Device for turning continuously transported, flat lying printed products

Abstract
The disclosed device includes a feed conveyor (2), on which printed products (6) are transported within certain distances from one another, a turning section (1) with a path guide arranged tangentially downstream of the feed conveyor and a delivery conveyor (4) for the turned printed products (6) that extends underneath the feed conveyor (2) in the opposite transport direction. Lateral guides (12) are assigned to the path guides (13) and can be adjusted to the format width of the printed products (6). The delivery conveyor (4) is a suction conveyor belt with at least one suction segment (19) in the region of the delivery point of the turning section (1) in order to decelerate the printed products (6) to the transport speed of the delivery conveyor (4).
Description

BRIEF DESCRIPTION OF THE DRAWING

The characteristics of one preferred embodiment of the present invention are described in greater detail below with reference to the enclosed drawing, in which



FIG. 1 shows a perspective representation of a transport system with a turning slide realized in accordance with the invention, and



FIG. 2 shows a schematic side view of the transport system with symbolically illustrated control means.





DETAILED DESCRIPTION

The figures show a transport system comprising a feed conveyor 1 for continuously transporting the spaced-apart, flat lying bound brochures 6, a downstream accelerating conveyor 3 that is driven by a motor 20 with frequency control 21, a delivery conveyor 4 that is situated underneath the feed conveyor 2 and extends in the opposite transport direction, and a turning slide 1 that is arranged tangentially downstream of the accelerating conveyor 3 in the form of a semicircular turning section and downwardly transfers the brochures 6 to the delivery conveyor 4 along a curved track.


The brochures 6 that are transported into the turning slide 1 with a minimum speed by the accelerating conveyor 3 adjoin the inwardly curved guideway during the sliding process due to the centrifugal force and are turned by 180° about an axis that extends parallel to the leading edge such that the brochures are turned from their upper side to their lower side and the leading edge remains unchanged.


According to FIG. 1, the brochures 6 are fed longitudinally referred to the bound spine 6a. The head 6b lies in the rear and the leading edge is defined as the foot 6c such that the rear side 6d is situated on top. After the turning process, the foot 6c continues to lead while the rear side 6d lies on the delivery conveyor 4 and the front side 6e is now situated on top. The turning slide 1 is also suitable, in principle, for different product positions, for example, brochures 6 that are fed transverse referred to the spine 6a.


The turning slide 1 is essentially composed of a right and a left outer slideway 11a, b and an assigned inner support 17 that quasi forms a guide channel and consists of a plurality of freely rotatable support rollers 18 arranged in a convex shape. The respective slideways 11a and 11b feature a lateral guide plate 12 with a semicircularly curved sliding plate 13 perpendicularly fixed thereon. An opening inlet region 14 is realized on the slideways 11a, b at the inlet of the turning slide 1.


Both slideways 11a, b are guided by means of sliding bearings 10 on axles 9 that are accommodated in a frame 8 fixed on the delivery conveyor 4. The positions of the slideways 11a, b are defined by an adjusting spindle 15 that can be actuated with the aid of a hand wheel 16 in order to adjust the width on center.


In order to flawlessly and reliably receive the brochures 6 sliding out of the turning slide 1, the delivery conveyor 4 is realized in the form of a suction conveyor belt. The conveyor belt 5 is provided with a multitude of openings 5a for this purpose. A suction segment 19 that lies in the region of the transfer point from the turning slide to conveyor 4 is defined by the arrangement of the corresponding suction box 23 in the support frame of the delivery conveyor 4.


The suction box 23 is connected to an adjustable suction air source 24 such that the negative pressure in the suction segment 19 can be adjusted in order to compensate the respective kinetic energy of the received brochures 6 along the transfer section defined by the suction segment 19. The adjustment of the negative pressure may take place, for example, in dependence on the weight of the brochures 6 such that the kinetic energy of the brochures 6 is essentially defined after the passage through the turning slide 1.


A speed control is provided for the accelerating conveyor 3 in order to turn the brochures 6 within the desired transit time. The foot 6c is respectively detected as the leading edge of the brochures 6 by light barriers 7a, b that are arranged at the inlet of the accelerating conveyor 3 and the transfer point to the delivery conveyor 4. The signals are fed to a control unit 22 and assigned to the respective transport speed at the inlet of the turning slide 1 in order to determine the transit time of the brochures 6 through the turning slide 1.


The control unit 22 is programmed in a self-learning fashion in order to define an adjusting signal for the frequency converter 21 and therefore a transport speed on the accelerating conveyor 3 and to thusly observe the predefined transit time during the turning process. The control unit 22 has information on the desired transfer time, for example, due to the transmission of guide values from an additional processing device arranged downstream thereof. Once the brochure 6 arrives at the first light barrier 7a, the time difference between the desired transfer time on the delivery conveyor 4 and the arrival time at the inlet is formed. The transport speed of the accelerating conveyor 3 is now defined in dependence on the previously evaluated transit times such that a transit time is adjusted that corresponds to the time difference.


The brochures 6 can be deposited on the delivery conveyor 4 within defined distances from one another and/or synchronous with the cycle of an additional processing machine. Synchronizing devices are no longer required downstream of the turning slide 1.

Claims
  • 1. A device for turning continuously transported, flat lying bound printed products comprising: a feed conveyor, on which the printed products are transported within certain distances from one another;a turning section arranged substantially tangentially downstream of the feed conveyor and extending semicircularly downward, said turning section including a path guide that provides an inwardly curved sliding path for the printed products;a delivery conveyor for the turned printed products that extends underneath the feed conveyor in the opposite transport direction and is arranged substantially tangentially downstream of the turning section to receive a guided printed product at a transfer point from the turning section;lateral guides operatively associated with the path guide and adjustable to the respective format width of the printed products;wherein said delivery conveyor is a suction conveyor belt with at least one suction segment arranged at the transfer point of the turning section for decelerating the printed products to the transport speed of the delivery conveyor.
  • 2. The device according to claim 2, wherein the suction pressure in the suction segment is adjustable.
  • 3. The device according to claim 1, including a rotatively driven transporter that receives the printed products from the feed conveyor and transports the printed products at a transport speed to the turning section, wherein the transport speed is adjustable.
  • 4. The device according to claim 1, including a measuring system with a central unit that features a respective light barrier at the inlet and at the outlet of the turning section in order to determine the transit time of the printed products through the turning section.
  • 5. The device according to claim 3, including a speed controller for the transporter, responsive to the transit time of the printed product through the turning section such that the printed products are transported onto the delivery conveyor within defined distances from one another and/or synchronous with the cycle of a downstream additional processing device.
  • 6. The device according to claim 1, wherein the turning section features inner supporting means that together with the path guide form a guide channel.
  • 7. The device according to claim 6, wherein the inner supporting means comprises a sequence of freely rotating rollers that create a convex inner support track.
  • 8. The device according to claim 1, wherein the lateral guides comprise two vertically arranged lateral guide plates with respective perpendicularly oriented semicircularly curved guide plates that serve to guide printed products in the turning section.
  • 9. The device according to claim 8, wherein the curved guide plates are spaced apart with at least one guiding width for guiding the printed products adjacent the edges of the products.
  • 10. The device according to claim 3, including a measuring system with a central unit that features a respective light barrier at the inlet and at the outlet of the turning section in order to determine the transit time of the printed products through the turning section.
  • 11. The device according to claim 4, including a speed controller for the transporter, responsive to said transit time such that the printed products are transported onto the delivery conveyor within defined distances from one another and/or synchronous with the cycle of a downstream additional processing device.
Priority Claims (1)
Number Date Country Kind
DE 102006019233.8 Apr 2006 DE national