Stents are tubular prostheses designed for implantation in a vessel to maintain patency of the vessel lumen. Stents are used in various vessels throughout the body, including the coronary arteries, femoral arteries, iliac arteries, renal artery, carotid artery, vascular grafts, biliary ducts, trachea, and urethra, to name some examples. Stents are typically implanted by means of long and flexible delivery catheters that carry the stents in a compact, collapsed shape to the treatment site and then deploy the stents into the vessel. In some applications, balloon expandable stents are used. These stents are made of a malleable metal such as stainless steel or cobalt chromium and are expanded by means of a balloon on the tip of the delivery catheter to plastically deform the stent into contact with the vessel wall. In other applications, self-expanding stents are used. These are made of a resilient material that can be collapsed into a compact shape for delivery via catheter and that will self-expand into contact with the vessel when deployed from the catheter. Materials commonly used for self-expanding stents include stainless steel and elastic or superelastic alloys such as nickel titanium (Nitinol™).
While self-expanding stents have demonstrated promise in various applications, such stents face a number of challenges. One such challenge is that in some cases the disease in a vessel may be so extensive that a stent of very long length, e.g. 30-200 mm, is called for. Currently available stents are typically less than 30 mm in length, and suffer from excessive stiffness if made longer. Such stiffness is particularly problematic in peripheral vessels such as the femoral arteries, where limb movement requires a high degree of flexibility in any stent implanted in such vessels.
To overcome the stiffness problem, the idea of deploying multiple shorter stents end-to-end has been proposed. However, this approach has suffered from several drawbacks. First, currently available delivery catheters are capable of delivering only a single stent per catheter. In order to place multiple stents, multiple catheters must be inserted, removed and exchanged, heightening risks, lengthening procedure time, raising costs, and causing excessive material waste. In addition, the deployment of multiple stents end-to-end suffers from the inability to accurately control stent placement and the spacing between stents. This results in overlap of adjacent stents and/or excessive space between stents, which is thought to lead to complications such as restenosis, the renarrowing of a vessel following stent placement. With self-expanding stents the problem is particularly acute because as the stent is released from the catheter, its resiliency tends to cause it to eject or “watermelon seed” distally from the catheter tip by an unpredictable distance. During such deployment, the stent may displace not only axially but rotationally relative to the delivery catheter resulting in inaccurate, uncontrollable, and unpredictable stent placement.
Interleaving stents or stent segments such as those disclosed in co-pending application Ser. No. 10/738,666, filed Dec. 16, 2003, which is incorporated herein by reference, present even greater challenges to conventional delivery systems. Interleaving stents have axially extending elements on each end of the stent that interleave with similar structures on an adjacent stent. Such interleaving minimizes the gap between adjacent stents and increases vessel wall coverage to ensure adequate scaffolding and minimize protrusion of plaque from the vessel wall. However, such interleaving requires that the relative rotational as well as axial positions of the adjacent stents be maintained during deployment to avoid metal overlap and excessive gaps between stents. Conventional delivery systems suffer from the inability to control both the axial and rotational positions of self-expanding stents as they are deployed.
What are needed, therefore, are stents and stent delivery system that overcome the foregoing problems. In particular, the stents and stent delivery systems should facilitate stenting of long vascular regions of various lengths without requiring the use of multiple catheters. Such stents and delivery systems should also provide sufficient flexibility for use in peripheral vessels and other regions where long and highly flexible stents might be required. In addition, the stents and stent delivery systems should enable the delivery of multiple stents of various lengths to one or more treatment sites using a single catheter without requiring catheter exchanges. Further, the stents and stent delivery systems should facilitate accurate and repeatable control of stent placement and inter-stent spacing to enable deployment of multiple self-expanding stents end-to-end in a vessel at generally constant spacing and without overlap. Moreover, the stents and delivery systems should enable the deployment of interleaving stents or stent segments with precision and control over both the axial spacing and rotational position of each stent or segment.
The present invention provides prostheses, prosthesis delivery systems, and methods of prosthesis deployment that enable the precise and controllable delivery of multiple prostheses using a single delivery catheter. The prostheses, delivery systems, and methods of the invention provide for the precise control of prosthesis placement so that inter-prosthesis spacing is maintained at a constant and optimum distance. In some embodiments, both axial and rotational displacement of the prostheses relative to the delivery catheter is controlled during deployment, enabling the delivery of multiple prostheses that interleave with one another without overlap. The prostheses, prosthesis delivery systems, and methods of the invention further enable the length of prostheses to be customized in situ to match the length of the site to be treated. The invention is particularly useful for delivery of self-expanding prostheses, but balloon expandable prostheses are also contemplated within the scope of the invention. The invention is well-suited to delivery of stents to the coronary arteries and to peripheral vessels such as the popliteal, femoral, tibial, iliac, renal, and carotid arteries. The invention is further useful for delivery of prostheses to other vessels including biliary, neurologic, urinary, reproductive, intestinal, pulmonary, and others, as well as for delivery of other types of prostheses to various anatomical regions, wherever precise control of prosthesis deployment is desirable.
In a first aspect of the present invention, a prosthesis delivery catheter includes an outer shaft forming a first lumen, a plurality of self-expanding tubular prostheses carried within the first lumen, and a movable coil member interactive with the prostheses to control expansion of the prostheses when the prostheses are deployed from the first lumen. The prostheses are generally adapted to radially expand upon deployment from the first lumen.
In some embodiments, the coil member is removable from the deployed prostheses by rotating the coil member. In some embodiments, the prostheses have sidewalls with a plurality of openings, the coil member being threaded through the openings. Alternatively, the prostheses may include a plurality of struts, at least one of the struts being bent inwardly, with the coil member being threaded through the inwardly bent struts. Optionally, the coil member may be radially expandable to allow controlled expansion of the prostheses. In some embodiments, a distal portion of the coil member is retractable into the outer shaft following deployment of the selected number of prostheses. In some embodiments, the prostheses are disposed within the coil member.
In various embodiments, the coil member may include a plurality of loops forming a helix. For example, in some embodiments between 2 and 6 loops are disposed in each prosthesis. In other embodiments, more than 6 loops are disposed in each prosthesis. In some embodiments, the coil member comprises a plurality of loops contacting each other to form a continuous tube.
Optionally, the delivery catheter may also include a deployment mechanism for deploying a selected number of prostheses from the inner lumen. In some embodiments, for example, the deployment mechanism includes a pushing element slidably disposed in the first lumen, the pushing element being in engagement with at least one of the prostheses to advance the prostheses distally relative to the outer shaft. Optionally, adjacent ends of adjacent prostheses may be interleaved to resist rotation of the prostheses relative to each other. In one embodiment, a distal end of the pushing element is interleaved with a proximal end of a proximal-most prosthesis to resist rotation of the prostheses. In these or other embodiments, the coil member may optionally be configured to maintain rotational position of the prostheses relative to each other.
In another aspect of the present invention, a prosthesis delivery catheter for delivering prostheses into a vessel lumen includes an outer shaft forming a first lumen, an inner shaft slidably disposed within the first lumen, an evertible tube having a first end coupled with a distal end of the outer shaft and a second end coupled with a distal end of the inner shaft, and a plurality of self-expanding tubular prostheses carried within the evertible tube. Again, the prostheses are generally adapted to radially expand upon deployment from the evertible tube. Moving the outer shaft proximally relative to the inner shaft everts a distal portion of the evertible tube so as to deploy one or more of the prostheses.
In some embodiments, an inner surface of the inner shaft comprises at least one adherent element for releasably holding the prostheses to the inner surface. For example, in one embodiment, the adherent element comprises a tacky surface coating. Alternatively, the adherent element may comprise a softenable material into which the prostheses are removably embedded. In other embodiments, the adherent element comprises a plurality of inwardly-facing protrusions positioned to extend through openings in the prostheses. Such protrusions may have any of a number of shapes in various embodiments, such as but not limited to mushroom-shaped, L-shaped, T-shaped, hook-shaped, rounded, spiked, pyramidal, barbed, arrow-shaped or linear. In yet other embodiments, the adherent element may comprise a structure such as but not limited to bumps, bristles, spines, ridges ribs, waves, grooves, pits, channels, detents or random surface irregularities.
