilized.


The first connection means 5 can be designed for connection to a receptacle, such as the neck of a vial. In the embodiment illustrated in FIGS. 1-4, the first connection means 5 is constituted by a ring-shaped portion 7 for enclosing the neck 8 of the vial 6. The ring-shaped portion 7 has slits 9 so as to form flanges 10 which protrude downwardly. The flanges 10 can be provided with hooks 11 or barbs for gripping around the neck 8 of the vial 6. The connector 2 is suitably provided with a second means 12 for connection to a transfer member 13 (see FIGS. 3 and 4), such as an injector device to be interconnected with the connector, for conveyance of a substance out of the receptacle 6. In other words; the connector 2 is suitably provided with a second connector portion 12.


In another embodiment (not shown) of the invention the second connection means 12 can comprise a luer lock coupling or bayonet coupling to enable an injector device to be connected to the connector. Suitably, both the injector device and the connector are provided with a membrane so as to create a double membrane coupling between the injector and the current device.


The amount of gas, preferably air, provided by the pre-filled container, should be adapted to the volume of the receptacle which is to be drained off. The volume of the gas when being in the receptacle should preferably correspond to the volume of the receptacle so as to enable the receptacle to be completely drained off. This implies that the volume of the cleaned or sterilized gas in the pre-filled container is preferably approximately equal to or larger than the volume of the receptacle provided that the pressure of the gas is substantially the same in the receptacle as in the container. For most medicine receptacles the volume of the gas should be in the interval 1-100 cm3 at atmospheric pressure.


The connector 2 is preferably provided with a piercing member, such as a hollow needle 14 (as illustrated) for penetration of a closing (not illustrated) made of rubber for instance, which closing covers the opening of a receptacle 6, such as a vial. In addition to injection needles or cannulae, the expression “needle” is meant to comprise spikes and similar components for penetration of such a closing in order to create a channel between the container 3 and the receptacle 6 to which the connector 2 is connected. By a channel or passage 15 inside the needle 14, gas contained in the container 3 can be transferred from the container to the receptacle 6, i.e. gas can flow from the container 3 to the receptacle 6.


The connector 2 and the container 3 form an integrated unit 4. This implies that the connector and the container are made in one piece or the connector 2 and the container 3 can be coupled to each other so as to form an integral unit 4. Different types of coupling means known from prior art can be used as long as an airtight, or at least a substantially airtight connection can be obtained between the current components 2, 3.


The volume of the container 3 can be variable so as to allow the gas to flow from the container 3 to a receptacle 6. The container 3 is suitably made of a compressible material to make the volume of the container variable. To obtain a container 3 having a variable volume the container can comprise a first portion 17 made by a relatively rigid material which first portion 17 is coupled to the connector 2, and a second portion 18 made by a relatively flexible material attached to the first portion 17. For example, the container 3 can be designed to have a flexible portion, such as a bellow which is compressible and extendable. According to an embodiment of the invention, the container, or the flexible portion of the container, comprises a displaceable spring-loaded element, such as an axial spring-loaded element, that is arranged to allow fluid to flow into the container/flexible portion of the container. The displaceable spring-loaded element is for example constrained between two flanged ends of the flexible portion. When the flexible portion is empty the spring(s) of the spring-loaded element is/are highly compressed. As the flexible portion is filled with fluid the spring(s) of the spring-loaded element become(s) less compressed. The spring(s) may be arranged on the inside or outside of the flexible portion or they may be integrally formed with the flexible portion. The displaceable spring-loaded element may be arranged to be disconnected from the container/flexible portion of the container once the container/flexible portion of the container has been filled to the desired amount.


According to an embodiment the flexible portion of the container may be arranged to be detachable from the remaining part of the container, whereby the flexible portion may be filled with fluid before and/or after it has been attached to the remaining part of the container. Hereby the volume of the container 3 can be increased and decreased, respectively. Although the device illustrated in FIG. 1 comprises a compressible container, in another embodiment the container can have a cylinder and a piston arranged therein so as to enable the volume of the container to be changed.


According to an embodiment of the invention the container comprises locking means to prevent fluid from flowing into the container, during the transportation of the device, for example, or at any other time when the device is not in use.


