Diabetes management system

Information

  • Patent Grant
  • 7972267
  • Patent Number
    7,972,267
  • Date Filed
    Thursday, October 25, 2007
    17 years ago
  • Date Issued
    Tuesday, July 5, 2011
    13 years ago
Abstract
A method of diabetes management, comprising (a) providing a glucose meter in communication with a portable microprocessor-based unit; (b) transmitting blood glucose level data into the hand-held microprocessor-based unit from the blood glucose meter; (c) running a program of instructions on the portable microprocessor-based unit or the glucose meter or both; (d) inputting data based upon the blood glucose level data as input data for the program of instructions; and (e) providing a signal to inject insulin when the blood glucose level data indicates.
Description
FIELD OF THE INVENTION

The present invention relates to the field of medical treatment, and in particular to the treatment of medical conditions in human patients.


BACKGROUND OF THE INVENTION

One of the biggest problems many healthcare providers face is their patients' lack of knowledge. Patients may lack knowledge on basic preventative measures, such as why they should exercise, eat right, and not smoke. Patients may also lack knowledge on conditions or diseases they do have, such as how to measure their blood glucose levels if they are diabetic. This lack of knowledge is a problem for healthcare providers because patients who do not know how to take care of themselves are ill more frequently. Thus, they must visit their doctors more often, sometimes incurring additional costs for hospital stays or laboratory tests. This results in greater fees for the patient, his or her insurance company, and often the taxpayers.


An example of this problem is seen in some diabetes patients. Diabetic patients must regularly receive insulin shots and adhere to a specific diet in order to control their blood glucose levels. Unfortunately, some diabetic patients do not understand all the reasons why they should have regular insulin shots or why they should or should not eat certain foods. In addition, many diabetic patients are unaware of the health consequences should they not follow their treatment plan. As a result, such patients are sicker and require more healthcare than those patients who understand all aspects of their diseases. Sicker patients require more healthcare, which is expensive and time-consuming for healthcare professionals, insurance companies, and the patients themselves.


One way this problem is handled is by increasing the amount of education patients receive about their lifestyle choices and/or their diseases. When patients know what they need to do to stay healthy, they are less inclined to visit their doctors as frequently. In addition, if patients understand the health problems that will result from not taking care of themselves, they will be more likely to follow their prescribed treatments.


Educational forms range from pamphlets in a doctor's office to radio announcements to television shows. Paper-based educational material is cheap, easy to produce, and easy to distribute. Unfortunately, pamphlets or articles are limited to words and pictures and are usually quite boring, which makes it unlikely that patients will enjoy and remember reading them. Radio announcements and television shows are more lively and entertaining, but they are broadcast to the general public. Thus they cannot be customized to a particular patient.


Due to technological advances, patients can now be educated using CD-ROMs, the Internet, and multimedia processors. U.S. Pat. No. 5,307,263 by the present inventor discloses a modular, microprocessor-based health monitoring system. The hand-held unit has a display screen, a control button pad, interchangeable program cartridges, and sensors for monitoring a variety of healthcare data. The program cartridges include motivational and educational material related to use of the device, including step-by-step instructions. Acquired data may be transmitted to a data management unit via an interface cable, or to a clearing house via telephone lines. A program cartridge for monitoring glucose levels and a glucose sensor is disclosed for the purpose of caring for children with diabetes.


U.S. Pat. Nos. 5,597,307 and 5,624,265 by Redford and Stem describe an educational system and apparatus aimed at children which also uses a multimedia processor. This invention comprises a remote control located in a book or other printed publication. A child can read the book while watching the display generated by the multimedia processor, and then press the buttons in the remote control book to alter what he sees.


None of the above education systems allow an individual to automatically access assigned educational programs remotely. The inventions described above provide general educational programs which are not tailored to any one individual. Neither system provides confirmation that an individual has completed the educational program. Neither system allows a healthcare provider nor teacher to easily custom-design which educational programs a patient or individual is to view. Finally, neither system provides a patient or individual access to an unlimited number of educational programs.


Medical conditions associated with a patient's behavior pattern or well-being are typically evaluated and treated in therapy sessions conducted by a physician or a health care specialist. Depending on the ailment, a preliminary picture of the patient's condition may be available to the specialist in the form of answers to questionnaires or results of a battery of tests. This applies to psychological conditions such as schizophrenia, depression, hyperactivity, phobias, panic attacks, anxiety, overeating, and other psychological disorders. In fact, the number of diagnostic tests presently available for classifying these conditions is vast. Such tests rely on the patient to perform a self-examination and to respond candidly to a series of personal questions. Since most tests differ in their basic scientific assumptions the results obtained are not standardized and can not often be used to make meaningful case comparisons.