In another aspect of the present invention, a method of delivering one or more prostheses to a treatment site in a vessel involves: positioning a delivery catheter at the treatment site, the delivery catheter carrying a plurality of self-expanding prostheses; selecting a desired number of the prostheses to deploy; deploying the desired number of prostheses from the delivery catheter into the vessel, each prosthesis expanding into contact with the vessel upon deployment; controlling axial displacement of each of the selected number of prostheses relative to the delivery catheter during deployment of the prostheses with an expandable coil member coupled with the prostheses; and removing the expandable coil member from the deployed prostheses.
In some embodiments, removing the coil member involves rotating the coil member. For example, the coil member may be helically threaded through the prostheses such that rotating the coil member unthreads the coil member from one or more prostheses. In some embodiments, the method also involves controlling the rotational displacement of the selected number of prostheses relative to the delivery catheter during deployment of the prostheses. In one embodiment, for example, the rotational displacement is controlled by interleaving adjacent ends of adjacent prostheses and interleaving a proximal end of a proximal-most prosthesis with a portion of the catheter device. In some embodiments, a distal portion of the coil member expands with the selected number of prostheses.
In yet another aspect of the present invention, a method of delivering one or more prostheses to a treatment site in a vessel involves: positioning a delivery catheter at the treatment site, the delivery catheter carrying a plurality of self-expanding prostheses within an evertible tube; selecting a desired number of the prostheses to deploy; and everting a distal portion of the evertible tube to deploy the desired number of prostheses from the delivery catheter into the vessel, each prosthesis expanding into contact with the vessel upon deployment. In some embodiments, the distal portion of the evertible tube is everted by sliding an outer shaft of the catheter device relative to an inner shaft of the catheter device. For example, in some embodiments, a distal end of the outer shaft is coupled with a distal end of the evertible tube such that sliding the outer shaft proximally relative to the inner shaft causes the distal end of the evertible tube to bend outward and fold over on itself.
Optionally, the method may further involve controlling axial displacement of each of the selected number of prostheses relative to the delivery catheter during deployment of the prostheses by contacting an adherent inner surface of the evertible tube with the prostheses. In one embodiment, for example, the adherent surface maintains engagement with the prostheses until the distal portion of the evertible tube is peeled away from the prostheses. In some embodiments, the adherent surface comprises a friction-inducing coating or friction-inducing surface feature. In some embodiments, contacting the adherent surface with the prostheses involves releasably coupling one or more retention structures on the inner surface with the prostheses. Alternatively, contacting the adherent surface with the prostheses may involve embedding the prostheses in a deformable material on the adherent inner surface.
In a further aspect of the invention, a prosthesis delivery catheter comprises an outer shaft having a distal end and a first lumen, a plurality of self-expanding tubular prostheses carried within the first lumen, the prostheses being adapted to radially expand upon deployment from the first lumen, and a control member extending distally from the distal end of the outer shaft and defining an interior communicating with the first lumen for receiving one or more of the prostheses. The control member has an undeflected shape when not engaged by one of the prostheses and is configured to deflect radially outwardly when engaged by a prosthesis during expansion thereof. The control member is also configured to resiliently return to the undeflected shape when the prosthesis is removed from the interior. In one embodiment, the control member generally includes a plurality of deflectable tines having free distal ends received within an aperture on the nose cone or nose piece of the catheter. Optionally, the control member may further include a plurality of webs between the tines. In an alternative embodiment, the control member may comprise a distensible tubular structure.
Further aspects of the nature and advantages of the invention will be apparent from the following detailed description of various embodiments of the invention taken in conjunction with the drawings.
Referring to
Delivery catheter 20 further includes one or more stent expansion control members, which in the illustrated embodiment comprise a plurality of control wires 40. Preferably, one or more pairs of control wires 40 are mounted on opposing sides of delivery catheter 20, e.g. four control wires 40 offset 90° from each other. Control wires 40 are fixed at their proximal ends 42 to inner shaft 28, and have free distal ends 44.
Outer shaft 24 has a distal extremity 46 defining a first lumen 48. A plurality of stents 50 are disposed in a collapsed configuration within first lumen 48. Stents 50 are preferably composed of a resilient material such as stainless steel or Nitinol so as to self-expand from the collapsed configuration to a radially expanded configuration when deployed from first lumen 48. While stents 50 as illustrated have a wave-like or undulating pattern in a plurality of interconnected circumferential members, the pattern illustrated is merely exemplary and the stents of the invention may have any of a variety of strut shapes, patterns, and geometries. From 2 up to 10 or more stents may be carried by outer shaft 24. Optionally, a valve member 49 is mounted within first lumen 48 to facilitate separating those stents 50 to be deployed from those to remain within outer shaft 24, as described in co-pending application Ser. No. 10/412,714, filed Apr. 10, 2003, which is incorporated herein by reference.
Control wires 40 run along the outside of stents 50 or through the interior of stents 50, are threaded through openings in the walls of stents 50 or are otherwise coupled with stents 50 to control the deployment thereof, as described more fully below. Control wires 40 are composed of a resilient material such as stainless steel, Nitinol, or a suitable polymer, and are preferably generally straight and biased inwardly against guidewire tube 32 or to a position generally parallel to the axial direction. In
Handle assembly 21 has a rotatable retraction knob 52 coupled to a shaft housing 53, to which outer shaft 24 is fixed. By rotating retraction knob 52, outer shaft 24 may be retracted proximally relative to pusher 26 and inner shaft 28. A pull ring 54 is coupled to inner shaft 28, allowing inner shaft 28, and hence control wires 40, to be retracted proximally relative to outer shaft 24. A switch 56 engages and disengages pusher 26 with outer shaft 28, so that pusher 26 either moves with outer shaft 24 or remains stationary as outer shaft 24 is retracted. Indicia 58 on shaft housing 53 indicate the extent of retraction of outer shaft 28 by distance, number of stents, or other suitable measure. Other aspects of handle assembly 21 are described in co-pending application Ser. No. 10/746,466, filed Dec. 23, 2003, which is incorporated herein by reference. Except as stated otherwise, any of the embodiments of the stent delivery catheter described below may incorporate the features and be otherwise constructed as just described.
Control wires 66 are constructed of a resilient and flexible metal or polymer with sufficient stiffness to provide controlled resistance to the expansion of stents 62. This stiffness may be selected to allow the desired expansion behavior of stents 62 such that “watermelon seeding” is avoided, inter-stent spacing is maintained, and sufficient stent expansion occurs. Control wires 66 may have various cross-sectional geometries, and may be a flat ribbons or blades, round or oval wires, I-beams, or other suitable structures to control stent expansion, maintain spacing and rotational position, and facilitate withdrawal from stents 62 without interference. Control wires 66 may be composed of or coated with a lubricious material such as PTFE to reduce friction during removal from stents 62. In other embodiments, control wires 66 may have surface features, be wrapped with wire windings, or be coated with “sticky” material to increase friction with stents 62. Coatings or surface structures such as scales with one-way frictional effects may also be applied to control wires 66.
As a further alternative, control wires 66 may comprise flexible hollow tubes which are pneumatically or hydraulically controllable to vary their rigidity or stiffness. For example, control wires 66 may comprise polymeric tubes that radially contract or flatten and are very flexible when evacuated of fluid, but which become more rigid when filled with pressurized fluid, such as saline, air, or other liquid or gas. In such an embodiment, control wires 66 are fluidly connected to a pump, syringe, or other suitable fluid delivery mechanism at the proximal end of the delivery catheter. In this way, control wires 66 may be pressurized to increase stiffness as stents 62 are deployed, then evacuated of fluid to reduce their profile and stiffness during withdrawal from the deployed stents.
Stents 62 are slidably positioned over an inner shaft 68, to which is attached a nosecone 70 at the distal end of the device. An outer shaft 72 is slidably disposed over inner shaft 68 and surrounds stents 62, maintaining them in a collapsed configuration, as shown in
Optionally, inner shaft 68 may have a balloon 76 mounted thereto near its distal end to enable pre- or post-dilatation of lesion L. In this embodiment, inner shaft 68 has an inflation lumen through which inflation fluid may be delivered to balloon 76. Balloon 76 is preferably as long as the longest lesion that might be treated using catheter 60. To dilate lesion L prior to stent deployment, or to further expand stents 62 after deployment, outer shaft 72 and those of stents 62 remaining therein are retracted relative to inner shaft 68 to expose a desired length of balloon 76. The exposed portion of balloon 76 may then be inflated within the lesion L and/or the deployed stents 62.