Alternatively to a collapsible container, or in combination with a collapsible container, the container 3 can be pressurized by cleaned or sterilized gas to cause an overpressure in the container. An overpressure allows gas to flow from the container 3 to a receptacle 6 connected to the connector and the container. In such a case the container 3 does not necessarily need to be collapsible. The overpressure is suitably adapted to the size of the receptacle to which the connector is to be connected to ensure the receptacle can be completely drained off in a subsequent step. The pressure in the filled container can be for example in the interval from 1 atm to 2 atm. Preferably, the device comprises any means, such as a valve, for allowing the gas to flow from the container after the device has been connected to the receptacle and during conveyance of a substance out of the receptacle.


In FIGS. 5, 5b and 6 a device 1′ according to the second aspect of the invention is illustrated. The device can be used for providing cleaned gas to a receptacle and thereby facilitate conveyance of a substance out of the receptacle. Such a substance can be various solutions and liquids constituting drugs, for example cytotoxic drugs or antibiotics, for use in the field of medicine. The device comprises a connector 2′ and a container 3′ which form an integrated unit 4′. The connector 2′ is provided with a first means 5′ for connection to a receptacle 6′ or in other words a first connector portion 5′. See also FIG. 7 illustrating the device connected to a medicine bottle or vial 6′, and the exploded view in FIG. 8.


The first connection means 5′ can be designed for connection to a bottle, such as the neck of a vial. In the embodiment illustrated in FIGS. 5-8, the first connection means 5′ is constituted by a ring-shaped portion 7′ for enclosing the neck 8′ of the vial 6′. The ring-shaped portion 7′ has slits 9′ so as to form flanges 10′ which protrude downwardly. The flanges 10′ can be provided with hooks 11′ or barbs for gripping around the neck 8′ of the vial 6′. The connector 2′ is suitably provided with a second means 12′ for connection to a transfer member 13′, such as an injector device to be interconnected with the connector, for conveyance of a substance out of the receptacle 6′. In other words; the connector 2′ is suitably provided with a second connector portion 12′.


In another embodiment (not shown) of the invention the second connection means 12′ can comprise a luer lock coupling or bayonet coupling to enable an injection device to be connected. As already described for the device according to the first aspect of the invention, both the injector device and the connector are suitably provided with a membrane so as to create a double membrane coupling between the injector and the current device.


The connector 2′ is preferably provided with a piercing member, such as a hollow needle 14′ (as illustrated) for penetration of a closing (not illustrated) made of rubber for instance, which closing covers the opening of a receptacle 6, such as a vial. In addition to injection needles or cannulae, the expression “needle” is meant to comprise spikes and similar components for penetration of such a closing in order to create a channel between the container 3′ and the receptacle 6′ to which the connector 2′ is connected. By a channel or passage 15′ in the needle 14′, gas contained in the container 3′ can be transferred from the container to the receptacle 6′, i.e. gas can flow from the container 3′ to the receptacle 6′.


The connector 2′ and the container 3′ form an integrated unit 4′. This implies that the connector and the container are made in one piece or the connector 2′ and the container 3′ can be coupled to each other so as to form an integral unit. Different types of coupling means 16′ known from prior art can be used as long as an airtight or at least a substantially airtight connection can be obtained between the current components 2′, 3′.


The container 3′ has to be filled with gas before connection of the connector 2′ to a receptacle 6′. The volume of the container 3′ is preferably variable. To obtain a container 3′ having a variable volume the container can comprise a first portion 17′ made by a relatively rigid material which first portion is coupled to the connector 2′, and a second portion 18′ made by a relatively flexible material attached to the first portion 17′. The second portion 18′ can be extensible by manipulation of for example a handle 20′ arranged at the end of the container 3′. Hereby the volume of the container 3′ can be increased and decreased, respectively. For example, the container 3′ can be designed to have a flexible portion, such as a bellow which is compressible and extendable by affecting the container manually. The container 3′ is preferably provided with said handle 20′ for regulating the volume of the container 3′. Although the volume of the container is preferably variable as illustrated, there may be other ways to fill the container while at the same time ensuring the gas passes a filter 21′. For example, the gas container could be constituted by a sealed vacuum-packed flexible bag whose seal can be broken to allow gas to flow into the bag. Alternatively, the gas container is rigid or semi-rigid and pressurized gas is used to fill the container.


