The present disclosure relates generally to an electronic display for an electronic device and, more particularly, to an electronic display with bit error rate (BER) detection circuitry.
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present techniques, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
Electronic displays, such as liquid crystal displays (LCDs) and organic light emitting diode (OLED) displays, are commonly used in electronic devices such as televisions, computers, and phones. The electronic displays display images when image data is sent by a timing controller (TCON) to display drivers in the electronic display. Conventionally, this image data from the TCON is sent at a sufficiently low frequency such that bit errors are relatively uncommon.
Chip-on-glass (COG) data links may connect the TCON to each display driver. Many failure modes could occur in the COG data links that could make one the bit error rate (BER) of image data received by some display drivers worse than others. Some failures may be obvious during manufacturing and may be relatively easy to spot. These obvious failures may manifest as screen noise visible to a human operator, allowing manufacturers to discard or repair the electronic display. Latent failures, however, may not at first be serious enough to cause any visible display noise at the time of manufacturing. These latent failures could go unscreened, later manifesting as long-term failures after sale to a user.
A summary of certain embodiments disclosed herein is set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of these certain embodiments and that these aspects are not intended to limit the scope of this disclosure. Indeed, this disclosure may encompass a variety of aspects that may not be set forth below.
Embodiments of the present disclosure relate to devices and methods for monitoring a bit error rate of an intra-panel data link (e.g., a chip-on-glass (COG) data link) between a timing controller and a display driver. For example, an electronic display according to an embodiment may include a timing controller and display driver circuitry. The timing controller may send test data over a data link to the display driver circuitry. The test data may include a known or predictable stream of data. The display driver circuitry may receive the test data via the data link and detect bit errors based at least partly on the test data.
Various refinements of the features noted above may exist in relation to various aspects of the present disclosure. Further features may also be incorporated in these various aspects as well. These refinements and additional features may exist individually or in any combination. For instance, various features discussed below in relation to one or more of the illustrated embodiments may be incorporated into any of the above-described aspects of the present disclosure alone or in any combination. The brief summary presented above is intended only to familiarize the reader with certain aspects and contexts of embodiments of the present disclosure without limitation to the claimed subject matter.
Various aspects of this disclosure may be better understood upon reading the following detailed description and upon reference to the drawings in which:
One or more specific embodiments of the present disclosure will be described below. These described embodiments are only examples of the presently disclosed techniques. Additionally, in an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present disclosure, the articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Additionally, it should be understood that references to “one embodiment” or “an embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
As mentioned briefly above, bit errors in electronic displays may be relatively rare when image data signals are provided at sufficiently low frequencies across chip-on-glass (COG) data links in the electronic display. However, to support higher display resolutions, the frequency of the image data signals may increase significantly, and bit errors on the COG data links may become more serious. If the bit error rate (BER) of a COG data link is serious enough, all or part of the electronic display may show screen noise.
Since not all failure modes of the chip-on-glass (COG) data links may be apparent at the time of manufacturing, embodiments of the present disclosure relate to electronic displays that can detect the bit error rate (BER) of image data on the COG data links. Thus, even if the imminent failure of a COG data link is not visible to the naked eye, a manufacturer of electronic displays, or electronic devices incorporating the electronic displays, can determine in advance whether the electronic display is likely to fail at some point in the future. The manufacturer then may take remedial action to prevent a failure of the electronic display from occurring in the hands of the ultimate customer. Using an electronic display according to present embodiments, for example, the manufacturer may identify that an electronic display has a COG data link with a BER that exceeds a threshold. The manufacturer then may repair or discard the electronic display long before any obvious failures are visible.
Embodiments of the present disclosure involve identifying the bit error rate (BER) of the chip-on-glass (COG) data links despite unidirectional nature of these data links. Specifically, to reduce the number of data channels in the electronic display, all but one of the COG data links between the timing controller (TCON) and the display drivers (e.g., column drivers) are typically unidirectional from the TCON to the display driver. Thus, each data driver may receive data from respective COG data links from the TCON. However, all data drivers may share a separate back channel data link that can provide a signal unidirectionally from the display drivers to the TCON. Generally, this COG data link operates as an emergency lost clock data link to allow any of the display drivers to request resynchronization with the TCON.