Following deployment and any post-dilatation, inner shaft 68 is retracted into outer shaft 72 while maintaining pressure against pusher shaft 74. This slides stents 62 distally along control wires 66 and repositions stents 62 to the distal end of inner shaft 68 so as to be ready for deployment. Catheter 60 may then be repositioned to another vascular location for deployment of additional stents 62.
Control wires 66 may be coupled to stents 62 in various ways, some of which depend upon the configuration of stents 62. For example, as shown in
In another embodiment, shown in
Referring now to
In a further embodiment, illustrated schematically in
Optionally, delivery catheter 108 may include a middle shaft or balloon 126 over which stents 124 are positioned, as shown in
In the foregoing embodiment, control wires 110 will be constructed to have sufficient stiffness to resist rotation, twisting or bending as nosecone 114 is rotated to release control wires 110. Maintaining some tension on control wires 110 as nosecone 114 is rotated may facilitate the release process. In addition, control wires 110 will have sufficient column strength to facilitate reinsertion into slots 118 following deployment of stents 124. Thus the size, material and geometry of control wires 110 will be selected to enable these actions while providing the desired level of control of stent expansion.
In a further embodiment of a stent delivery catheter according to the invention, an expandable sleeve 130 is slidably positioned within outer shaft 132 and carries stents 134 as shown in
The interior surface of sleeve 130 optionally may have surface features such as bumps, scales, bristles, ribs, or roughness to enhance friction with stents 134. These features may be configured to have a grain such that they provide more friction against movement in the distal direction than in the proximal direction, or vice versa. Further, such features may be adapted to provide more friction when sleeve 130 is in an unexpanded shape than when it is expanded by stents 134. For example, bristles may be provided that point more in the proximal direction when sleeve 130 is in its unexpanded cylindrical shape, but which point more distally or radially (perpendicular to the surface of sleeve 130) when sleeve 130 is expanded. This allows sleeve 130 to be more easily withdrawn from stents 134 when stents 134 are deployed.
In order to deploy stents 134, delivery catheter 129 is positioned across a vascular lesion so that nosecone 140 is disposed just distally of the distal end of the lesion. Outer shaft 132 is then retracted to expose the desired number of stents 134 (and the associated length of sleeve 130) which will cover the length of the lesion, as shown in
Referring now to
In another embodiment, shown in
Advantageously, by containing the distal ends of longitudinal beams 178 in concavity 174, outer shaft 162 may be retracted to expose the desired number of stents to cover a target lesion without immediate expansion of stents 166, as shown in
In some embodiments of the stent delivery catheter of the invention, the stents themselves are configured to provide greater control and precision in stent deployment. For example,
As outer shaft 184 is retracted to deploy one or more stents 182, at least a distal ring 192′ is configured to expand into engagement with the vessel wall before the entire length of the stent 182 is deployed from outer shaft 184 (
Rings 192 are preferably formed from a common piece of material and are integrally interconnected at joints 193, making joints 193 relatively rigid. In this embodiment, the majority of flexibility between rings 192 is provided by struts 191 rather than by joints 193. Alternatively, joints 193 may comprise welded connections between rings 192 which are also fairly rigid. As a further alternative, joints 193 may comprise hinge or spring structures to allow greater deflection between adjacent rings 192, as exemplified in
In the embodiment of
Spring members 206 may be formed of the same or different material as that of rings 202, depending upon the desired performance characteristics. In addition, spring members 206 may be biodegradable so as to erode and eventually disappear, leaving the adjacent pairs of rings 202 unconnected.
During deployment, as outer shaft 184 is retracted to expose a stent 200, the distal pair of rings 202′ first expands into engagement with lesion L in vessel V (
In a further embodiment, shown schematically in
In use, outer shaft 218 is retracted so that a first stent 220′ is released therefrom and expands into engagement with lesion L (
In
Optionally, balloon 223 may have surface features or coatings on its periphery that enhance retention of stents 221 thereon. Such features may include structures such as scales or protuberances that are activated by pressurization of the balloon so that retention is lessened when the balloon is deflated, but heightened when the balloon is pressurized. Following stent deployment, pressure can optionally be increased in balloon 223 for post-dilation of stents 221 and the target lesion L. Balloon 223 is then deflated and retracted within sheath 229 as distal pressure is maintained against pusher 225, repositioning stents 221 near the distal end of balloon 223 within sheath 229 for deployment at another location, as shown in
In a further embodiment, the stents in the delivery catheter of the invention may releasably interconnect with one another and/or with the pusher shaft to enable greater control and precision during deployment. As illustrated in
Various types of interconnecting structures between adjacent stents and between the stents and the pusher shaft are possible within the scope of the invention, including those described in co-pending application Ser. No. 10/738,666, filed Dec. 16, 2003, which is incorporated herein by reference. Such interconnecting structures may also be breakable or frangible to facilitate separation as the stent expands. In addition, a mechanism such as an expandable balloon or cutting device may be disposed at the distal end of delivery catheter 230 to assist in separating stents 232 upon deployment. Further, the interconnections between stents may be different than the interconnection between the proximal-most stent and the pusher shaft. For example, the pusher shaft may have hooks, magnets, or other mechanisms suitable for releasably holding and maintaining traction on the proximal end of a stent until it is deployed.
In another embodiment, as shown in
In
In a preferred embodiment, adjacent stents are “keyed,” or “interleaved,” to each other, meaning that fingers or other protrusions on each end of one stent interleave with complementary fingers/protrusions on immediately adjacent stents, as described above in reference to
Referring to
In another embodiment, illustrated in
Axial displacement of each stent 302′ is controlled (and watermelon seeding is avoided) due to frictional engagement with the inner surface 296 of evertible tube 295. To enhance retention of stents 302 in evertible tube 295, inner surface 296 may include adherent coatings or other surface features adapted to engage and retain stents 302. For example, inner surface 296 may comprise a layer or coating of sticky, tacky or otherwise high-friction material. Alternatively, inner surface 296 may include friction-inducing features such as roughened areas, bumps, spines, bristles, ridges, ribs, channels, grooves, or random surface irregularities. As flexible distal portion 294′ everts and moves proximally, stents 302′ peel off of adherent surface 296 in a controlled fashion.
In an alternative embodiment, shown in
In the embodiment shown in
Retention structures 316 may be integrally formed with evertible tube 314 and made of the same flexible polymer, or alternatively may be separate structures of polymer, metal wire or other flexible material attached to evertible tube 314. Such retention structures may be positioned to engage stent 318 at various locations along its length, e.g. at several locations along the entire length of the stent, e.g. near the proximal and distal ends (as shown), only near the proximal end, only near the distal end, only at the middle, or at another discreet location.
Referring now to
Control member 410 may be constructed of a polymer, metal, or other flexible and resilient material. Tines 412 are deflectable outwardly under the expansion force of stents 420. Tines 412 are preferably biased inwardly into general alignment with the longitudinal axis of delivery catheter 400 such that free distal ends 414 remain positioned inwardly near inner shaft 406 even after release from aperture 409. Tines 412 may include a friction-enhancing coating, texture, cover, or other surface features on their inwardly-facing surfaces to create more friction with stents 420. Alternatively, a lubricious coating may be provided on the inner or outer surfaces of tines 412 for greater slidability. Tines 412 may have an axial length which is less than or equal to the length of one stent 420, a length greater than the length of one stent 420, or a length as long as the length of 2, 3 or more stents 420. Aperture 409 may be relatively shallow, as shown, so as to receive only the free distal ends 414 of tines 412, or may be somewhat deeper so that a portion or substantially all of the length of tines 412 is disposed within aperture 409.
As shown in
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, improvements and additions are possible without departing from the scope thereof, which is defined by the claims.