Consequently, the above-mentioned psychological conditions are fully diagnosed and treated in therapy sessions. In these settings the specialist can better evaluate the state of his patient and design appropriate, individualized treatment. Unfortunately, because of the amount of time required to do this, diagnosis and treatment are very expensive.


The actual therapeutic changes in the patient occur outside of therapy as the patient applies cognitive and behavioral strategies learned in therapy to problem encountered in day-to-day situations. Progress is predicated to a large extent on patient cooperation, discipline, and self-management. Diaries are employed to ensure patient compliance. Still, in many instances, lack of compliance to long-term therapy regimes presents a major obstacle to successful treatment. Children are a particularly difficult group of patients in this respect. Frequently, they lack the understanding, maturity, and perseverance required to successfully pursue a treatment plan.


In fact, it has recently been confirmed that in the case of anxiety the best treatment involves teaching the patients new ways of responding to old stimuli. Drugs may be used to blunt the physical aspects, but there is no data to confirm the positive effects of their long-term use. Meanwhile, treatment of depressions requires attentive counseling and listening to the patient. The same applies to treatment of personality disorders, obsessive-compulsive disorders, hysteria, and paranoia. Unfortunately, cost of treatment and compliance with suggestions made by the therapist are major problems, as pointed out above.


In difficult cases observation and comparison with criteria compiled in the Diagnostic and Statistical Manual of Mental Disorders—the standard classification text of the American Psychiatric Association—are the only recognized treatment alternatives.


There is also a wide variety of medical conditions, other than the above-mentioned psychological disorders, requiring extensive self-help and self-treatment by the patient. These conditions include addictions, compulsive behaviors, and substance abuse. Most common examples are smoking, gambling, and alcoholism. At the present time treatment for these medical conditions involves counseling, distraction techniques, and chemical replacement therapy. Ultimately, however, all of these methods depend on the cooperation of the patient and a large dose of self-motivation. This is especially important when the patient is in his or her own surroundings where the objects of their addiction or compulsion are easily accessible.


Unfortunately, compliance with medical advice is notoriously poor, and gentle persistence may be necessary. Some physicians recommend that the entire family or other group of significant personal contracts in the patient's life should be involved with the patient's consent. This, of course, presents major problems and is a costly treatment method.


Some attempts have been made at using computers to diagnose and educate patients about their medical condition. Typically, these attempts have produced questionnaires which can be filled out on a computer, or educational programs telling the patient more about his or her medical condition. Unfortunately, these projects stop short of being sufficiently adapted to patient needs to help with treatment or therapy. In fact, health care professionals maintain that computers can never replace the sense of caring, of relatedness, which is the vehicle in which most therapy takes place.


OBJECTS AND ADVANTAGES OF THE INVENTION

Objects of the invention are to enable treatment in the patient's own, private environment, provide a treatment method to which the patient can resort as the need arises, and ensure higher treatment compliance for all patients, and in particular children.


These and other objects and advantages will become more apparent after consideration of the ensuing description and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of a remote education system according to a preferred embodiment of the present invention;



FIG. 2 is a block diagram showing the components of the remote education system and how they are connected, according to FIG. 1;



FIG. 3 is a sample program assignment screen as displayed on the remote interface;



FIG. 4 is a sample report screen as displayed on the remote interface;



FIG. 5 is a sample interactive educational program as displayed by the multimedia processor;



FIG. 6A is a flow chart illustrating the steps executed by the file server of the present invention as shown in FIG. 1;



FIG. 6B is a continuation of the flow chart of FIG. 6A;



FIG. 7 is a flow chart illustrating the steps executed by the multimedia processor of the present invention as shown in FIG. 1;



FIG. 8 is a block diagram of an autonomous computer system employed in the method according to the invention;



FIG. 9 is a block diagram of a computer network used in the method according to the invention;



FIG. 10 is a block diagram of a system employing a hand-held: microprocessor unit for implementing the method of the invention;



FIG. 11 is a flow chart illustrating how to select an appropriate video game treatment for some common medical conditions;



FIG. 12 is an exemplary screen of a video game for treating growth disorders according to the invention;



FIG. 13 is another screen of the video game of FIG. 12;



FIG. 14 is an exemplary screen of a video game for diabetes self-treatment according to the invention;



FIG. 15 is another exemplary screen for the video game FIG. 14;