The display drivers may include bit error rate (BER) test circuitry that can determine the BER of the unidirectional chip-on-glass (COG) data links from the timing controller (TCON) to the display drivers. Because the COG data links are unidirectional, the display drivers cannot simply provide an indication of the BER to the TCON over the same data links that are being tested. As such, as will be discussed in greater detail below, the display drivers may cause an indication of the BER to be displayed on a segment of the electronic display or may send an indication of the BER, one at a time, over the emergency lost clock data link back to the TCON. As described herein, the term “indication of the BER” refers to any indication of the rate of bit errors or any indication of a count of bit errors that can be used to infer BER (e.g., by comparing the count of the bit errors to elapsed time).
With the foregoing in mind, a general description of suitable electronic devices that may employ electronic displays having intra-display bit error rate (BER) detection capabilities will be provided below. In particular,
Turning first to
By way of example, the electronic device 10 may represent a block diagram of the notebook computer depicted in
In the electronic device 10 of
The display 18 may be a touch-screen liquid crystal display (LCD) or organic light emitting diode (OLED) display, for example, which may enable users to interact with a user interface of the electronic device 10. In some embodiments, the display 18 may be a MultiTouch™ display that can detect multiple touches at once. The display 18 may support relatively high display resolutions (e.g., WQXGA or QXGA) in some cases and, as a result, may transmit image data internally using relatively high-frequency data signals (e.g., 270 MHz, or 540 Mbps). At these higher frequencies, bit errors on internal data links of the display 18 could become more serious. If the bit error rate (BER) is serious enough, all or part of the display 18 screen may show screen noise. Since not all failure modes of the chip-on-glass (COG) data links may be apparent at the time of manufacturing, the display 18 may include BER test circuitry 20 that can detect the bit error rate (BER) of the internal data links. Thus, even if the imminent failure of a COG data link is not visible to the naked eye, a manufacturer of the display 18 or of the electronic device 10 can determine in advance whether the display 18 is likely to fail at some point in the future. As discussed further below, the manufacturer then may take remedial action to prevent a failure of the display 18 from occurring in the hands of the end user. The BER test circuitry 20 may display an indication of the BERs on the display 18 or send an indication of the BERs to the processor(s) 12.
The input structures 22 of the electronic device 10 may enable a user to interact with the electronic device 10 (e.g., pressing a button to increase or decrease a volume level). The I/O interface 24 may enable electronic device 10 to interface with various other electronic devices, as may the network interfaces 26. The network interfaces 26 may include, for example, interfaces for a personal area network (PAN), such as a Bluetooth network, for a local area network (LAN), such as an 802.11x Wi-Fi network, and/or for a wide area network (WAN), such as a 3G or 4G cellular network. The power source 28 of the electronic device 10 may be any suitable source of power, such as a rechargeable lithium polymer (Li-poly) battery and/or an alternating current (AC) power converter.
The electronic device 10 may take the form of a computer or other type of electronic device. Such computers may include computers that are generally portable (such as laptop, notebook, and tablet computers) as well as computers that are generally used in one place (such as conventional desktop computers, workstations and/or servers). In certain embodiments, the electronic device 10 in the form of a computer may be a model of a MacBook®, MacBook® Pro, MacBook Air®, iMac®, Mac® mini, or Mac Pro® available from Apple Inc. By way of example, the electronic device 10, taking the form of a notebook computer 30, is illustrated in
The handheld device 34 may include an enclosure 36 to protect interior components from physical damage and to shield them from electromagnetic interference. The enclosure 36 may surround the display 18, which may display indicator icons 38. The indicator icons 38 may indicate, among other things, a cellular signal strength, Bluetooth connection, and/or battery life. The I/O interfaces 24 may open through the enclosure 36 and may include, for example, a proprietary I/O port from Apple Inc. to connect to external devices.
User input structures 40, 42, 44, and 46, in combination with the display 18, may allow a user to control the handheld device 34. For example, the input structure 40 may activate or deactivate the handheld device 34, the input structure 42 may navigate user interface 20 to a home screen, a user-configurable application screen, and/or activate a voice-recognition feature of the handheld device 34, the input structures 44 may provide volume control, and the input structure 46 may toggle between vibrate and ring modes. A microphone 48 may obtain a user's voice for various voice-related features, and a speaker 50 may enable audio playback and/or certain phone capabilities. A headphone input 52 may provide a connection to external speakers and/or headphones. The display 18 may include the bit error rate (BER) test circuitry 20 to detect and indicate the BER of its internal data links for quality control and statistics-gathering.