The present application is a continuation of U.S. patent application Ser. No. 10/957,079 filed Sep. 30, 2004 which is a continuation-in-part of U.S. patent application Ser. No. 10/879,949, filed Jun. 28, 2004, the full disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4069825 | Akiyama | Jan 1978 | A |
4468224 | Enzmann et al. | Aug 1984 | A |
4512338 | Balko | Apr 1985 | A |
4564014 | Fogarty et al. | Jan 1986 | A |
4580568 | Gianturco | Apr 1986 | A |
4681110 | Wiktor | Jul 1987 | A |
4690684 | McGreevy et al. | Sep 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4739762 | Palmaz | Apr 1988 | A |
4748982 | Horzewski et al. | Jun 1988 | A |
4762129 | Bonzel | Aug 1988 | A |
4770176 | McGreevy et al. | Sep 1988 | A |
4775337 | Van Wagener et al. | Oct 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4886062 | Wiktor | Dec 1989 | A |
4891225 | Langer et al. | Jan 1990 | A |
4950227 | Savin et al. | Aug 1990 | A |
4988356 | Crittenden et al. | Jan 1991 | A |
4994066 | Voss | Feb 1991 | A |
4994069 | Ritchart et al. | Feb 1991 | A |
4994298 | Yasuda | Feb 1991 | A |
5013318 | Spranza, III | May 1991 | A |
5035706 | Giantureo et al. | Jul 1991 | A |
5040548 | Yock | Aug 1991 | A |
5061273 | Yock | Oct 1991 | A |
5064435 | Porter | Nov 1991 | A |
5092877 | Pinchuk | Mar 1992 | A |
5102417 | Palmaz | Apr 1992 | A |
5104404 | Wolff | Apr 1992 | A |
5122154 | Rhodes | Jun 1992 | A |
5135535 | Kramer | Aug 1992 | A |
5158548 | Lau et al. | Oct 1992 | A |
5192297 | Hull | Mar 1993 | A |
5195984 | Schatz | Mar 1993 | A |
5201757 | Heyn et al. | Apr 1993 | A |
5217495 | Kaplan et al. | Jun 1993 | A |
5219355 | Parodi et al. | Jun 1993 | A |
5226913 | Pinchuk | Jul 1993 | A |
5246421 | Saab | Sep 1993 | A |
5261887 | Walker | Nov 1993 | A |
5273536 | Savas | Dec 1993 | A |
5282823 | Schwartz et al. | Feb 1994 | A |
5282824 | Gianturco | Feb 1994 | A |
5300085 | Yock | Apr 1994 | A |
5312415 | Palermo | May 1994 | A |
5328469 | Coletti | Jul 1994 | A |
5334187 | Fischell et al. | Aug 1994 | A |
5391172 | Williams et al. | Feb 1995 | A |
5421955 | Lau et al. | Jun 1995 | A |
5443498 | Fontaine | Aug 1995 | A |
5445646 | Euteneuer et al. | Aug 1995 | A |
5456713 | Chuter | Oct 1995 | A |
5458615 | Klemm et al. | Oct 1995 | A |
5470315 | Adams | Nov 1995 | A |
5478349 | Nicholas | Dec 1995 | A |
5484444 | Braunschweiler et al. | Jan 1996 | A |
5490837 | Blaeser et al. | Feb 1996 | A |
5496346 | Horzewski et al. | Mar 1996 | A |
5501227 | Yock | Mar 1996 | A |
5507768 | Lau et al. | Apr 1996 | A |
5507771 | Gianturco | Apr 1996 | A |
5514093 | Ellis et al. | May 1996 | A |
5514154 | Lau et al. | May 1996 | A |
5522882 | Gaterud et al. | Jun 1996 | A |
5527354 | Fontaine et al. | Jun 1996 | A |
5531735 | Thompson | Jul 1996 | A |
5533968 | Muni et al. | Jul 1996 | A |
5534007 | St. Germain et al. | Jul 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5549551 | Peacock, III et al. | Aug 1996 | A |
5549563 | Kronner | Aug 1996 | A |
5549635 | Solar | Aug 1996 | A |
5554181 | Das | Sep 1996 | A |
5562725 | Schmitt et al. | Oct 1996 | A |
5571086 | Kaplan et al. | Nov 1996 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5593412 | Martinez et al. | Jan 1997 | A |
5607444 | Lam | Mar 1997 | A |
5607463 | Schwartz et al. | Mar 1997 | A |
5628755 | Heller et al. | May 1997 | A |
5628775 | Jackson et al. | May 1997 | A |
5634928 | Fischell et al. | Jun 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5662675 | Polanskyj Stockert et al. | Sep 1997 | A |
5662703 | Yurek et al. | Sep 1997 | A |
5670161 | Healy et al. | Sep 1997 | A |
5676654 | Ellis et al. | Oct 1997 | A |
5683451 | Lenker et al. | Nov 1997 | A |
5690644 | Yurek et al. | Nov 1997 | A |
5693085 | Buirge et al. | Dec 1997 | A |
5697948 | Marin et al. | Dec 1997 | A |
5697971 | Fischell et al. | Dec 1997 | A |
5702418 | Ravenscroft | Dec 1997 | A |
5702419 | Berry et al. | Dec 1997 | A |
5709701 | Parodi | Jan 1998 | A |
5716393 | Lindenberg et al. | Feb 1998 | A |
5722669 | Shimizu et al. | Mar 1998 | A |
5723003 | Winston et al. | Mar 1998 | A |
5735869 | Fernandez-Aceytuno | Apr 1998 | A |
5741323 | Pathak et al. | Apr 1998 | A |
5749848 | Jang et al. | May 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5749921 | Lenker et al. | May 1998 | A |
5755697 | Jones et al. | May 1998 | A |
5755772 | Evans et al. | May 1998 | A |
5755776 | Al-Saadon | May 1998 | A |
5755781 | Jayaraman | May 1998 | A |
5769882 | Fogarty et al. | Jun 1998 | A |
5772669 | Vrba | Jun 1998 | A |
5776141 | Klein et al. | Jul 1998 | A |
5792144 | Fischell et al. | Aug 1998 | A |
5797951 | Mueller et al. | Aug 1998 | A |
5800519 | Sandock | Sep 1998 | A |
5807398 | Shaknovich | Sep 1998 | A |
5824040 | Cox et al. | Oct 1998 | A |
5824041 | Lenker et al. | Oct 1998 | A |
5833694 | Poncet | Nov 1998 | A |
5836964 | Richter et al. | Nov 1998 | A |
5843090 | Schuetz | Dec 1998 | A |
5843092 | Heller et al. | Dec 1998 | A |
5855563 | Kaplan et al. | Jan 1999 | A |
5858556 | Eckert et al. | Jan 1999 | A |
5870381 | Kawasaki et al. | Feb 1999 | A |
5879370 | Fischell et al. | Mar 1999 | A |
5891190 | Boneau | Apr 1999 | A |
5895398 | Wensel et al. | Apr 1999 | A |
5899935 | Ding | May 1999 | A |
5902332 | Schatz | May 1999 | A |
5919175 | Sirhan | Jul 1999 | A |
5921971 | Agro et al. | Jul 1999 | A |
5922020 | Klein et al. | Jul 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5951585 | Cathcart et al. | Sep 1999 | A |
5961536 | Mickley et al. | Oct 1999 | A |
5965879 | Leviton | Oct 1999 | A |
5968069 | Dusbabek et al. | Oct 1999 | A |
5972027 | Johnson | Oct 1999 | A |
5976107 | Mertens et al. | Nov 1999 | A |
5976155 | Foreman et al. | Nov 1999 | A |
5980484 | Ressemann et al. | Nov 1999 | A |
5980486 | Enger | Nov 1999 | A |
5980514 | Kupiecki et al. | Nov 1999 | A |
5980552 | Pinchasik et al. | Nov 1999 | A |
5984957 | Laptewicz, Jr. et al. | Nov 1999 | A |
5989280 | Euteneuer et al. | Nov 1999 | A |
5993484 | Shmulewitz | Nov 1999 | A |