The amount of gas, preferably air, provided by the pre-filled container, should be adapted to the volume of the receptacle which is to be drained off. The volume of the gas when being in the receptacle should preferably correspond to the volume of the receptacle so as to enable the receptacle to be completely drained off. This implies that the volume of the cleaned or sterilized gas in the pre-filled container is preferably approximately equal to or larger than the volume of the receptacle provided that the pressure of the gas is substantially the same in the receptacle as in the container. For most medicine bottles or vials, the volume of the gas should be in the interval 1-100 cm3 at atmospheric pressure.


Thus, the integrated unit 4′ is provided with the filter 21′, such as a particulate air filter for cleaning gas passing the filter 21′ during filling the container 3′ with gas, preferably by increasing the volume of the container 3′, before connection of the connector 2′ to a receptacle 6′. Although the filter, hereinafter called particulate air filter 21′ can be arranged in different ways, according to the embodiment illustrated in FIGS. 5 and 6 the particulate air filter 21′ is arranged on the connector 2′. By covering the opening of the needle 14′ by means of the particulate air filter 21′, it is ensured that the gas which is brought into the container 3′ has to pass the particulate air filter 21′. The particulate air filter 21′ is arranged to be removed from the integrated unit 4′ after the container 3′ has been filled with cleaned gas. Subsequently to filling the container 3′ the particulate air filter 21′ is removed and the connector 2′ is to be connected to the receptacle 6′.


By the expression “cleaned” gas is meant that the gas has been filtered by a filter to remove particles and/or viable micro-organisms to such an extent that the gas is classified to be aseptic and accepted by the relevant authority and/or any standards. The degree of purity can be expressed in the largest particles allowed to pass the filter for a given flow rate. In some cases no or very few particles having a size exceeding 5 μm are allowed to be present in the cleaned gas. However, the allowed particle size is determined by the requirements in the current application. Some drug treatments require that substantially all particles having a size exceeding 0.15 μm are removed from the gas by the particulate air filter. As an example, a filter with the mesh size 0.2 μm can be used to remove substantially all particles and micro organisms of that size or larger.


The particulate air filter 21′ is preferably designed as a needle shield 22′ for the tip of needle 14′. The filter can be arranged to at least partially cover or surround the tip of the needle 14′. This implies that the particulate air filter 21′ cleans the gas and at the same time the particulate air filter 21′ functions as a protection during handling of the device 1′. Furthermore, such a needle tip shield 22′ protects the sterile package enclosing the device during transport and storage of the device.


By removing the particulate air filter 21′, after the container 3′ has been filled with the gas and prior to interconnection of the connector 2′ and the receptacle 6′ to each other, any contamination particles removed from the gas and collected in the particulate air filter 21′ are removed from the integrated unit 4′. Thus, one and the same channel can be used for both filling the container 3′ with cleaned gas and transferring the cleaned gas from the container 3′ to a receptacle 6′.


In the embodiment illustrated in FIG. 5b where the particulate air filter 21′ is not to be removed before interconnection of the connector 2′ and the receptacle 6′ to each other, the particulate air filter 21′ has to be arranged so as to avoid contamination during transportation of the gas from the container 3′ to the receptacle 6′. The integrated unit 4′ can be provided with a first channel 23′ for filling the container 3′ with cleaned gas and a second channel 15′ for transferring the cleaned gas to a receptacle. Otherwise, i.e. if the particulate air filter is to be left, and one and the same channel is used for transportation of gas in both directions; the particles collected in the particulate air filter could possibly release from the particulate air filter and be unintentionally brought into the receptacle 6′ by the gas flow. Such a contamination can be prevented by providing a removable air filter or by providing different openings/channels for transportation of gas into and out of the container 3′, respectively.


A lid 26′ can be arranged on the integrated unit 4′ for covering the particulate air filter 21′ so as to prevent further communication between the interior of the integrated unit 4′ and the environment via the particulate air filter 21′ after filling the container 3′. Firstly, the container 3′ is filled with the cleaned gas and thereafter the lid 26′ is mounted on the integrated unit 4′ to cover the particulate air filter 21′ and prevent further gas transportation through the air particle filter 21′. Thereafter, the integrated unit 4′ and the receptacle 6′ are to be interconnected and the subsequent manipulations can be safely executed.