FIG. 16 is still another exemplary screen for the video game of FIG. 14;



FIG. 17 is a screen indicating the blood glucose measurement results compiled for the video game of FIG. 14;



FIG. 18A is a general flowchart of an Addiction/Distraction Video Game;



FIG. 18B is a detailed flowchart of the main game loop of the Addiction/Distraction Video Game of FIG. 18A; and



FIGS. 19-20 provide further illustrative flow charts.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The preferred embodiment of the system is shown in FIG. 1. The system 110 comprises a file server 112, which is connected by communication links 138, 130, and 140 to a remote interface 114, a database 148 containing educational programs, and a multimedia processor 124. File server 112 is preferably a world wide web server, remote interface 114 is preferably a web page, and communication links 138 and 130 are preferably the Internet. Remote interface 114 has a display 116 and a keyboard 120, which an administrator can use to assign an educational program to an individual.


Remote interface 114 also contains or is connected to a memory card writer 118. Memory card writer 118 is used to record the individual's identification code and the location of file server 112 on a memory card 122. Preferably, the location of file server 112 is in the form of a uniform resource locator, or URL.


Communication link 140 from file server 112 to multimedia processor 124 is preferably the Internet. However, file server 112 and multimedia processor 124 can also contact each other via wireless communication networks, cellular networks, telephone networks, or any other suitable network. Multimedia processor 124 is also connected by communication link 132 to a display 128, which is used to show educational programs to the individual. Communication link 132 can be any suitable connection means. Display 128 is a standard audiovisual display, such as a television.


Multimedia processor 124 contains or is connected to a memory card reader 126. When memory card 122 is placed in memory card reader 126, the assignment information is sent to file server 112, which retrieves the assigned educational program from database 148. The educational program content is then sent through communication link 140 to multimedia processor 124 and shown on display 128. In addition, microprocessor 124 can also comprise expansion ports to support additional user interfaces and devices, such, as keyboards and trackballs, as well as add-on circuits for enhanced sound, video, or processing performance (not shown).


As shown in FIG. 3, input device 134 comprising numerous momentary contact push buttons 136 is used by the individual to control and respond to the educational program. Push buttons 136 represent control functions, such as “on” and “off”, as well as numbers, letters, or various commands, such as “yes” and “no”. Alternatively, push buttons 136 may be replaced by switches, keys, a touch sensitive display screen, or any other data input device. Input device 134 is a standard wireless communication means which sends command signals to multimedia processor 124 to be processed and executed. However, any communication means which allows input device 134 to connect with multimedia processor 124.


For clarity of illustration, only one database and only one multimedia processor are shown in FIG. 1. It is to be understood that system 110 may include any number of databases for storing any number of educational programs, and any number of multimedia processors for use by any number of individuals.



FIG. 2 shows a detailed block diagram of the preferred embodiment of the invention illustrated in FIG. 1. Server 112 includes a general software application 142 which is used create a database 144 and a patient table 146. Software application 142 is also capable of programming file server 112 to carry out standard commands such as receiving, saving, and transmitting information. Database 144 contains the educational programs 148. Alternatively, database 144 can contain pointers to educational programs 148 which are located in remote databases. The advantage of the pointers is that they allow the healthcare provider to assign any number of educational programs 148, as long as educational programs 148 can be transmitted to multimedia processor 124 and shown on display 28. Thus suitable forms of educational programs 148 include photos, videos, animation, static web pages, interactive web pages, etc. Patient table 146, which is stored in the memory of file server 112, lists the patients, their identification codes, and educational programs 148 which have been assigned to them.


Patient table 146 is generated by information entered into the assignment screen 150 of remote interface 114. Assignment screen 150, which is illustrated in FIG. 3, lists available educational programs 148, each with a corresponding check box 166, and patients, also each with a corresponding check box 168. The administrator brings up assignment screen 150 on display 116 of remote interface 114. She selects a check box 168 for a patient and then selects a check box 166 corresponding to educational program 148 to be assigned to the patient. More than one educational program 148 can be assigned to each patient. In addition, more than one patient can be assigned the same educational program 148. The administrator then selects the ASSIGN PROGRAM button 170, which stores the assignment in patient table 146. Assignment screen 150 also includes a DELETE PROGRAM button 172, which allows the administrator to erase the assignment.


