This invention relates to ion transport devices. More specifically, this invention relates to a device for separating non-ions from ions.
Ion funnels are increasingly being used in mass spectrometers to improve sensitivity. Ion funnels collect diffuse ion plumes from ion sources, utilizing a large entrance, and then focus the ion beam by progressively reducing the inner diameter of the circular apertures. A 180° out-of-phase RF waveform is applied to adjacent circular apertures to confine ions radially and prevent their loss to the electrodes. A DC gradient is applied to create a driving force for ions to be transported through the funnel.
An example of a prior art ion funnel is shown in
Ion plumes that are introduced into the ion funnel are accompanied by expanding gas that contains partially solvated ions, droplets, and neutral particles. In cases where large gas loads enter the funnel from, e.g., multi-inlet or large bore inlets these non-ionic particles have significantly adverse effect on the performance of the ion funnel as well as the ion optics downstream of the ion funnel. These adverse effects lead to non-robust operations and frequent instrument downtime for cleaning ion topics.
The present invention is directed to methods and devices for separating non-ions from ions. In one embodiment, the device includes a plurality of electrodes positioned around a center axis of the device and having apertures therein through which the ions are transmitted. An inner diameter of the apertures varies in length. At least a portion of the center axis between the electrodes is non-linear.
In one embodiment, at least a portion of the non-linear center axis is bent, curved, or angled.
In one embodiment, the device further includes a line of sight from an entrance to an exit of the device, wherein at least a portion of the line of sight is obstructed.
In one embodiment, the non-ions hit, or are deposited on, a surface of the electrodes. The non-ions may be pumped away from in between the electrodes. In one embodiment, the electrodes are ring electrodes.
In one embodiment, the inner diameter of the apertures varies non-linearly from an entrance of the device to an exit of the device. The apertures may be circular or non-circular.
In one embodiment, the inner diameter of the apertures is larger at bends than elsewhere in the device. The inner diameter of the apertures may be smaller or larger than the inner diameter of a preceding aperture.
The device may also include an RF voltage applied to each of the electrodes and a DC gradient applied across the plurality of electrodes. In one embodiment, the RF applied to each of the electrodes is 180 degrees out of phase with the RF applied to adjacent electrodes.
In another embodiment of the present invention, a method of separating non-ions from ions in a device is disclosed. The method includes positioning a plurality of electrodes around a center axis of the device and transmitting the ions through apertures of the electrodes. An inner diameter of the apertures varies in length, and at least a portion of the center axis between the electrodes is non-linear.
In another embodiment of the present invention, a device for separating non-ions from ions is disclosed. The device includes a plurality of electrodes positioned around a center axis of the device and having apertures through which the ions are transmitted. An inner diameter of the apertures varies in length, and at least a portion of the center axis between the electrodes is non-linear. The device also includes a line of sight from an entrance of the device to an exit of the device, wherein at least a portion of the line of sight is obstructed. The portion of the non-linear center axis is, but not limited to being, bent, curved, or angled.
The present invention is directed to devices and methods of separating non-ions, such as droplets, neutral particles and other non-ionic particles, from ions. At least a portion of the center axis between electrodes of the device is non-linear—e.g., bent, curved, or angled—and offset in a certain direction or plane. Thus, the center of axis of the device is not entirely a straight line but rather a broken or curved line. When ionic as well as non-ionic species are introduced into the device and flow through apertures of the electrodes, only ions curve or bend around and follow the center axis of the device when a pseudopotential and a DC gradient is applied to the device—while non-ionic get pumped away from in between the electrodes. Further, at least a portion of the line of sight from the entrance of the device to the exit of the device is obstructed. In other words, the device breaks the line of sight feature of prior ion funnels.
The inner diameter of the apertures may vary in length and vary non-linearly from an entrance of the device to an exit of the device. In one embodiment, the inner diameter of the apertures is larger at the bends than elsewhere in the device.
In the embodiment of
In one embodiment, the inner diameter of the apertures, which can be non-linear, is larger at the bends than elsewhere in the device 200. Also, a portion of the line of sight from the entrance 250 to the exit 260 is obstructed.
The device can include any number of electrodes and be any length. In one embodiment, which should not be construed as limiting, the device includes at least 100 electrodes and has a minimum length of about 7.5 inches. In some embodiments, the path length is less than the path length of dual ion funnels. In some embodiments, the device includes at least 125 electrodes.
In some embodiments, the device may be fabricated using printed circuit board technology, assembled and tested. The electronic circuitry may be designed using commercial software.
The device is also easy to clean, exhibits enhanced sensitivity and improved longevity and reproducibility.
The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention. As such, references herein to specific embodiments and details thereof are not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications can be made in the embodiments chosen for illustration without departing from the spirit and scope of the invention.
The invention was made with Government support under Contract DE-AC05-76RL01830, awarded by the U.S. Department of Energy, and Grant No. R21 GM103497 awarded by the National Institutes of Health. The Government has certain rights in the invention.