5997563 | Kretzers et al. | Dec 1999 | A |
6004328 | Solar | Dec 1999 | A |
6007517 | Anderson | Dec 1999 | A |
6010530 | Goicoechea | Jan 2000 | A |
6022359 | Frantzen | Feb 2000 | A |
6022374 | Imran | Feb 2000 | A |
6027519 | Stanford | Feb 2000 | A |
6033434 | Borghi | Mar 2000 | A |
6036725 | Avellanet | Mar 2000 | A |
6039721 | Johnson et al. | Mar 2000 | A |
6042589 | Marianne | Mar 2000 | A |
6050999 | Paraschac et al. | Apr 2000 | A |
6056722 | Jayaraman | May 2000 | A |
6063111 | Hieshima et al. | May 2000 | A |
6066155 | Amann et al. | May 2000 | A |
6068655 | Seguin et al. | May 2000 | A |
6070589 | Keith et al. | Jun 2000 | A |
6090063 | Makower et al. | Jul 2000 | A |
6090136 | McDonald et al. | Jul 2000 | A |
6102942 | Ahari | Aug 2000 | A |
6106530 | Harada | Aug 2000 | A |
RE36857 | Euteneuer et al. | Sep 2000 | E |
6120477 | Campbell et al. | Sep 2000 | A |
6120522 | Vrba et al. | Sep 2000 | A |
6123712 | Di Caprio et al. | Sep 2000 | A |
6123723 | Konya et al. | Sep 2000 | A |
6126685 | Lenker et al. | Oct 2000 | A |
6129756 | Kugler | Oct 2000 | A |
6132460 | Thompson | Oct 2000 | A |
6139572 | Campbell et al. | Oct 2000 | A |
6143016 | Bleam et al. | Nov 2000 | A |
6165167 | Delaloye | Dec 2000 | A |
6165210 | Lau et al. | Dec 2000 | A |
6171334 | Cox | Jan 2001 | B1 |
6179878 | Duerig | Jan 2001 | B1 |
6183509 | Dibie | Feb 2001 | B1 |
6187034 | Frantzen | Feb 2001 | B1 |
6190402 | Horton et al. | Feb 2001 | B1 |
6196995 | Fagan | Mar 2001 | B1 |
6200337 | Moriuchi et al. | Mar 2001 | B1 |
6217585 | Houser et al. | Apr 2001 | B1 |
6238991 | Suzuki | May 2001 | B1 |
6241691 | Ferrera et al. | Jun 2001 | B1 |
6241758 | Cox | Jun 2001 | B1 |
6248122 | Klumb et al. | Jun 2001 | B1 |
6251132 | Ravenscroft et al. | Jun 2001 | B1 |
6251134 | Alt et al. | Jun 2001 | B1 |
6254612 | Hieshima | Jul 2001 | B1 |
6254628 | Wallace et al. | Jul 2001 | B1 |
6258117 | Camrud et al. | Jul 2001 | B1 |
6264688 | Herklotz et al. | Jul 2001 | B1 |
6267783 | Letendre et al. | Jul 2001 | B1 |
6270524 | Kim | Aug 2001 | B1 |
6273895 | Pinchuk et al. | Aug 2001 | B1 |
6273911 | Cox et al. | Aug 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6287291 | Bigus et al. | Sep 2001 | B1 |
6312458 | Golds | Nov 2001 | B1 |
6315794 | Richter | Nov 2001 | B1 |
6319277 | Rudnick et al. | Nov 2001 | B1 |
6322586 | Monroe et al. | Nov 2001 | B1 |
6325823 | Horzewski et al. | Dec 2001 | B1 |
6334871 | Dor et al. | Jan 2002 | B1 |
6340366 | Wijay | Jan 2002 | B2 |
6344272 | Oldenburg et al. | Feb 2002 | B1 |
6348065 | Brown et al. | Feb 2002 | B1 |
6350252 | Ray et al. | Feb 2002 | B2 |
6350277 | Kocur | Feb 2002 | B1 |
6357104 | Myers | Mar 2002 | B1 |
6361558 | Hieshima et al. | Mar 2002 | B1 |
6375676 | Cox | Apr 2002 | B1 |
6379365 | Diaz | Apr 2002 | B1 |
6383171 | Gifford et al. | May 2002 | B1 |
6394995 | Solar et al. | May 2002 | B1 |
6409753 | Brown et al. | Jun 2002 | B1 |
6415696 | Erickeson et al. | Jul 2002 | B1 |
6416543 | Hilaire et al. | Jul 2002 | B1 |
6419693 | Fariabi | Jul 2002 | B1 |
6425898 | Wilson et al. | Jul 2002 | B1 |
6428811 | West et al. | Aug 2002 | B1 |
6451025 | Jervis | Sep 2002 | B1 |
6451050 | Rudakov et al. | Sep 2002 | B1 |
6464720 | Boatman et al. | Oct 2002 | B2 |
6468298 | Pelton | Oct 2002 | B1 |
6468299 | Stack et al. | Oct 2002 | B2 |
6485510 | Camrud et al. | Nov 2002 | B1 |
6488694 | Lau et al. | Dec 2002 | B1 |
6488702 | Besselink | Dec 2002 | B1 |
6511468 | Cragg et al. | Jan 2003 | B1 |
6520986 | Martin et al. | Feb 2003 | B2 |
6520987 | Plante | Feb 2003 | B1 |
6527789 | Lau et al. | Mar 2003 | B1 |
6527799 | Shanley | Mar 2003 | B2 |
6530944 | West et al. | Mar 2003 | B2 |
6540777 | Stenzel | Apr 2003 | B2 |
6551350 | Thornton et al. | Apr 2003 | B1 |
6555157 | Hossainy | Apr 2003 | B1 |
6558415 | Thompson | May 2003 | B2 |
6562067 | Mathis | May 2003 | B2 |
6565599 | Hong et al. | May 2003 | B1 |
6569180 | Sirhan et al. | May 2003 | B1 |
6575993 | Yock | Jun 2003 | B1 |
6579305 | Lashinski | Jun 2003 | B1 |
6579309 | Loos et al. | Jun 2003 | B1 |
6582394 | Reiss et al. | Jun 2003 | B1 |
6582460 | Cryer | Jun 2003 | B1 |
6585756 | Strecker | Jul 2003 | B1 |
6589273 | McDermott | Jul 2003 | B1 |
6592549 | Gerdts et al. | Jul 2003 | B2 |
6599296 | Gillick et al. | Jul 2003 | B1 |
6599314 | Mathis | Jul 2003 | B2 |
6602226 | Smith et al. | Aug 2003 | B1 |
6602282 | Yan | Aug 2003 | B1 |
6605062 | Hurley et al. | Aug 2003 | B1 |
6605109 | Fiedler | Aug 2003 | B2 |
6607553 | Healy et al. | Aug 2003 | B1 |
6613074 | Mitelberg et al. | Sep 2003 | B1 |
6629992 | Bigus et al. | Oct 2003 | B2 |
6645517 | West | Nov 2003 | B2 |
6645547 | Shekalim et al. | Nov 2003 | B1 |
6656212 | Ravenscroft et al. | Dec 2003 | B2 |
6660031 | Tran et al. | Dec 2003 | B2 |
6660381 | Halas et al. | Dec 2003 | B2 |
6663660 | Dusbabek et al. | Dec 2003 | B2 |
6666883 | Seguin et al. | Dec 2003 | B1 |
6676693 | Belding et al. | Jan 2004 | B1 |
6676695 | Solem | Jan 2004 | B2 |
6679909 | McIntosh et al. | Jan 2004 | B2 |
6685730 | West et al. | Feb 2004 | B2 |
6692465 | Kramer | Feb 2004 | B2 |
6699280 | Camrud et al. | Mar 2004 | B2 |
6699281 | Vallana et al. | Mar 2004 | B2 |
6699724 | West et al. | Mar 2004 | B1 |
6702843 | Brown | Mar 2004 | B1 |
6709379 | Brandau et al. | Mar 2004 | B1 |
6709440 | Callol et al. | Mar 2004 | B2 |
6712827 | Ellis et al. | Mar 2004 | B2 |
6712845 | Hossainy | Mar 2004 | B2 |
6723071 | Gerdts et al. | Apr 2004 | B2 |
6736842 | Healy et al. | May 2004 | B2 |
6743219 | Dwyer et al. | Jun 2004 | B1 |
6743251 | Eder | Jun 2004 | B1 |
6761734 | Suhr | Jul 2004 | B2 |
6776771 | van Moorlegem et al. | Aug 2004 | B2 |
6778316 | Halas et al. | Aug 2004 | B2 |
6790227 | Burgermeister | Sep 2004 | B2 |
6800065 | Duane et al. | Oct 2004 | B2 |
6825203 | Pasternak et al. | Nov 2004 | B2 |
6837901 | Rabkin et al. | Jan 2005 | B2 |
6849084 | Rabkin et al. | Feb 2005 | B2 |
6852252 | Halas et al. | Feb 2005 | B2 |