As noted above, the display 18 may generally receive and display a relatively high amount of image data and may include the bit error rate (BER) test circuitry 20 to detect and indicate the BER of its internal data links. As will be discussed with reference to
To display images on active display area 78, one or more of the processor(s) 12 may provide image data to the electronic display interface 72 via any suitable connector. In
During ordinary operation of the display 18, a timing controller (TCON) 82 may receive image data signals from the processor(s) 12 via the eDP connector 80. The TCON 82 then may transmit the image data signals through the FPC interconnections 74 to the display driver circuitry 76. In particular, the image data signals may be provided to certain display drivers of the display driver circuitry 76, such as column drivers (CDs) 84, over respective unidirectional data links 102. The column drivers (CDs) 84 may represent data drivers, of which the display 18 may include any suitable number. Though only three are illustrated in the schematic block diagram of
Specifically, the column drivers (CDs) 84 may operate in concert with row drivers (RDs) 86. A row driver 86 may activate one row of pixels of the active display area 78 and the column drivers (CDs) 84 may respectively program one segment of the activated row of pixels with the image data. As the row drivers (RDs) 86 activate successive rows of pixels, the column drivers (CDs) 84 may successively program the activated pixels with the image data. As a result, images may be displayed on the active display area 78.
Ideally, bit errors will be infrequent in the image data sent over the data links 102. To reduce potential bit errors, the TCON 82 and/or the column drivers (CDs) 84 may be programmed to improve the tuning of the data links 102. Indeed, the TCON 82 and/or the column drivers (CDs) 84 may include a variety of programming options to characterize and/or smooth the performance of the data links 102. It may be difficult, however, to tune the data links 102 based on visual observation alone, since a human operator may not be able to detect the performance of the data links 102 with sufficient responsiveness. In other words, it may be very difficult to know the actual difference in the bit error rate (BER) of a data link 102 before and after applying minor tuning changes, as the human eye may not be able to detect such small changes. Moreover, it is possible that a data link 102 between the TCON 82 to the display driver circuitry 76 could fail. A failure of a data link 102 could cause the bit error rate (BER) to be so high as to result in display errors. For example, such a failure could produce screen noise that is visible to a user of the display 18. When a latent failure is not immediately apparent at the time of the manufacture of the display 18 or the electronic device 10, the failure could manifest itself at a later time after being sold to a user.
To allow manufacturers or repair technicians to more effectively tune the data links 102, as well as to detect a latent failure of a data link 102 between the timing controller (TCON) 82 and the display driver circuitry 76 (e.g., a column drivers (CD) 84), the column drivers (CDs) 84 may include bit error rate (BER) detection circuitry 88. As will be described in greater detail below, the BER detection circuitry 88 may operate in conjunction with certain circuitry of the TCON 82 to detect the BER of the data links 102 between the TCON 82 and the column drivers (CDs) 84. These elements may be understood to represent the BER test circuitry 20 discussed above with reference to
Since, as noted above, the data links 102 may be unidirectional from the timing controller (TCON) 82 to the column drivers (CDs) 84, the bit error rate (BER) detection circuitry 88 cannot transmit an indication of the BER back to the TCON 82 over the data link 102. Rather, as will be discussed in greater detail below with reference to
As mentioned above, the timing controller (TCON) 82 provides image data signals, which the TCON 82 received from the processor(s) 12 via the eDP connector 80, to the column drivers (CDs) 84. The column drivers (CDs) 84 then may cause the pixels of the active display area 78 to be programmed using these image data signals. If there is an obvious failure of a unidirectional data link 102, the failure may cause the image data signal transmitted across it to become distorted. Thus, the pixels may be programmed incorrectly. In particular, the segment of the active display area 78 programmed by the column driver (CD) 84 associated with that data link 102 may become distorted. For example, the portion of the active display area 78 programmed by the column driver (CD) 84 may have excessive screen noise.