New listings of patients and educational programs 148 can easily be created by the administrator by clicking on the ADD NEW PATIENT button 174 or the ADD NEW PROGRAM button 176. When these buttons are selected, a new field is added to the patient or program categories. The administrator then types in the name of the new patient or the name of the new educational program 148, and saves the addition by clicking on the SAVE NEW LISTING button 178. The new listings are then saved in patient table 146.


In the preferred embodiment, remote interface 114 is a web page. Thus, using keyboard 120, as shown in FIG. 1, the administrator can create customized educational programs 148 in the form of static or interactive web pages for patients. The administrator creates the web page using a scripting language such as HTML or Java, and then stores it on database 144. These web pages can be accessed by multimedia processor 124 in the same manner as the above mentioned educational programs 148.


Referring to FIG. 2 again, remote interface 114 also comprises a report screen 152 which is shown on display 116. Report screen 152, as illustrated in FIG. 4, tells the administrator when the patient has completed watching assigned educational program 148 and/or a program score. Specific techniques for writing report generator program to display data in this manner are well known in the art.


The program score is generally determined by evaluating the patient's responses to an interactive educational program, such as an interactive web page. FIG. 5 shows a sample educational program 148 which includes questions for the patient to answer using input device 134.


The remote education system also includes a memory card writer 118 connected to remote interface 114. Memory card writer is an apparatus which can encode information onto a magnetic strip or circuit. The process of storing information on a magnetic strip or circuit is well known. Memory card 122 produced contains the patient's identification code 156 and the file server address 154.


As shown in FIG. 2, multimedia processor 124 also comprises a memory means 160, a central computing unit (CPU) 158, a modem 164, and audiovisual display 128. Memory card reader 126, memory means 160, modem 164, and audiovisual display 128 are all connected to CPU 158. Multimedia processor 124 connects to file server 112 using modem 164 and communication link 140, which is preferably a telephone cable. Multimedia processor 124 can be programmed to automatically dial out using modem 164 whenever memory card 122 is placed in memory card reader 126.


Memory card reader 126 comprises means of detecting and interpreting the information stored on memory card 122. In the preferred embodiment, memory card reader 126 is a magnetic strip reader. When the patient places memory card 122 in memory card reader 122, the information is sent to CPU 150 and then memory means 160. The information is then sent to file server 112 by way of modem 164.


Memory means 160 of multimedia processor 124 is also for storing program instructions on how to connect to file server 112 and how to transmit patient's identification code 156. In addition, memory means 160 receives and stores assigned educational programs 148 from file server 112. When the content of educational programs 148 are sent to multimedia processor 124 from file server 112, memory means translate the content into audiovisual signals to be displayed on display 128.



FIGS. 6A and 6B show a flowchart illustrating the steps carried out by server 112 in the preferred embodiment of the invention. In step 202, server 112 first asks if the administrator would like to create a new assignment. Creating a new assignment can mean adding a new patient to the patient list or assigning a new educational program 148 to a patient. If the administrator decides to create a new assignment, the information is stored in patent table 146, as shown in step 204. In step 206, the new assignment information consisting of the patient's identification code 156 and file server address 154 is also recorded on memory card 122 by memory card writer 118, and then given to the patient. If the administrator does not need to create a new assignment, she goes directly from step 202 to step 208.


After the patient returns home, he places memory card 122 in memory card reader 126 connected to multimedia processor 124. File server address 154 on memory card 122 allows multimedia processor 124 to locate and connect to file server 112 in step 208. Patient's identification code 156 is then sent over in step 210. In step 212, file server 112 then goes to patient table 146 and looks up educational program 148 assigned to patient. A pointer in database 144 then retrieves educational program 148. If educational program 148 is located in a remote database, it is sent through file server 112 to multimedia processor 124, as shown in step 214. Memory means 160 of multimedia processor 124 then interpret and translate the content of educational program 148 into audiovisual signals to be shown on display 128.


After the patient has watched educational program 148, completion data comprising the time and date or patient responses is sent from multimedia processor 124 to file server 112 in step 216. Step 218 scores the patient responses to determine a program score. Step 220 then records the completion data in patient table 146 of file server 112.


If the administrator wishes to view completion data of a particular patient, she can request a patient report, as shown in step 222. Step 222 can occur after the patient has watched and responded to educational program 148 in step 220, or at any time after step 208. File server 122 retrieves the patient's completion data from patient table 146, step 224, and then shows it in the form of report screen 152 on display 116 in step 226. Report screen 152 is illustrated in FIG. 4.