The lid 26′ has the function of preventing transportation of liquid, gas or any vapour in the direction from the integrated unit 4′ to the environment so as to counteract that any undesired substance in the receptacle 6′ escapes to the environment.


It is to be understood that the present invention is not limited to the embodiments described above and illustrated in the drawings; rather, the skilled person will recognize that many changes and modifications may be made within the scope of the appended claims. For example, the invention can be applied to other medical applications and there may be additional purposes for providing cleaned or sterilized gas to a receptacle.

Claims
  • 1. A device for transferring a substance out of a receptacle, comprising a connector and a container which form an integrated unit, the connector being provided with a first means for connection to the receptacle, wherein the integrated unit is provided with a removable filter for cleaning fluid passing the filter during filling the container with fluid by increasing the volume of the container; wherein the integrated unit has a permanently attached needle for penetration of a closing arranged on the receptacle.
  • 2. The device of claim 1, wherein the integrated unit is provided with a filter for cleaning fluid passing the filter during filling the container with fluid by increasing the volume of the container before connection of the connector to the receptacle.
  • 3. The device of claim 2, wherein the filter is arranged to be removed from the said integrated unit after filling the container and before connection of the connector to the receptacle.
  • 4. The device of claim 3, wherein the integrated unit is provided with one and the same channel for both filling the container with cleaned fluid and transferring the cleaned fluid from the container to the receptacle.
  • 5. The device of claim 1, wherein the filter is arranged as a needle shield to said needle.
  • 6. The device of claim 1, wherein the volume of the container is variable such that the volume of the container is increased during filling the container with fluid.
  • 7. The device of claim 6, wherein the container is made of a compressible material to make the volume of the container variable.
  • 8. The device of claim 6, wherein the container is designed to have a flexible portion which is compressible and extendable.
  • 9. The device of claim 8, wherein the flexible portion is compressible and extendable.
  • 10. The device of claim 9, wherein the container is provided with a handle for regulating the volume of the container.
  • 11. The device of claim 8, wherein the flexible portion is a bellow.
  • 12. The device of claim 1, wherein the connector is provided with a second means for connection to a transfer member for conveyance of a substance out of the receptacle.
  • 13. The device of claim 1, wherein the first connection means is designed for connection to the receptacle.
  • 14. The device of claim 13, wherein the first connection means is designed for connection to the neck of the receptacle.
  • 15. The device of claim 14, wherein the receptacle is a vial.
CROSS-REFERENCE TO RELATED APPLICATIONS

This Application is a divisional of U.S. patent application Ser. No. 11/762,543 filed Jun. 13, 2007, now allowed, the disclosure of which is hereby incorporated by reference in its entirety.