Detecting the bit error rate (BER) of the various data links 102 may provide an indication of which data links 102 are likely to fail some time in the future, even if no screen noise is apparent. To begin detecting and providing an indication of the bit error rate (BER) of each data link 102, the display 18 may enter a BER test mode. In particular, BER test mode enable circuitry 108 of the timing controller (TCON) 82 may cause the transmitters (TXs) 100 to begin transmitting test data, rather than image data, to the column drivers (CDs) 84. Upon receipt of this test data, the BER detection circuitry 88 of the column drivers (CDs) 84 may begin determining a BER of each respective data link 102. The BER test mode enable circuitry 108 may be activated, for example, by a control signal from the processor(s) 12.
One example of the circuitry in a transmitter (TX) 100 and a column driver (CD) 84 to carry out a bit error rate (BER) test mode appears in
The normal data 120 or test data from the PRBS generator 122 may be selected (e.g., via a multiplexer 124) based on the BER test mode enable signal 110. The BER test mode enable signal 110 also may cause a protocol framing block 126 to alternatively indicate that normal data 120 or test data from the PRBS generator 122 is being provided. Specifically, the protocol framing block 126 may packetize and frame the normal data 120 and the test data from the PRBS generator 122 in different ways. Based on the framing and packetizing of the protocol framing block 126, the column driver (CD) 84 may be able to identify whether the data is the normal data 120 or test data from the PRBS generator 122. In any case, this packetized data may be handed over to a physical transmitter driver (PHY driver) 128. The PHY driver 128 may physically transmit the data from the TX 100 over the data link 102 to the column driver 84.
A physical receiver (PHY RX) 130 in the column driver (CD) 84 may receive the data from the PHY driver 128 of the TX 100. The received data may be processed by a protocol decoder 132, which may depacketize and determine, based on the framing of the received data, whether the received data is normal data 120 or test data. In addition, the protocol decoder 132 may output a corresponding selection signal 133 depending on whether the received data is normal data or test data.
The selection signal 133 may cause multiplexers 134 and 136 to respectively couple to circuitry for normal operation or to components of the bit error rate (BER) detection circuitry 88. For example, when the protocol decoder 132 detects that the received data is the normal data 120, the selection signal 133 may cause the normal data 120 to be received by normal operation circuitry 137. The normal operation circuitry 137 may include, for example, a data latch block 138 and normal display circuitry 140. As mentioned above, the normal data 120 generally includes image data to be displayed on the active display area 78 of the display 18. As such, when the normal display circuitry 140 receives the normal data 120, the normal display circuitry 140 may output pixel programming signals (e.g., in analog format) to program the pixels of a segment of the active display area 78 to display the image data.
When the protocol decoder 132 instead detects that the received data is the test data (e.g., from the PRBS generator 122), signaling that the display 18 has entered the BER test mode, the selection signal 133 may cause the received test data to be received by the bit error rate (BER) detection circuitry 88. This BER detection circuitry 88 may include components to detect bit errors of the test data, count the bit errors, and cause an indication of the BER to be programmed on the active display area 78 of the display 18. The indication of the BER may be, for example, the total number of bit errors detected once test data is received. An operator or other electronic device may thus discern from the total number of bit errors and the amount of time since the display 18 entered a BER test mode what the BER may be. Alternatively, the indication of the BER may be the actual rate of the bit errors that are being detected over some period of time (e.g., the number of bit errors detected over a one-second period).
By way of example, as shown in
The bit error rate (BER) mode display circuitry 146 may program an indication of the BER of the data link 102 onto the active display area 78 in a variety of ways. For example, as will be discussed further below with reference to
Alternatively, the BER mode display circuitry 146 may program an indication of the BER of the data link 102 onto the active display area 78 in any other suitable manner. For example, the BER mode display circuitry 146 may cause some or all pixels of the segment of the active display area 78 programmed by the column driver (CD) 84 to be of different colors for different values of the error counter 144. For example, when the error counter 144 indicates that no bit errors have been detected by the PRBS checker 142, the BER mode display circuitry 146 may output only pixel programming signals that cause black pixels to be displayed on the segment of the active display area programmed by the column driver (CD) 84. As more bit errors are detected by the PRBS checker 142 and the value held by the error counter 144 increases, the BER mode display circuitry 146 may output pixel programming signals that cause the pixels to become progressively lighter. Thus, varying shades of gray may indicate varying quantities of bit errors detected since entering the BER test mode.
