This disclosure relates generally to acoustic data collection systems, and more particularly to devices, systems and methods for collecting acoustic data.
The primary cause of hearing loss is extended exposure to high decibel levels and damaging sound. The hearing loss an individual suffers is directly related to the levels or type of sound to which he/she is exposed. The uniqueness of the sounds an individual encounters results in uniqueness in the level or frequencies of their hearing loss. Deficiencies tend to vary across the range of audible sound with many individuals having hearing impairment with respect to only particular acoustic frequencies.
Hearing aids are programmed by a hearing health professional to compensate for the individual's hearing loss. During the fitting and programming process, the hearing health professional typically takes measurements using calibrated and specialized equipment to assess an individual's hearing capabilities in a variety of simulated sound environments, and then adjusts the hearing aid based on the calibrated measurements. In some instances, the hearing health professional may create multiple hearing profiles for the user for use in different sound environments.
However, such measurements taken by the hearing health professional may not accurately reflect the individual's actual acoustic environment. The health professional may ask questions about the individual's typical environment, but such questions only provide rough estimates as to the actual noise exposure. If the hearing health professional had access to data related to the actual acoustic environment of the individual, he/she could tune the hearing aid more precisely, providing a more enjoyable hearing experience.
While some systems exist for collecting acoustic data, such acoustic collection systems are typically limited to discrete sound environments. One example of such a collection system is an industrial process control system that uses acoustic sensors for monitoring various process parameters. Such systems are often calibrated to detect selected changes in acoustic signals within a single physical environment that does not typically change rapidly.
Another example of such a collection system includes a set of receivers arranged to monitor a limited area. One such collection system can be used to monitor oceanic environmental parameters, such as wind speeds, for example. Unfortunately, the area that can be reliably monitored in this way is relatively small. Though large areas may be monitored by spacing such sensors far apart, such spacing results in few data points.
In the following description, the use of the same reference numerals in different drawings indicates similar or identical items.
Embodiments of devices, systems and methods for collecting acoustic data are described below, which can be incorporated into various every day devices, such as cell phones, other hand-held computing devices, personal computers, music players, and the like. As used herein, the term “computing device” refers to any electronic device that includes a processor configured to execute instructions. To the extent that a computing device is configured to collect acoustic samples, such a device may include or be connected to a microphone for converting sounds into electrical signals. Such computing devices can be configured to sample acoustic data (such as frequency and amplitude data associated with a particular date and time and at a particular location) and to provide such samples to a data storage device, which can be used to store the acoustic samples. Such samples may be used by hearing health professionals to more accurately program hearing aids for different acoustic environments.
Data storage system 142 is a remote device configured to collect and process acoustic data received from device 102. Data storage system 142 is configured to receive data from any device capable of communicating through network 118. Data storage system 142 includes a network interface 144 communicatively connected to network 118, a processor 146 connected to network interface 144, and a memory 148 connected to processor 146. In some embodiments, data storage system 142 can include multiple computing devices, and memory 148 may be distributed across multiple devices, such as within a server farm.
In one embodiment, device 102 receives a trigger to initiate collection of a sample of the acoustic environment. In one instance, the trigger is received from data storage system 142 through network interface 144. In another instance, the trigger is generated internally based on a periodic function defined in instructions executed by processor 110. In still another instance, the trigger is initiated by a user via the user interface 109. In one example, device 102 may receive a trigger every day or every hour, or may receive an instruction to continuously collect samples until instructed otherwise. The trigger may also include instructions executable by processor 110 to collect samples over a specified period of time. In a particular example, the specified period of time may be related to a time of day during which a user has experienced particular difficulties in hearing determined by the health professional during discussions with the user.
In another embodiment, the trigger may be initiated by a user through interaction with user interface 109. In one possible example, device 102 is a hearing aid system, and the trigger can be generated whenever the user selects a new hearing aid configuration or modifies a hearing aid setting. In a particular example, the hearing aid system includes a hearing aid configured to communicate with a data processing device, such as a cell phone, which is represented by device 102.
Regardless of its source, once a trigger is received by device 102, processor 110 controls microphone 112 to sample the user's acoustic environment in response to receiving the trigger. Microphone 112 converts sounds into a continuous electric signal and may include or be connected to an analog-to-digital converter (ADC) 113 to convert the electrical signals into samples, which are provided to processor 110. Processor 110 processes the samples to produce acoustic data, which are sent to data storage system 142 through network 118. Each sample includes amplitude and frequency data, time data, and location data from location indicator 108 to indicate where and when the acoustic data was collected.
In some instances, processor 110 may be configured to strip identifying data from the acoustic data and to encrypt the data to produce anonymous-encrypted data in order to protect the privacy of the user, particularly the user's location, when the device (such as a hearing aid) provides the acoustic data. In some instances, an opt-in function may be selected by the user to elect to provide such information and to enable device 102 to communicate such data to data storage system 142.
The acoustic data may take various forms including but not limited to the sound sample, data generated from the sound sample, or a combination of the above. For example the acoustic data may include frequencies, decibel levels at each frequency, and amplitudes associated with the frequencies. In one embodiment, device 102 is a hearing aid system and the acoustic data may also include data related to hearing aid configuration (or configuration data related to device 102). In an example, the acoustic data represents the frequency and amplitude data from one or more discrete samples, such that the samples are insufficient to reproduce the audio content.