US Referenced Citations (213)
Number Name Date Kind
1844342 Berman Feb 1932 A
2010417 Schwab Aug 1935 A
2697438 Hickey Dec 1954 A
2717599 Huber Sep 1955 A
3064651 Henderson Nov 1962 A
3071135 Baldwin et al. Jan 1963 A
3308822 De Luca Mar 1967 A
3316908 Burke May 1967 A
3340671 Loo Sep 1967 A
3390677 Razimbaud Jul 1968 A
3448740 Figge Jun 1969 A
3542240 Solowey Nov 1970 A
3662752 Yokoyama May 1972 A
3783895 Weichselbaum Jan 1974 A
3788320 Dye Jan 1974 A
3822700 Pennington Jul 1974 A
3938520 Scislowicz et al. Feb 1976 A
3976073 Quick et al. Aug 1976 A
4096860 McLaughlin Jun 1978 A
4296786 Brignola Oct 1981 A
4392858 George et al. Jul 1983 A
D270568 Armstrong Sep 1983 S
4490139 Huizenga et al. Dec 1984 A
4507118 Dent Mar 1985 A
4516967 Kopfer May 1985 A
4564054 Gustavsson Jan 1986 A
4573967 Hargrove et al. Mar 1986 A
4576211 Valentini et al. Mar 1986 A
4581016 Gettig Apr 1986 A
4582223 Kobe Apr 1986 A
4588403 Weiss et al. May 1986 A
4600040 Naslund Jul 1986 A
4623343 Thompson Nov 1986 A
4629455 Kanno Dec 1986 A
4632673 Tiitola et al. Dec 1986 A
4636204 Christopherson et al. Jan 1987 A
4673400 Martin Jun 1987 A
4673404 Gustavsson Jun 1987 A
4737150 Baeumle et al. Apr 1988 A
4752287 Kurtz et al. Jun 1988 A
4759756 Forman et al. Jul 1988 A
4768568 Fournier et al. Sep 1988 A
4769026 Strung Sep 1988 A
4792329 Schreuder Dec 1988 A
4804015 Albinsson Feb 1989 A
4822340 Kamstra Apr 1989 A
4826492 Magasi May 1989 A
4834717 Haber et al. May 1989 A
4842585 Witt Jun 1989 A
4850978 Dudar et al. Jul 1989 A
4864717 Baus, Jr. Sep 1989 A
4872494 Coccia Oct 1989 A
4878897 Katzin Nov 1989 A
4889529 Haindl Dec 1989 A
4898209 Zbed Feb 1990 A
4909290 Coccia Mar 1990 A
4932937 Gustavsson et al. Jun 1990 A
4944736 Holtz Jul 1990 A
4964855 Todd et al. Oct 1990 A
4982769 Fournier et al. Jan 1991 A
4994048 Metzger Feb 1991 A
4997083 Loretti et al. Mar 1991 A
5017186 Arnold May 1991 A
5041105 D'Alo et al. Aug 1991 A
5061264 Scarrow Oct 1991 A
5071413 Utterberg Dec 1991 A
5102406 Arnold Apr 1992 A
5122116 Kriesel et al. Jun 1992 A
5122123 Vaillancourt Jun 1992 A
5125415 Bell Jun 1992 A
5137524 Lynn et al. Aug 1992 A
5158554 Jepson et al. Oct 1992 A
5199947 Lopez et al. Apr 1993 A
5201725 Kling Apr 1993 A
5207658 Rosen et al. May 1993 A
5232109 Tirrell et al. Aug 1993 A
5254097 Schock et al. Oct 1993 A
5279583 Shober, Jr. et al. Jan 1994 A
5279605 Karrasch et al. Jan 1994 A
5308347 Sunago et al. May 1994 A
5328480 Melker et al. Jul 1994 A
5334163 Sinnett Aug 1994 A
5356406 Schraga Oct 1994 A
5385545 Kriesel et al. Jan 1995 A
5385547 Wong et al. Jan 1995 A
5389085 D'Alessio et al. Feb 1995 A
5405326 Haber et al. Apr 1995 A
5445630 Richmond Aug 1995 A
5447501 Karlsson et al. Sep 1995 A
5456675 Wolbring et al. Oct 1995 A
5470522 Thome et al. Nov 1995 A
5478328 Silverman et al. Dec 1995 A
5478337 Okamoto et al. Dec 1995 A
5492531 Post et al. Feb 1996 A
5514117 Lynn May 1996 A
5515871 Bittner et al. May 1996 A
5536259 Utterberg Jul 1996 A
5575780 Saito Nov 1996 A
5593028 Haber et al. Jan 1997 A
5613954 Nelson et al. Mar 1997 A
5632735 Wyatt et al. May 1997 A
5647845 Haber et al. Jul 1997 A
5685866 Lopez Nov 1997 A