In still other embodiments, the BER mode display circuitry 146 may cause certain characters to be displayed for various values of the error counter 144. For example, the BER mode display circuitry 146 may output pixel programming signals that cause numerals indicating the value held by the error counter 144 to be displayed on the segment of the active display area 78 programmed by the column driver (CD) 84. In another embodiment, the BER mode display circuitry 146 may cause a particular color to be displayed on the segment of the active display area 78 programmed by the column driver (CD) 84. To provide one example, the BER mode display circuitry 146 may cause its segment of the active display area 78 to display a particular color that indicates whether the BER is unacceptable. For example, when the value of the error counter 144 exceeds some threshold, the BER mode display circuitry 146 may cause all the pixels it controls to turn red.
In general, the display 18 of the example of
As noted above, the BER mode enable signal 110 may cause the TXs 100 of the TCON 82 to begin transmitting test data in a test mode format to respective column drivers (CDs) 84. This test data may be, for example, pseudorandom binary sequence (PRBS) data generated by the PRBS generator 122 of the TX 100. Alternatively, the test data may be any predictable or known sequence of data (e.g., 101010 repeated indefinitely). The column drivers (CDs) 84 may initialize their output to program all pixels to solid black (block 166). For example, the error counters 144 of the column drivers (CDs) 84 may be reset when the protocol decoder 132 causes the selection signal 133 to send the test data to the BER detection circuitry 88. As a result, the BER mode display circuitry 146 may output only pixel programming signals that cause black pixels to appear on the active display area 78.
As the PRBS checker 142 processes the test data for bit errors, if a bit error is detected (decision block 168), the error counter 144 may be incremented and cause, for example, white column lines to be displayed for each bit error that is counted (block 170). At this point, an operator or electronic device can visually observe the extent of bit errors at various column drivers (CDs) 84 of the electronic display. This process may continue until the display 18 exits the BER test mode (decision block 172). That is, the processor(s) 12 may cause the BER test mode enable circuitry 108 to stop supplying the BER mode enable signal 110 to the TXs 100 of the TCON 82. The TXs 100 may respond by beginning to send normal data and the protocol framing circuitry 126 of the TXs 100 may frame the data to indicate as such. The column driver (CD) 84 may detect this change in framing of the data and thus may cause the BER detection circuitry 88 no longer to process the received data (block 174). Thereafter, the received data (i.e., normal data 120) may be processed by the normal display circuitry 140 and displayed on the active display area 78 (block 176).
As mentioned above, the column drivers (CDs) 84 may provide indications of the bit error rates (BERs) of the data links 102 by programming their respective segments of the active display area 78. For example, as shown by a BER visualization 190, different segments of the active display area 78 may display different numbers of white columns according to the BER associated with different column drivers (CDs) 84. In the example of
In
To account for a greater number of bit errors than might be capable of being displayed in the manner used in the BER visualization 190, additional variations in colors of columns may be employed. For example, as shown by a BER visualization 200 of
These or other manners of visualizing bit errors of the display 18 may be used to enhance quality control during the manufacture of the display 18 or an electronic device 10 employing the display 18. For example, an operator may observe the extent to which white columns of pixels are displayed on the display 18 when the display 18 is in a BER test mode. Additionally or alternatively, as shown in
For example, during the manufacture of the display 18 or an electronic device 10 that employs the display 18, operators and/or the quality control system 210 may reject or take remedial action if the display 18 indicates that the BER of a data link 102 is excessive. For example, as shown by a flowchart 230 of
If, after a certain period of time, it is apparent that none of the data links 102 associated with the column drivers (CDs) 84 exceed a BER threshold, the display 18 may be determined not likely to have a latent failure. As such, the display 18 may pass (block 238). On the other hand, if after the period of time, it is apparent that a data link 102 associated with a particular column driver (CD) 84 exceeds some BER threshold (e.g., the number of white columns appears to exceed some threshold number), the display 18 may be identified as not meeting the minimum quality standard of the display 18 (block 240). The rejected display 18 may be repaired or discarded to avoid latent failures from occurring after sale to an end user. For example, the data link 102 that has exceeded the BER threshold may be tuned by varying programming parameters available on the TCON 82 and/or the column driver (CD) 84 associated with the data link 102. In some cases, the programming parameters available on the TCON 82 and/or the column driver (CD) 84 associated with the data link 102 may be varied while the display 18 is in the BER test mode. As such, the BER of the data link 102 may be visualized while the data link 102 is being tuned to achieve a lower BER than might be possible based on a human perception of BER alone.