FIG. 7 is a flowchart outlining the steps involved in the processor program of multimedia processor 124 in the preferred embodiment of the invention. Processor program can be carried out by known software programs. The processor program begins when memory card 122 is placed in memory card reader 126, as shown in step 302. Memory card reader 126 reads patient's identification code 304 and file server address 156 from memory card 122 in step 304, and then sends the information to CPU 158. File server address 154 allows CPU 158 to connect to server 112 via modem 164 in step 306. Patient's identification code 156 is then transmitted to file server 112 in step 308. In step 310, CPU 158 receives the content of assigned educational program 148 via modem 164. The content is converted into audiovisual signals shown on display 128 in step 312. Patient response to educational program 148 is sent to CPU 158 by input device 134. CPU 158 then sends the patient response, along with other completion data, to file server 112. The processor program of multimedia processor 124 then ends.


Memory card reader 126 of multimedia processor 124 can also have a writing function similar to that of memory card writer 118 of remote interface 114. This feature allows the patient responses to educational program to be stored on memory card 122. The patient can then bring in memory card 122 to his healthcare provider or the administrator. Memory card writer 118 of remote interface 114 must also have reading capabilities. Memory card 122 is inserted in memory card writer/reader 118 and the patient responses are downloaded into remote interface 114. This feature can be used if the patient does not wish to transmit his responses over communication link 140.


The present invention allows a healthcare provider or administrator to assign a remote educational program to a patient. The patient has the luxury of watching and responding to the program in his own home at his convenience. The patient's response to the educational program is then transmitted to the file server and displayed for the administrator to view. Thus the administrator can monitor whether or not the patient has watched the educational program, and can also evaluate his responses to the program.


Appendix A shows one implementation of the present invention as it applies to working with a diabetes patient through MEDTV™ over the Internet. MEDTV™ is a trademark of Raya Systems, Inc. (Mountain View, Calif.).


Summary, Ramifications, and Scope


Although the above description contains many specificities, these should not be construed as limitations on the scope of the invention but merely as illustrations of some of the presently preferred embodiments. Many other embodiments of the invention are possible, as this invention can be used in any field where it is desirable to remotely educate an individual. For example, teachers can use it to assign lessons to their students, and employers can use it to provide additional job training for their employees.


Another embodiment of the present invention allows companies to promote their products. Preprogrammed memory cards can be placed with a company's products. When the consumer buys a product, he also receives the preprogrammed memory card, which contains the product identification code and the address of the company's consumer-product file server. When the consumer places the memory card in the memory card reader of his multimedia processor, the multimedia processor automatically connects to the company's file server. The file server contains a consumer-product table which stores a list of all the company's products with corresponding pointers to relevant educational programs or advertisements. For example, a sunblock product would have a pointer to a short video on basic sun safety, as well as an advertisement for all sunblock products made by that company.


When the file server receives the product identification code from the multimedia processor, it retrieves the relevant educational program or advertisement and sends it back to the consumer's multimedia processor. The consumer can then watch the program or advertisement on the display.


Considering all the possibilities of the remote education system, the scope of the invention should be determined not by the examples given, but by the appended claims and their legal equivalents.



FIG. 8 shows a block diagram representing a typical embodiment of a computer or microprocessor-based unit 410 capable of supporting video games for patient treatment. At the heart of unit 410 is a microprocessor 412. In addition to operations necessary to run unit 410, microprocessor 412 can process video data. Of course, in complicated systems the tasks of microprocessor 412 can be performed by a number of microprocessors. In the most preferred embodiment microprocessor 412 is a SUPER NINTENDO™ microprocessor.


A display unit or screen 414 is connected to microprocessor 412. The resolution and size of display screen 414 are sufficient to project visual images generated by video games. In a preferred embodiment screen 414 is a high-resolution video monitor or television screen. A speaker 415 for producing sounds associated with video games is hooked up to microprocessor 412 as well.


A patient input device 416 is also connected to microprocessor 412. Input device 416 can be a keyboard, joystick, mouse, button, trigger, light-pen, or the like, or combinations of these devices. A suitable choice of input device 416 is made based on the video game displayed on display screen 414 and the medical conditions of the human patient. The selected input device 416 will thus permit the patient to actively participate in the video game.


Additionally, microprocessor-based unit 410 has a memory 418, which is in communication with microprocessor 412. Memory 418 contains data required by microprocessor 412 to operate unit 410. While in the exemplary embodiment illustrated in FIG. 8 memory 418 consists of a single unit, configurations with many memory units of different types are possible.