5752942 Doyle et al. May 1998 A
5766147 Sancoff et al. Jun 1998 A
5766211 Wood et al. Jun 1998 A
5782872 Muller Jul 1998 A
5795336 Romano et al. Aug 1998 A
5817083 Shemesh et al. Oct 1998 A
5820609 Saito Oct 1998 A
5827262 Neftel et al. Oct 1998 A
5837262 Golubev et al. Nov 1998 A
5875931 Py Mar 1999 A
5879345 Aneas Mar 1999 A
5897526 Vaillancourt Apr 1999 A
5934510 Anderson Aug 1999 A
5984899 D'Alessio et al. Nov 1999 A
6063068 Fowles et al. May 2000 A
D427308 Zinger Jun 2000 S
6070623 Aneas Jun 2000 A
6071270 Fowles et al. Jun 2000 A
6090091 Fowles et al. Jul 2000 A
6113068 Ryan Sep 2000 A
6113583 Fowles et al. Sep 2000 A
6142446 Leinsing Nov 2000 A
6146362 Turnbull et al. Nov 2000 A
6171293 Rowley et al. Jan 2001 B1
6209738 Jansen et al. Apr 2001 B1
6221065 Davis Apr 2001 B1
6245056 Walker et al. Jun 2001 B1
D445501 Niedospial, Jr. Jul 2001 S
6253804 Safabash Jul 2001 B1
6258078 Thilly Jul 2001 B1
6343629 Wessman et al. Feb 2002 B1
6364865 Lavi et al. Apr 2002 B1
6387074 Horppu et al. May 2002 B1
6453956 Safabash Sep 2002 B2
6471674 Emig et al. Oct 2002 B1
6517523 Kaneko et al. Feb 2003 B1
6537263 Aneas Mar 2003 B1
6551299 Miyoshi et al. Apr 2003 B2
6571837 Jansen et al. Jun 2003 B2
6591876 Safabash Jul 2003 B2
6599280 Pynson Jul 2003 B1
6644367 Savage et al. Nov 2003 B1
6685692 Fathallah Feb 2004 B2
6715520 Andreasson et al. Apr 2004 B2
6761286 Py et al. Jul 2004 B2
D495416 Dimeo et al. Aug 2004 S
6786244 Jones Sep 2004 B1
D506256 Miyoshi et al. Jun 2005 S
6960194 Hommann et al. Nov 2005 B2
7000806 Py et al. Feb 2006 B2
7080672 Fournie et al. Jul 2006 B2
7297140 Orlu et al. Nov 2007 B2
D570477 Gallogly et al. Jun 2008 S
D572820 Gallogly et al. Jul 2008 S
D577438 Gallogly et al. Sep 2008 S
D577822 Gallogly et al. Sep 2008 S
D582033 Baxter et al. Dec 2008 S
D605755 Baxter et al. Dec 2009 S
7703486 Costanzo Apr 2010 B2
D616984 Gilboa Jun 2010 S
7744581 Wallen et al. Jun 2010 B2
8167863 Yow May 2012 B2
8323237 Radmer et al. Dec 2012 B2
20010021825 Becker et al. Sep 2001 A1
20010025671 Safabash Oct 2001 A1
20020002352 Becker et al. Jan 2002 A1
20020004643 Carmel et al. Jan 2002 A1
20020069616 Odell et al. Jun 2002 A1
20020082586 Finley et al. Jun 2002 A1
20020127150 Sasso Sep 2002 A1
20020177819 Barker et al. Nov 2002 A1
20030010717 Brugger et al. Jan 2003 A1
20030106610 Roos et al. Jun 2003 A1
20030107628 Fowles et al. Jun 2003 A1
20030233083 Houwaert et al. Dec 2003 A1
20040039346 Baldwin et al. Feb 2004 A1
20040116858 Heinz Jun 2004 A1
20040158204 Reboul Aug 2004 A1
20040199139 Fowles et al. Oct 2004 A1
20040215147 Wessman et al. Oct 2004 A1
20040249341 Newbrough et al. Dec 2004 A1
20050215977 Uschold Sep 2005 A1
20060025747 Sullivan Feb 2006 A1
20060064070 Martin Mar 2006 A1
20060079853 Christensen et al. Apr 2006 A1
20060106360 Wong May 2006 A1
20060111667 Matsuura et al. May 2006 A1
20060157984 Rome et al. Jul 2006 A1
20060186045 Jensen et al. Aug 2006 A1
20070021725 Villette Jan 2007 A1
20070060841 Henshaw Mar 2007 A1
20070088313 Zinger et al. Apr 2007 A1
20070093775 Daly Apr 2007 A1
20070106244 Mosler et al. May 2007 A1
20070179441 Chevallier Aug 2007 A1
20070270759 Pessin Nov 2007 A1