6855125 | Shanley | Feb 2005 | B2 |
6858034 | Hijlkema et al. | Feb 2005 | B1 |
6878161 | Lenker | Apr 2005 | B2 |
6884257 | Cox | Apr 2005 | B1 |
6893417 | Gribbons et al. | May 2005 | B2 |
6896695 | Mueller et al. | May 2005 | B2 |
6899728 | Phillips et al. | May 2005 | B1 |
6913619 | Brown et al. | Jul 2005 | B2 |
6918928 | Wolinsky et al. | Jul 2005 | B2 |
6939376 | Shulz et al. | Sep 2005 | B2 |
6945989 | Betelia et al. | Sep 2005 | B1 |
6945995 | Nicholas | Sep 2005 | B2 |
6951053 | Padilla et al. | Oct 2005 | B2 |
6962603 | Brown et al. | Nov 2005 | B1 |
6964676 | Gerberding et al. | Nov 2005 | B1 |
6991646 | Clerc et al. | Jan 2006 | B2 |
6994721 | Israel | Feb 2006 | B2 |
7004964 | Thompson et al. | Feb 2006 | B2 |
7005454 | Brocchini et al. | Feb 2006 | B2 |
7022132 | Kocur | Apr 2006 | B2 |
7029493 | Majercak et al. | Apr 2006 | B2 |
7037327 | Salmon et al. | May 2006 | B2 |
7090694 | Morris et al. | Aug 2006 | B1 |
7101840 | Brocchini et al. | Sep 2006 | B2 |
7131993 | Gregorich | Nov 2006 | B2 |
7137993 | Acosta et al. | Nov 2006 | B2 |
7141063 | White et al. | Nov 2006 | B2 |
7147655 | Chermoni | Dec 2006 | B2 |
7147656 | Andreas et al. | Dec 2006 | B2 |
7169172 | Levine et al. | Jan 2007 | B2 |
7169174 | Fischell et al. | Jan 2007 | B2 |
7172620 | Gilson | Feb 2007 | B2 |
7175654 | Bonsignore et al. | Feb 2007 | B2 |
7182779 | Acosta et al. | Feb 2007 | B2 |
7192440 | Andreas et al. | Mar 2007 | B2 |
7208001 | Coyle et al. | Apr 2007 | B2 |
7208002 | Shelso | Apr 2007 | B2 |
7220275 | Davidson et al. | May 2007 | B2 |
7220755 | Betts et al. | May 2007 | B2 |
7223283 | Chouinard | May 2007 | B2 |
7238197 | Sequin et al. | Jul 2007 | B2 |
7241308 | Andreas et al. | Jul 2007 | B2 |
7244336 | Fischer et al. | Jul 2007 | B2 |
7270668 | Andreas et al. | Sep 2007 | B2 |
7294146 | Chew et al. | Nov 2007 | B2 |
7300456 | Andreas et al. | Nov 2007 | B2 |
7309350 | Landreville et al. | Dec 2007 | B2 |
7314480 | Eidenschink et al. | Jan 2008 | B2 |
7320702 | Hammersmark et al. | Jan 2008 | B2 |
7323006 | Andreas et al. | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7351255 | Andreas | Apr 2008 | B2 |
7402168 | Sanderson et al. | Jul 2008 | B2 |
7534449 | Saltzman et al. | May 2009 | B2 |
7699886 | Sugimoto | Apr 2010 | B2 |
7824439 | Toyokawa | Nov 2010 | B2 |
7892273 | George et al. | Feb 2011 | B2 |
7918881 | Andreas et al. | Apr 2011 | B2 |
7938851 | Olson et al. | May 2011 | B2 |
7993388 | Lee et al. | Aug 2011 | B2 |
8070794 | Issenmann | Dec 2011 | B2 |
8157851 | Andreas | Apr 2012 | B2 |
8282680 | Kao et al. | Oct 2012 | B2 |
8317850 | Kusleika | Nov 2012 | B2 |
20010001824 | Wu | May 2001 | A1 |
20010020154 | Bigus et al. | Sep 2001 | A1 |
20010020173 | Klumb et al. | Sep 2001 | A1 |
20010020181 | Layne | Sep 2001 | A1 |
20010035902 | Iddan et al. | Nov 2001 | A1 |
20010044595 | Reydel et al. | Nov 2001 | A1 |
20010044632 | Daniel et al. | Nov 2001 | A1 |
20010049547 | Moore | Dec 2001 | A1 |
20010049549 | Boylan et al. | Dec 2001 | A1 |
20020007212 | Brown et al. | Jan 2002 | A1 |
20020032457 | Sirhan et al. | Mar 2002 | A1 |
20020035395 | Sugimoto | Mar 2002 | A1 |
20020037358 | Barry et al. | Mar 2002 | A1 |
20020045914 | Roberts et al. | Apr 2002 | A1 |
20020052642 | Cox et al. | May 2002 | A1 |
20020087186 | Shelso | Jul 2002 | A1 |
20020091439 | Baker et al. | Jul 2002 | A1 |
20020092536 | LaFontaine et al. | Jul 2002 | A1 |
20020107560 | Richter | Aug 2002 | A1 |
20020111671 | Stenzel | Aug 2002 | A1 |
20020123786 | Gittings et al. | Sep 2002 | A1 |
20020123792 | Burgermeister | Sep 2002 | A1 |
20020128706 | Osypka | Sep 2002 | A1 |
20020138132 | Brown | Sep 2002 | A1 |
20020151924 | Shiber | Oct 2002 | A1 |
20020151955 | Tran et al. | Oct 2002 | A1 |
20020156496 | Chermoni | Oct 2002 | A1 |
20020165599 | Nasralla | Nov 2002 | A1 |
20020168317 | Daighighian et al. | Nov 2002 | A1 |
20020177890 | Lenker | Nov 2002 | A1 |
20020183763 | Callol et al. | Dec 2002 | A1 |
20020188343 | Mathis | Dec 2002 | A1 |
20020188347 | Mathis | Dec 2002 | A1 |
20020193873 | Brucker et al. | Dec 2002 | A1 |
20030013266 | Fukuda et al. | Jan 2003 | A1 |
20030045923 | Bashiri et al. | Mar 2003 | A1 |
20030093143 | Zhao et al. | May 2003 | A1 |
20030097169 | Brucker et al. | May 2003 | A1 |
20030105511 | Welsh et al. | Jun 2003 | A1 |
20030114912 | Sequin et al. | Jun 2003 | A1 |
20030114919 | McQuiston et al. | Jun 2003 | A1 |
20030114922 | Iwasaka et al. | Jun 2003 | A1 |
20030125791 | Sequin et al. | Jul 2003 | A1 |
20030125800 | Shulze et al. | Jul 2003 | A1 |
20030125802 | Callol et al. | Jul 2003 | A1 |
20030135259 | Simso | Jul 2003 | A1 |
20030135266 | Chew et al. | Jul 2003 | A1 |
20030139796 | Sequin et al. | Jul 2003 | A1 |
20030139797 | Johnson et al. | Jul 2003 | A1 |
20030139798 | Brown et al. | Jul 2003 | A1 |
20030163085 | Tanner et al. | Aug 2003 | A1 |
20030163155 | Haverkost et al. | Aug 2003 | A1 |
20030176909 | Kusleika | Sep 2003 | A1 |
20030191516 | Weldon et al. | Oct 2003 | A1 |
20030195609 | Berenstein | Oct 2003 | A1 |
20030199821 | Gerdts et al. | Oct 2003 | A1 |
20030204238 | Tedeschi | Oct 2003 | A1 |
20030208223 | Kleiner | Nov 2003 | A1 |
20030212447 | Euteneuer | Nov 2003 | A1 |
20030225446 | Hartley | Dec 2003 | A1 |
20040015224 | Armstrong et al. | Jan 2004 | A1 |
20040024450 | Shulze et al. | Feb 2004 | A1 |
20040030380 | Shulze et al. | Feb 2004 | A1 |
20040044395 | Nelson | Mar 2004 | A1 |
20040073290 | Chouinard | Apr 2004 | A1 |
20040087965 | Levine et al. | May 2004 | A1 |
20040088044 | Brown et al. | May 2004 | A1 |
20040093061 | Acosta et al. | May 2004 | A1 |
20040093067 | Israel | May 2004 | A1 |
20040093077 | White et al. | May 2004 | A1 |
20040098081 | Landreville et al. | May 2004 | A1 |
20040106979 | Goicoechea | Jun 2004 | A1 |
20040111145 | Serino et al. | Jun 2004 | A1 |
20040117008 | Wnendt et al. | Jun 2004 | A1 |
20040138737 | Davidson et al. | Jul 2004 | A1 |
20040143322 | Litvack et al. | Jul 2004 | A1 |