Unit 410 is also connected to a digital storage medium 420 and appropriate data reading devices (not shown). Digital storage medium 420 can be a hard-disk, a floppy disk, a compact disk (CD), a cartridge, a network storage unit, or any other convenient medium capable of storing electronic instructions for running a video game on unit 410. In the preferred embodiment storage medium 420 is a high-storage-capacity CD disk. The ability to hold a large amount of data is a prerequisite for storing large video game programs.



FIG. 9 is a block diagram of a computer network for practicing the video game treatment method. Individual microprocessor-based units 410 on the computer network are substantially the same as in FIG. 8, therefore the same reference numbers are used for corresponding parts. Instead of digital storage medium 420, units 410 in FIG. 9 have a network interface 422 equipped with a network link 424. Link 424 connects microprocessor 412 to network 426 via interface 422. In a preferred embodiment network 426 is a separate hospital network adapted to patient use.


On the hospital side network 426 is connected to a hospital network server 428. Server 428 is capable of exchanging data, in particular video game data, with each unit 410 connected to network 426. Server 428 is also connected to computers used by monitoring personnel and physicians at the hospital (not shown).


The block diagram of FIG. 10 shows a particularly convenient embodiment for implementing the diagnosis and treatment method. A hand-held microprocessor unit 430 is equipped with a video display 434 and a number of input switches or keys 436a, 436b, 436c, 436d, and 436e, which are mounted on a housing 432. A set of components including a microprocessor, memory circuits, and circuitry that interfaces keys 436a, 436b, 436c, 436d, and 436e with the microprocessor is installed inside housing 430 but not shown in FIG. 10. Stored in the memory of programmable hand-held microprocessor unit 430 is a set of electronically encoded program instructions. These instructions establish a data protocol that allows hand-held microprocessor unit 430 to perform digital data signal processing and generate desired data or graphics for display on display unit 434 when a program cartridge 438 is inserted into a slot or other receptacle in housing 432. That is, cartridge 438 of FIG. 10 includes read-only memory data encoding the instructions for playing a particular video game.


In the most preferred embodiment hand-held microprocessor unit 430 is the compact game system manufactured by Nintendo of America, Inc. under the trademark “GAME BOY”. This device is particularly simple. Furthermore, unit 430 is hooked up to a remote communication unit 442 via a connection cable 440. Preferably, for reasons of convenience, unit 442 can be a modem capable of communicating over telephone lines, or a radio-frequency transceiver capable of wireless sending and receiving of information. Of course, any other common telecommunications devices can also be used. It is assumed in the preferred embodiment shown in FIG. 10 that unit 442 is a high-speed modem.


A communication line 444, in this event a telephone line, connects unit 442 to a data clearing house 446 and hospital computer 452. This set-up establishes an efficient data pathway from hand-held microprocessor unit 430 to clearing house 446 and hospital computer 452. Clearing house 446 is capable of classifying data and sending appropriate messages concerning the patient's medical condition to a health care professional or physician. In the preferred embodiment clearing house 446 is connected by transmission line to a facsimile machine 450 standing in the office of a physician or health care professional.


A physical parameter measuring device 454, e.g., a glucose blood meter or a respiratory flow meter is also connected to hand-held unit 430. Device 454 is designed for patient self-monitoring while playing a video game. For this purpose device 454 is capable of downloading measurement data into hand-held unit 430. Appropriate choice of device 454 is made by the physician depending on the other hardware and intended video game for patient treatment.


Operation—FIGS. 8 to 17


Before using microprocessor-based unit 410 shown in FIG. 8, a patient will first visit a physician or health care professional to evaluate his or her medical condition. The physician will diagnose the condition and choose the proper treatment based on patient needs. The flow chart in FIG. 11 shows the psychological strategies which the physician can select for treating depression, attention deficit, addiction, and diabetes. The psychological strategies listed include self-awareness training, self-efficacy training, competition, communication, and distraction. Of course, other well-known strategies such as positive reinforcement, negative reinforcement, role-playing, etc. can be employed as well. In addition to these, the psychological treatment strategy can include counseling methods and self-care instructions. Moreover, the treatment strategies can be combined as shown For example, as shown in FIG. 11, overcoming depression is best ensured by a therapy which joins self-awareness training with learning self-efficacy to regain control over one's life. In the particular case highlighted with two arrows the medical condition to be treated is an addiction, e.g., smoking or alcoholism, and the appropriate psychological strategy for treating this condition is distraction.