In some embodiments, processor 110 may include location data with the acoustic data. Location data, such as a GPS position, or a longitude and latitude associated with a particular acoustic sample are collected from location indicator 108 at the time microphone 112 collects the acoustic data and is combined with the acoustic data in a data packet by processor 110. For example, device 102 may include Global Positioning System (GPS) circuitry configured to determine a GPS location of device 102 when the sample is taken. The acoustic data may also include a time stamp indicating the time when the sample was taken and/or the acoustic data was generated. Processor 110 packages the acoustic data for transmission to data storage system 142. The acoustic data may be formatted and encoded for transmission through network 118 according to the appropriate transmission protocols for network 118.
Data storage system 142 is configured to receive acoustic data from a plurality of devices, such as device 102. Processor 146 may organize the acoustic data based on a number of filters to produce sound-related records for storage in memory 148. In one instance, the records may be stored in a database, which may be used by hearing health professionals to produce hearing aid profiles. Further, such records may be accessible in a generic form for other applications, such as for access by a software application to generate an acoustic map, which may be overlaid on a geographic map.
While
Hearing aid 210 includes a transceiver 214, which is connected to a processor 210. Processor 210 is connected to memory 216 and to a speaker 216. Further, processor 210 is connected to an output of ADC 213, which has an input connected to an output of microphone 212. Microphone 212 converts sound to an electrical signal, which is digitized by ADC 213 and provided to processor 210. Processor 210 processes the electrical signal according to a hearing aid profile stored in memory 216 that is configured to shape the electrical signal to produce a modulated output signal, which compensates for a user's hearing impairment. Processor 210 provides the modulated output signal to speaker 216 for reproduction at or within the user's ear. Further, processor 210 may provide one or more samples to transceiver 214 for communication to device 202 for processing and transmission as acoustic data to data storage system 142. Alternatively, transceiver 214 may be configured to communicate with network 118 for transmitting the acoustic data to data storage system 142.
In operation, hearing aid 210 can collect acoustic samples, process the acoustic samples into acoustic data, and send the acoustic data to data storage system 142 through computing device 202 or via transceiver 214 through network 118. In one embodiment, processor 110 receives a trigger (as discussed above) and sends instructions to hearing aid 210 through the communication channel, instructing hearing aid 210 to collect the acoustic data. In response to receiving the instructions, processor 210 controls microphone 212 to collect the acoustic samples. Processor 210 transmits the acoustic samples and/or data related thereto to computing device 202 through the communication channel. Processor 110 can process the acoustic samples to produce the acoustic data and forward the acoustic data to data storage system 142 as described above with respect to
In another embodiment, hearing aid 210 includes a processor that is configured to process the acoustic samples to produce the acoustic data prior to forwarding the acoustic data to computing device 202. In this example, hearing aid 210 receives the trigger (or generates it internally according to processing instructions executed on the processor), collects the acoustic data, and processes the data. Hearing aid 210 then transmits the acoustic data to computing device 202 through the communication channel. Computing device 202 receives the acoustic data at transceiver 204 and relays the encoded acoustic data to data storage system 142 through network 118. In an example, computing device 202 adds location data and a date/time stamp to the acoustic data before encoding the data for transmission to data storage system 142.
While,
At 306, processor 110 encodes and packages the acoustic samples received to produce encoded acoustic data. In some instances, the device may transmit such data to an intermediary, such as computing device 202, for relaying the acoustic data to the data storage system 142. Such encoding and packaging may include stripping identifying information from the samples so that the samples cannot be traced back to their source to protect private information of the individual user. Further, such encoding and packaging of the acoustic data for transmission can include adding data/time information (e.g., a date/time stamp) and location data associated with the sample. Once the acoustic samples are encoded and packaged for transmission, processor 110 provides the encoded acoustic data to network interface 116. Advancing to 308, the device transmits the encoded acoustic data to data storage system 142. Network interface 116 transmits the encoded acoustic data through network 118.
With respect to method 300, the following blocks represent actions performed by a data storage system, such as data storage system 142. Proceeding to 310, a data storage system receives the encoded acoustic data from at least one of the plurality of collection devices through the communication channel. In an example, the encoded data is received at network interface 144, which provides the encoded data to processor 146 and the method advances to 312. At 312, the processor decodes, analyzes, and organizes the encoded data. For example, once the encoded data is decoded, processor 146 may organize the data based on a number of factors to create a searchable database, which can be made accessible to hearing health professionals, which may be used to generate an acoustic environmental map, or which can be used to establish acoustic charts measuring acoustic data for particular geographical areas. In an example, the acoustic data may be processed and organized according to location, time, or other parameters, prior to storage in memory 148 to provide for a searchable, structured data source.
Advancing to 314, the analyzed and organized data are stored in memory 148. Once the data is analyzed, organized, and stored, the processed data can be accessed to provide actual sample data for use in programming a hearing aid for an individual user, for example, based on the user's geographic location. Further, such information can be used to inform the public about acoustic environments. In one particular instance, such sound sample information can be processed to normalize the data and can be pieced together with sound samples from various sources to produce an acoustic map that can be layered onto a geographical map to provide a geographical representation of sound environments. Other possible uses of the accumulated acoustic data are also contemplated.
In conjunction with the devices, systems, and methods disclosed herein with respect to
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the scope of the invention.
This application is a non-provisional of and claims priority to U.S. Provisional patent application No. 61/345,417, entitled “SYSTEM FOR THE COLLECTION OF ACOUSTIC RELATED DATA,” and filed on May 17, 2010, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61345417 | May 2010 | US |