In some embodiments, the display 18 may provide a digital indication of the bit error rate (BER) back to the timing controller (TCON) 82. Since the column drivers (CDs) 84 could not employ the unidirectional data links 102 to send signals back to the TCON 82, the column drivers (CDs) 84 may instead use the emergency lost-clock data link 104. In an example appearing in
As mentioned above, the emergency lost-clock data link 104 may be shared by all of the column drivers (CDs) 84. Under normal operating conditions, if one of the column drivers (CDs) 84 loses synchronization with the embedded-clock data signal from its respective TX 100, that column driver (CD) 84 may transmit a lost-clock signal across the emergency lost-clock data link 104. When the lost-clock detection circuitry of the TCON 82 receives this lost-clock signal, the TCON 82 may resend a clock signal to that column driver (CD) 84. Thereafter, the column driver (CD) 84 may be synchronized once more to the embedded-clock signal of the data being sent by its respective TX 100 in the TCON 82.
Because of the unidirectional natural of the data links 102 between the TXs 100 and the column drivers (CDs) 84, the column drivers (CDs) 84 cannot provide an indication of the bit error rate (BER) of the data link 102 back to the timing controller (TCON) 82 using the same data link 102. As mentioned above, one manner in which the BER detection circuitry 88 may overcome this limitation may involve displaying the bit errors on the active display area 78 of the display panel 70. In the embodiment of
Since only one column driver (CD) 84 can transmit a signal over the emergency lost-clock data link 104 at any time, the TCON 82 may cause a particular column driver (CD) 84 to transmit the indication of the BER over the emergency lost-clock data link 104. For example, as shown in
In an example shown in
The column driver 84 respectively associated with the TX 100 may receive this data from the data link 102 via the physical receiver (PHY RX) 130. The protocol decoder 132 may ascertain whether, for example, the bit error rate (BER) detection circuitry 88 should be employed and, if so, may output the appropriate selection signal 133. The protocol decoder 132 may also determine when the BER count output request signal has been sent and, if so, may cause BER count output enable circuitry 260 to generate a BER count output enable signal, which may cause the column driver (CD) 84 to send a count of detected bit errors to the TCON 82.
In the example of
In particular, in some embodiments, when the protocol decoder 132 detects the BER count output request signal in the data received from the TX 100, the BER count enable circuitry 260 may cause the single wire interface (SWI) circuitry 262 to output the value of the error counter 144 to the column driver (CD) BER count receiver circuitry 250 of the TCON 82. The data link 104 may include, for example, a pull-up resistor 264 coupled to some voltage (e.g., a supply voltage such as the Vcc) and a transistor 266. By modulating a voltage on the gate of the transistor 266, the single wire interface (SWI) circuitry 262 can transmit an indication of the error counter 144 value over the emergency lost-clock data link 104. This signal may be received by a receiver (RX) 268 of the column driver (CD) BER count receiver circuitry 250 in the TCON 82.
Although not shown in
Since the individual column drivers (CDs) 84 can communicate precise bit error rate (BER) values over the emergency lost-clock data link 104, processor-executable instructions (e.g., software or firmware) running on the processor(s) 12 may occasionally perform diagnostic evaluations of the display 18. For example, as shown by a flowchart 280 of
The selected column driver (CD) 84 currently in the bit error rate (BER) test mode may provide an indication of the BER by transmitting the value of its error counter 144 over the emergency lost-clock data link 104 (block 288). The lost-clock detection circuitry/column driver (CD) BER count receiver circuitry 250 may interpret the signal received over the emergency lost-clock data link 104 as the error counter value and may return this value to the processor(s) 12 (block 290). The process of blocks 284-290 may repeat, periodically or otherwise, or may occur only once before the column driver (CD) 84 is reset (block 292). Additionally or alternatively, when other column drivers (CDs) 84 are operating in a BER test mode, the error counters 144 associated with these column drivers (CDs) 84 also may be reset. However, it should be appreciated that, in some embodiments, the column drivers (CDs) 84 may continue to detect the BER of their respective data links 102 if desired.