Once the psychological treatment strategy has been selected, the physician will choose an appropriate interactive video game program comprising this strategy. Examples of video games based on the most common psychological strategies will be given in the specific examples to follow. Meanwhile, the program itself consists of electronically encoded instructions in data storage medium 420 (FIG. 8). The video game program is loaded from this medium 420 into microprocessor 412 and memory 418 of unit 410. In the preferred embodiment this is accomplished most conveniently by a CD disk drive (not shown) since digital storage medium 420 is a CD disk. The patient receives unit 410 prepared in this way and is instructed by the physician how and when to play the video game. Of course, the physician may also load several video games at once and instruct the patient when to play each one. Depending on the type of video game and the patient's capabilities, the physician will also determine what patient input device 416 should be employed in playing the game.


The patient takes home unit 410 prepared in this manner, and follows the prescribed treatment by playing the video game. Once in operation, unit 410 displays the graphical video game on display screen 414 and receives input through patient input device 416. The beneficial effect of playing the game is thus available to the patient at any time in his own environment.


The process described above can also be accomplished with the computer network shown in FIG. 9. Here, appropriate treatment programs can be loaded directly into unit 410 used by the patient while he is at home. To do this the physician selects the appropriate video game, determines its destination address, i.e., unit 410, and places the game on hospital network server 428. The designated unit 410 then retrieves the video game via network 426 and loads it into microprocessor 412 and memory 418. This is done with the aid of network link 424 and interface 422.


A particularly convenient method for delivering a video game to the patient is shown in FIG. 10. Hand-held microprocessor unit 430 receives video games directly from hospital computer 452. The video game is transmitted through communication line 444 and received by remote communication unit 442. Unit 442 downloads the game directly into hand-held unit 430 via connection cable 440.


Hand-held unit 430 in FIG. 10 also communicates with clearing house 446 using communication line 444. Thus, the patient's progress in playing the video game can be directly monitored, e.g., by checking the video game scores. This information is screened, classified, and sorted by clearing house 446. Then an abstract or report is transmitted through transmission line 448 to facsimile machine 450 which can be conveniently located in the physician's office.


Unit 430 shown in FIG. 10 can also be used by the patient to check his medical condition. To do this the patient follows instructions embedded in the video game which tell him to connect to unit 430 his measuring device 454, e.g., blood glucose meter in the case of a patient with diabetes. Of course, unit 430 and device 454 may also be hooked up permanently by the physician. Then the video game instructions tell the patient that to continue playing he needs to perform a regular self-measurement using device 454.


For a patient with diabetes this involves checking his blood glucose level by drawing a small blood sample into device 454. The individual steps for doing this are not a part of the invention. The measurement data is then downloaded into hand-held unit 430 to be used as input for the interactive video game session. Exemplary video game using this technique to collect data is described in example 4 below. Meanwhile, the blood glucose data is also passed through cable 440 to remote communication unit 442. From there the data follows the same path as described above for the video game score, and can be examined by the physician in the hospital.


The specific examples below describe exemplary microprocessor-based, interactive video games used for treating various medical conditions in human patients.


EXAMPLE 1
Smoking

The patient has a severe case of nicotine addiction. The physician determines, according to the flow chart in FIG. 11, that distraction is the best psychological strategy to induce the patient to quit smoking. Therefore, the physician prescribes playing the Quit Game, a video game containing a behavioral program based on distraction. This game contains graphical game characters engaging in various competitive activities upon proper input from the user. The smoker plays the game is played whenever he or she feels the urge to smoke. An exemplary game to provide such engaging distraction is shown in the flowchart illustrated in FIGS. 18A and 18B. In this particular embodiment the game distracts the player with falling bricks which have to be arranged in rows. During the game the main characters communicate to the patient instructions and simple strategies to quit smoking immediately and advise the user to take this approach, all within the context of the entertaining video game.


Alternatively, the game provides a timer and timeline for gradual reduction approaches to smoking cessation. Included among these programs are instructions for using nicotine patches. Built in notification will serve to remind smokers to shift to a lower dose patch. Once the smoker has quit, the video game will provide a coping/relapse prevention model by using distraction methods during periods of smoking urges.


A pilot study using the NINTENDO GAME BOY® as a tool to aid smoking cessation was highly successful. In the pilot project, seven smokers were give a Game Boy portable loaded with the Quit Game and instructed to use it any time they felt the urge to smoke. Six of the seven smokers successfully quit and were very enthusiastic about this approach.


An analogous video game strategy is followed in dealing with other substance abuse conditions, alcoholism, and obsessive compulsive disorders.