20040176832 | Hartley et al. | Sep 2004 | A1 |
20040181239 | Dorn et al. | Sep 2004 | A1 |
20040186551 | Kao et al. | Sep 2004 | A1 |
20040193245 | Deem et al. | Sep 2004 | A1 |
20040215165 | Coyle et al. | Oct 2004 | A1 |
20040215312 | Andreas et al. | Oct 2004 | A1 |
20040215331 | Chew et al. | Oct 2004 | A1 |
20040230285 | Gifford, III et al. | Nov 2004 | A1 |
20040243217 | Andersen et al. | Dec 2004 | A1 |
20040249434 | Andreas et al. | Dec 2004 | A1 |
20040249435 | Andreas et al. | Dec 2004 | A1 |
20040249439 | Richter et al. | Dec 2004 | A1 |
20050004657 | Burgermeister | Jan 2005 | A1 |
20050010276 | Acosta et al. | Jan 2005 | A1 |
20050038494 | Eidenschink | Feb 2005 | A1 |
20050038505 | Shulze et al. | Feb 2005 | A1 |
20050049673 | Andreas et al. | Mar 2005 | A1 |
20050055077 | Marco et al. | Mar 2005 | A1 |
20050075716 | Yan | Apr 2005 | A1 |
20050080474 | Andreas et al. | Apr 2005 | A1 |
20050080475 | Andreas et al. | Apr 2005 | A1 |
20050085897 | Bonsignore | Apr 2005 | A1 |
20050090846 | Pedersen et al. | Apr 2005 | A1 |
20050101624 | Betts et al. | May 2005 | A1 |
20050123451 | Nomura | Jun 2005 | A1 |
20050125051 | Eidenschink et al. | Jun 2005 | A1 |
20050131008 | Betts et al. | Jun 2005 | A1 |
20050133164 | Fischer et al. | Jun 2005 | A1 |
20050137622 | Griffin | Jun 2005 | A1 |
20050143827 | Globerman et al. | Jun 2005 | A1 |
20050149159 | Andreas et al. | Jul 2005 | A1 |
20050149168 | Gregorich | Jul 2005 | A1 |
20050165378 | Heinrich et al. | Jul 2005 | A1 |
20050171568 | Duffy | Aug 2005 | A1 |
20050182477 | White | Aug 2005 | A1 |
20050209674 | Kutscher et al. | Sep 2005 | A1 |
20050209676 | Kusleika | Sep 2005 | A1 |
20050209680 | Gale et al. | Sep 2005 | A1 |
20050222671 | Schaeffer et al. | Oct 2005 | A1 |
20050228477 | Grainger et al. | Oct 2005 | A1 |
20050245637 | Hossainy et al. | Nov 2005 | A1 |
20050249777 | Michal et al. | Nov 2005 | A1 |
20050278011 | Peckham | Dec 2005 | A1 |
20050288763 | Andreas et al. | Dec 2005 | A1 |
20050288764 | Snow et al. | Dec 2005 | A1 |
20050288766 | Plain et al. | Dec 2005 | A1 |
20060069424 | Acosta et al. | Mar 2006 | A1 |
20060173529 | Blank | Aug 2006 | A1 |
20060177476 | Saffran | Aug 2006 | A1 |
20060200223 | Andreas et al. | Sep 2006 | A1 |
20060206190 | Chermoni | Sep 2006 | A1 |
20060229700 | Acosta et al. | Oct 2006 | A1 |
20060229706 | Shulze et al. | Oct 2006 | A1 |
20060271150 | Andreas et al. | Nov 2006 | A1 |
20060271151 | McGarry et al. | Nov 2006 | A1 |
20060282147 | Andreas et al. | Dec 2006 | A1 |
20060282149 | Kao | Dec 2006 | A1 |
20060282150 | Olson et al. | Dec 2006 | A1 |
20060287726 | Segal et al. | Dec 2006 | A1 |
20070010869 | Sano | Jan 2007 | A1 |
20070027521 | Andreas et al. | Feb 2007 | A1 |
20070043419 | Nikolchev et al. | Feb 2007 | A1 |
20070067012 | George et al. | Mar 2007 | A1 |
20070088368 | Acosta et al. | Apr 2007 | A1 |
20070088420 | Andreas et al. | Apr 2007 | A1 |
20070088422 | Chew et al. | Apr 2007 | A1 |
20070100423 | Acosta et al. | May 2007 | A1 |
20070100424 | Chew et al. | May 2007 | A1 |
20070106365 | Andreas et al. | May 2007 | A1 |
20070118202 | Chermoni | May 2007 | A1 |
20070118203 | Chermoni | May 2007 | A1 |
20070118204 | Chermoni | May 2007 | A1 |
20070129733 | Will et al. | Jun 2007 | A1 |
20070135906 | Badylak et al. | Jun 2007 | A1 |
20070156225 | George et al. | Jul 2007 | A1 |
20070156226 | Chew et al. | Jul 2007 | A1 |
20070179587 | Acosta et al. | Aug 2007 | A1 |
20070219612 | Andreas et al. | Sep 2007 | A1 |
20070219613 | Kao et al. | Sep 2007 | A1 |
20070265637 | Andreas et al. | Nov 2007 | A1 |
20070270936 | Andreas et al. | Nov 2007 | A1 |
20070276461 | Andreas et al. | Nov 2007 | A1 |
20070281117 | Kaplan et al. | Dec 2007 | A1 |
20070292518 | Ludwig | Dec 2007 | A1 |
20080004690 | Robaina | Jan 2008 | A1 |
20080046067 | Toyokawa | Feb 2008 | A1 |
20080071345 | Hammersmark et al. | Mar 2008 | A1 |
20080077229 | Andreas et al. | Mar 2008 | A1 |
20080091257 | Andreas et al. | Apr 2008 | A1 |
20080097299 | Andreas et al. | Apr 2008 | A1 |
20080097574 | Andreas et al. | Apr 2008 | A1 |
20080125850 | Andreas et al. | May 2008 | A1 |
20080132989 | Snow et al. | Jun 2008 | A1 |
20080147162 | Andreas et al. | Jun 2008 | A1 |
20080177369 | Will et al. | Jul 2008 | A1 |
20080199510 | Ruane et al. | Aug 2008 | A1 |
20080208311 | Kao et al. | Aug 2008 | A1 |
20080208318 | Kao et al. | Aug 2008 | A1 |
20080234795 | Snow et al. | Sep 2008 | A1 |
20080234798 | Chew et al. | Sep 2008 | A1 |
20080234799 | Acosta et al. | Sep 2008 | A1 |
20080243225 | Satasiya et al. | Oct 2008 | A1 |
20080249607 | Webster et al. | Oct 2008 | A1 |
20080269865 | Snow et al. | Oct 2008 | A1 |
20090076584 | Mao et al. | Mar 2009 | A1 |
20090105686 | Snow et al. | Apr 2009 | A1 |
20090149863 | Andreas et al. | Jun 2009 | A1 |
20090228088 | Lowe et al. | Sep 2009 | A1 |
20090248137 | Andersen et al. | Oct 2009 | A1 |
20090248140 | Gerberding | Oct 2009 | A1 |
20090264979 | Kao et al. | Oct 2009 | A1 |
20090276030 | Kusleika | Nov 2009 | A1 |
20100004729 | Chew et al. | Jan 2010 | A1 |
20110022148 | Ruane et al. | Jan 2011 | A1 |
20110093056 | Kaplan et al. | Apr 2011 | A1 |
20110125248 | George et al. | May 2011 | A1 |
20110152996 | Snow et al. | Jun 2011 | A1 |
20130060321 | Kao et al. | Mar 2013 | A1 |
20130211494 | Snow et al. | Aug 2013 | A1 |
20140018899 | Snow et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
1856280 | Nov 2006 | CN |
1 953 1659 | Mar 1997 | DE |
1 963 0469 | Jan 1998 | DE |
199 50 756 | Aug 2000 | DE |
101 03 000 | Aug 2002 | DE |
0 203 945 | Dec 1986 | EP |
0 274 129 | Jul 1988 | EP |
0 282 143 | Sep 1988 | EP |
0 364 787 | Apr 1990 | EP |
0 505 686 | Sep 1992 | EP |
0 533 960 | Mar 1993 | EP |
0 596 145 | May 1994 | EP |
0 696 447 | Feb 1996 | EP |
0 714 640 | Jun 1996 | EP |
0 797 963 | Jan 1997 | EP |
0 947 180 | Oct 1999 | EP |
1 254 644 | Nov 2002 | EP |
1 258 230 | Nov 2002 | EP |
1 266 638 | Dec 2002 | EP |
1 277 449 | Jan 2003 | EP |
1 290 987 | Mar 2003 | EP |