It may be appreciated that a data link 102 may be tuned using the indication of the BER received over the emergency lost-clock data link 104. For example, programming parameters available on the TCON 82 and/or the column driver (CD) 84 associated with a data link 102 may be varied while the display 18 is in the BER test mode. As such, the BER of the data link 102 received over the emergency lost-clock data link 104 may be used by the processor(s) 12 and/or a human operator to tune the data link 102 to achieve an acceptable BER. The resulting BER of the data link 102 may be lower than might otherwise be possible based on a human perception of BER alone.
The lost-clock detection circuitry/column driver (CD) BER count receiver circuitry 250 may determine the error value transmitted over the emergency lost-clock data link 104 using any suitable technique. For example, as shown in
The lost-clock detection circuitry/column driver (CD) BER count receiver circuitry 250 may detect the values of the bus signal 300 through majority voting. For example, as shown in
The oversampled values 312 may be used to determine the value of data transmitted in each UI 302. For example, a second oversampled value 314 and a fifth oversampled value 316, in a logical XNOR operation 318, may result in a final logic value 320. In the example of
Receiving indications of bit error rate (BER) from individual column drivers (CDs) 84 may permit quality control at the time of the manufacture of the display 18 and/or may allow as diagnostic statistics to be collected after the display 18 has been incorporated into the electronic device 10 and/or sold to an end user. In one example, maintaining quality control while manufacturing a display 18 or an electronic device 10 that includes an electronic display may take place according to a flowchart 340 of
If none of the column drivers (CDs) 84 returns an indication of bit error rate (BER) that is higher than some minimum threshold for quality, the display 18 may be deemed to have passed (block 348). Otherwise, if any column driver (CD) 84 returns an indication of the BER that exceeds the minimum threshold of quality (decision block 346), the display 18 may be rejected (block 350) and thus repaired or discarded.
Additionally or alternatively, processor-executable instructions (e.g., software and/or firmware) occasionally run on the processor(s) 12 of the electronic device 10 to gather diagnostic or statistical information regarding the continuing health of the data links 102 over time. For example, such processor-executable instructions may monitor the BER from the column drivers (CDs) 84 to prepare for a possible failure of a data link 102 (e.g., by alerting the manufacturer of the electronic device 10 so that failure could be preempted). Additionally or alternatively, this diagnostic information can be returned to the manufacturer of the electronic device 10 to allow the manufacturer to track the degradation of the data links 102 as they may occur over time.
Technical effects of the present disclosure include, among other things, a manner of identifying latent failures of data links of an electronic display (e.g., chip-on-glass (COG) data links). That is, by detecting an indication of the bit error rate (BER) of data links to data drivers of such an electronic display, a bit error rate (BER) that is low enough to suggest a future failure is likely to occur, but which does not cause, at present, screen noise to be visible on the display 18, to be detected. In addition, diagnostic information or statistics regarding the health of the data links 102 over time may be collected.
The specific embodiments described above have been shown by way of example, and it should be understood that these embodiments may be susceptible to various modifications and alternative forms. It should be further understood that the claims are not intended to be limited to the particular forms disclosed, but rather to cover all modifications, equivalents, and alternatives falling within the spirit and scope of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
5726991 | Chen et al. | Mar 1998 | A |
5963193 | Knox et al. | Oct 1999 | A |
6745353 | Susnow et al. | Jun 2004 | B2 |
7620062 | Kobayashi | Nov 2009 | B2 |
7788571 | Waschura et al. | Aug 2010 | B2 |
7801206 | Calvin et al. | Sep 2010 | B2 |
20020133762 | Susnow et al. | Sep 2002 | A1 |
20030084384 | White et al. | May 2003 | A1 |
20030095123 | Hahn | May 2003 | A1 |
20040221315 | Kobayashi | Nov 2004 | A1 |
20060143549 | Yasumoto et al. | Jun 2006 | A1 |
20070033448 | Waschura et al. | Feb 2007 | A1 |
20100031098 | Kobayashi | Feb 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20130036335 A1 | Feb 2013 | US |