20070270778 Zinger et al. Nov 2007 A9
20080045919 Jakob et al. Feb 2008 A1
20080103453 Liversidge May 2008 A1
20080103485 Kruger May 2008 A1
20080142388 Whitley et al. Jun 2008 A1
20080172039 Raines Jul 2008 A1
20080223484 Horppu Sep 2008 A1
20080254042 Inoue et al. Oct 2008 A1
20080287920 Fangrow et al. Nov 2008 A1
20080312634 Helmerson et al. Dec 2008 A1
20090254042 Gratwohl et al. Oct 2009 A1
20100137827 Warren et al. Jun 2010 A1
20100204671 Kraushaar et al. Aug 2010 A1
20100243099 Yodfat Sep 2010 A1
Foreign Referenced Citations (42)
Number Date Country
200112863 May 2003 AU
2005519 Oct 1979 DE
0255025 Feb 1988 EP
0259582 Mar 1988 EP
0285424 Oct 1988 EP
0311787 Apr 1989 EP
0376629 Jul 1990 EP
0803267 Oct 1997 EP
0819442 Jan 1998 EP
0995453 Apr 2000 EP
1060730 Dec 2000 EP
1731128 Dec 2006 EP
2757405 Jun 1998 FR
2780878 Jan 2000 FR
1579065 Nov 1980 GB
49-12690 May 1972 JP
55-156748 Nov 1980 JP
01-123653 May 1989 JP
288664 Jul 1990 JP
3030963 Aug 1996 JP
200167022 Jun 2000 JP
2001505092 Apr 2001 JP
2001293085 Oct 2001 JP
2002-238979 Aug 2002 JP
482670 Apr 2002 TW
WO-8404672 Dec 1984 WO
WO-8404673 Dec 1984 WO
WO-9003536 Apr 1990 WO
WO-9819724 May 1998 WO
WO-9927886 Jun 1999 WO
WO-9962578 Dec 1999 WO
WO-0005292 Feb 2000 WO
WO-0035517 Jun 2000 WO
WO-0180928 Nov 2001 WO
WO-0202048 Jan 2002 WO
WO-0211794 Feb 2002 WO
WO-02064077 Aug 2002 WO
WO-02076540 Oct 2002 WO
WO-2006082350 Aug 2006 WO
WO-2006083333 Aug 2006 WO
WO-2007120641 Oct 2007 WO
WO-2008115102 Sep 2008 WO
Non-Patent Literature Citations (17)
Entry
Infoplease dictionary entry for “integrated.” http://dictonary.infoplease.com/integrated, accessed Apr. 24, 2013.
Final Office Action in U.S. Appl. No. 11/762,550, dated Mar. 17, 2010, 11 pages.
Final Office Action in U.S. Appl. No. 11/762,543, dated Sep. 4, 2012, 12 pages.
Final Office Action in U.S. Appl. No. 11/762,543, dated Apr. 15, 2010, 13 pages.
Final Office Action in U.S. Appl. No. 11/762,543, dated Apr. 30, 2013, 13 pages.
PCT International Search Report in PCT/EP2008/067535, dated Oct. 13, 2009, 3 pages.
PCT International Search Report in PCT/EP2008/067522, dated Aug. 12, 2009, 4 pages.
Japan Application No. 2003-583539, Official Action dated May 1, 2009, 3 pages.
Japan Application No. 2003-577789, Official Action dated Feb. 24, 2009, 4 pages.
Macmillian dictionary entry for “integrated.” http://macmilliandictionary.com/dictionary/american/integrated, accessed Apr. 24, 2013.
Non-Final Office Action in U.S. Appl. No. 11/762,550, dated Jun. 11, 2009, 11 pages.
Non-Final Office Action in U.S. Appl. No. 11/762,543, dated Jan. 15, 2013, 10 pages.
Non-Final Office Action in U.S. Appl. No. 11/762,543, dated May 8, 2012, 11 pages.
Non-Final Office Action in U.S. Appl. No. 11/762,543, dated Nov. 16, 2009, 13 pages.
Taiwan Search Report for Taiwan Patent Application 092106323, dated Mar. 21, 2003, 4 pages.
Extended European Search Report in EP14175968, dated Aug. 8, 2014, 6 pages.
Extended European Search Report in EP15198205, dated Jan. 20, 2016, 6 pages.
Related Publications (1)
Number Date Country
20140116570 A1 May 2014 US
Divisions (1)
Number Date Country
Parent 11762543 Jun 2007 US
Child 14090238 US