1 318 765 | Jun 2003 | EP |
1 470 834 | Oct 2004 | EP |
1 523 959 | Apr 2005 | EP |
1 523 960 | Apr 2005 | EP |
1 743 603 | Jan 2007 | EP |
2277875 | Nov 1994 | GB |
03-133446 | Jun 1991 | JP |
07-132148 | May 1995 | JP |
10-503663 | Apr 1998 | JP |
10-295823 | Nov 1998 | JP |
11-503056 | Mar 1999 | JP |
2935561 | Aug 1999 | JP |
2001-190687 | Jul 2001 | JP |
2002-538932 | Nov 2002 | JP |
2004-121343 | Apr 2004 | JP |
WO 9427667 | Dec 1994 | WO |
WO 9526695 | Oct 1995 | WO |
WO 9529647 | Nov 1995 | WO |
WO 9626689 | Sep 1996 | WO |
WO 9633677 | Oct 1996 | WO |
WO 9637167 | Nov 1996 | WO |
WO 9639077 | Dec 1996 | WO |
WO 9710778 | Mar 1997 | WO |
WO 9746174 | Dec 1997 | WO |
WO 9748351 | Dec 1997 | WO |
WO 9820810 | May 1998 | WO |
WO 9837833 | Sep 1998 | WO |
WO 9858600 | Dec 1998 | WO |
WO 9901087 | Jan 1999 | WO |
WO 9965421 | Dec 1999 | WO |
WO 0012832 | Mar 2000 | WO |
WO 0015151 | Mar 2000 | WO |
WO 0025841 | May 2000 | WO |
WO 0032136 | Jun 2000 | WO |
WO 0041649 | Jul 2000 | WO |
WO 0050116 | Aug 2000 | WO |
WO 0051525 | Sep 2000 | WO |
WO 0056237 | Sep 2000 | WO |
WO 0062708 | Oct 2000 | WO |
WO 0072780 | Dec 2000 | WO |
WO 0126707 | Apr 2001 | WO |
WO 0134063 | May 2001 | WO |
WO 0170297 | Sep 2001 | WO |
WO 0191918 | Dec 2001 | WO |
02060344 | Aug 2002 | WO |
02071975 | Sep 2002 | WO |
WO 02085253 | Oct 2002 | WO |
WO 02098326 | Dec 2002 | WO |
WO 03022178 | Mar 2003 | WO |
WO 03047651 | Jun 2003 | WO |
WO 03051425 | Jun 2003 | WO |
WO 03075797 | Sep 2003 | WO |
WO 2004017865 | Mar 2004 | WO |
WO 2004043299 | May 2004 | WO |
WO 2004043301 | May 2004 | WO |
WO 2004043510 | May 2004 | WO |
WO 2004052237 | Jun 2004 | WO |
WO 2004087006 | Oct 2004 | WO |
WO 2004091441 | Oct 2004 | WO |
WO 2005009295 | Feb 2005 | WO |
WO 2005013853 | Feb 2005 | WO |
WO 2005023153 | Mar 2005 | WO |
WO 2006036939 | Apr 2006 | WO |
WO 2006047520 | May 2006 | WO |
WO 2007035805 | Mar 2007 | WO |
WO 2007053187 | May 2007 | WO |
WO 2007146411 | Dec 2007 | WO |
WO 2008005111 | Jan 2008 | WO |
Entry |
---|
Colombo, “The Invatec Bifurcation Stent Solution” Bifurcation Stents: Novel Solutions, TCT 2003, Washington: Sep. 15-19, 2003, 24 pages total. |
Cooley et al., “Applications of Ink-Jet Printing Technology to BioMEMs and Microfluidic Systems,” Proceedings, SPIE Conference on Microfluidics and BioMEMs, (Oct. 2001). |
“Drug Delivery Stent With Holes Located on Neutral Axis” Research Disclosure, Kenneth Mason Publications, Hampshire, CB, No. 429, Jan. 2000, p. 13, XP00976354. |
Evans Analytical Group, “Functional Sites on Non-polymeric Materials: Gas Plasma Treatment and Surface Analysis,” http://www.eaglabs.com. |
Joung et al., “Estrogen Release from Metallic Stent Surface for the Prevention of Restenosis,” Journal of Controlled Release 92 (2003) pp. 83-91. |
Lefevre et al. “Approach to Coronary Bifurcation Stenting in 2003,” Euro PCR, (May 2003) 28 pages total. |
“Stent”. Definitions from Dictionary.com. Unabridged 9v1.01). Retrieved Sep. 22, 2006, from Dictionary.com website: <http://dictionary.reference.com/search?q=stent>. |
Stimpson et al., Parallel Production of Oligonucleotide Arrays Using Membranes and Reagent Jet Printing, BioTechniques 25:886-890 (Nov. 1998). |
Chu et al., “Preparation of Thermo-Responsive Core-Shell Microcapsules with a Porous Membrane and Poly(N-isopropylacrylamide) Gates,” J Membrane Sci, Oct. 15, 2001; 192(1-2):27-39. |
Tilley , “Biolimus A9-Eluting Stent Shows Promise,” Medscape Medical News, Oct. 5, 2004; retrieved from the internet: <http://www.medscape.com/viewarticle/490621>, 2 pages total. |
Weir et al., “Degradation of poly-L-lactide. Part 2: increased temperature accelerated degradation,” Proc Inst Mech Eng H. 2004;218(5):321-30. |
U.S. Appl. No. 60/336,607, filed Dec. 3, 2001, first named inventor: Bernard Andreas. |
U.S. Appl. No. 60/336,767, filed Dec. 3, 2001, first named inventor: Bernard Andreas. |
U.S. Appl. No. 60/336,967, filed Dec. 3, 2001, first named inventor: Sunmi Chew. |
U.S. Appl. No. 60/364,389, filed Mar. 13, 2002, first named inventor: Sunmi Chew. |
U.S. Appl. No. 60/440,839, filed Jan. 17, 2003, first named inventor: Bernard Andreas. |
U.S. Appl. No. 60/561,041, filed Apr. 9, 2004, first named inventor: Jeffry Grainger. |
U.S. Appl. No. 60/784,309, filed Mar. 20, 2006, first named inventor: Bernard Andreas. |
U.S. Appl. No. 60/810,522, filed Jun. 2, 2006, first named inventor: Stephen Kaplan. |
U.S. Appl. No. 60/890,703, filed Feb. 20, 2007, first named inventor: Patrick Ruane. |
Supplementary European Search Report of EP Patent Application No. 07758831, dated Dec. 14, 2009. |
The State Intellectual Property Office of the Republic of China, Application No. 200880100150.2, First Office Action date of dispatch Oct. 26, 2011, 11 pages. |
The State Intellectual Property Office of the People's Republic of China, Application No. 200880100150.2, Second Office Action date of dispatch Jul. 25, 2012, 23 pages. |
The State Intellectual Property Office of the People's Republic of China, 200880100150.2, Third Office Action date of dispatch Apr. 12, 2013, 26 pages. |
International Search Report and Written Opinion of PCT Application No. PCT/US2008/061041, mailed Nov. 7, 2008, 13 pages total. |
Office Action of Japanese Patent Application No. 2006-547139, mailed Jun. 15, 2010, 5 pages total. (English translation included). |
Supplementary European Search Report of EP Patent Application No. 02804509, dated Dec. 13, 2006, 2 pages total. |
Supplementary European Search Report of EP Patent Application No. 04749567, dated Sep. 11, 2006, 2 pages total. |
International Search Report and Written Opinion of PCT Application No. PCT/US2007/086864, mailed May 13, 2008, 13 pages total. |
Number | Date | Country | |
---|---|---|---|
20090234428 A1 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10957079 | Sep 2004 | US |
Child | 12471064 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10879949 | Jun 2004 | US |
Child | 10957079 | US |