EXAMPLE 2
Growth Disorder

The physician diagnoses the patient with a growth disorder, such as Turner's Syndrome or a similar condition, requiring growth hormone treatment and a psychological treatment strategy for helping the patient cope with his or her condition. By following a selection process similar to the one indicated in FIG. 18A-18B, the physician prescribes a video game combining self-awareness training, self-efficacy, role-playing, counseling and competition. The flowchart of the Growth Game is provided in FIG. 19.


In the video game the graphical game character, Packy, is a young elephant who, like the patient, is on growth hormone therapy. The video game consists of three pans, each associated with a particular aspect of the treatment. In the first part Packy encounters obstacles which he must surmount, in the second he has to learn about growth hormone injections, and in the third one he has to keep a personal growth diary.


In the first part Packy learns about things that grow, from the smallest things in the world to the largest ones. In each level of this part Packy can pick up icons of OM (representing a growth hormone shot) for a boost of energy. When he gets this boost, he will grow to a larger size until the energy wears or he gets hit by one of his opponents. Every time Packy meets someone who challenges him he must push them away by pressing a button to lower his head and walking into them, or squirt them by pressing another button. The small antagonists push and squirt away easily, but the large ones require some strategy such as combining pushing and squirting. This stage is depicted in FIG. 12. In each level Packy will occasionally find obstacles that require a growth shot to get past. He will also occasionally encounter a guardian to the pathway that asks him questions from the information learned in the other two parts, i.e., the growth hormone injection instructions and the personal growth diary.


In another level of part one Packy has a dream in which he explores the world as a tiny creature. This scenario is illustrated in FIG. 13. He finds that he is very small himself, while all the surrounding items are very large. As he works his way to the end of this level he will encounter all types of animals and insects that are very small. This level will give Packy a feeling for what it is like to be really small. In the transition to the next level, Packy will wake up and see that he is still the same size, and grateful that he is not so small.


In the final level, Packy finds himself very large. He will be with the giant animals of the world. As he works his way through this level he will encounter all types of animals that are very large and the various types of obstacles they face in daily life. When Packy is bigger than the biggest elephant and cannot enter his home, he begins to realize the problems of being big.


Throughout his quest to feel comfortable with his growth, Packy is accompanied by his mosquito sidekick Zippy. His companion plays the role of a mentor and counselor throughout the various levels of Packy's adventures.


In part two the patient will learn about preparing and administering doses of growth hormone. First, the user will see how to mix a dose, then prepare a pen for injecting the hormone, and then actually see how an injection is performed. In the game aspect of this part the user will be challenged to mix and administer a dose seven times (Monday through Sunday) and provide accuracy results.


The third part of the game is a growth diary where the patient records and sees various graphics displaying his or her personal progress.


Playing this game is reassuring and helps children overcome growth disorders by emphasizing self-awareness and self-efficacy training, role-playing, competition, and strategies embedded in the video game. Analogous video game strategy is also used to treat anxiety and hyperactivity disorders, various types of phobias, as well as enuresis.


EXAMPLE 3
Diabetes

The patient is diagnosed with insulin-dependent diabetes. As treatment the physician prescribes insulin shots and a video game based on positive-reinforcement and self-management. In the video game the graphical game character is a pilot who has diabetes, just like the patient. The pilot needs to follow proper diet and exercise regimen to avoid crashing a plane or balloon which he is flying. The screens for the video game are shown in FIG. 14 and FIG. 15. The flowchart for this game is shown in FIG. 20. Eating wrong foods causes blood glucose level to increase and the plane or balloon starts gaining altitude uncontrollably. Eventually, above a certain threshold, the balloon or the plane spins out of control.


During the game the patient is requested to enter his own blood glucose level by using blood glucose meter 54. An exemplary set-up for doing this is shown in FIG. 16. The reading is used in the game and can also be transmitted to the hospital, as described in example 3. Also, the user can view his blood glucose readings in the form transmitted to the hospital and used in the game. An example of such reading for a number of measurement records is illustrated in FIG. 17.


If the user does not comply with the request for measuring and entering his blood glucose level the plane or balloon disappears behind clouds, representing uncertainty in blood glucose level. This is visualized by the clouds in FIGS. 14 and 15. The clouds obscure the pilot's vision and lead to collisions with objects in the plane's or balloon's path. Alternatively, if the blood glucose level drops below a minimum threshold, the plane or balloon crashes against the ground.


This positive reinforcement-based strategy, in which the blood glucose level is correlated to a game parameter, e.g., plane altitude, teaches the patient how to cope with his condition on a day-to-day basis while making blood glucose monitoring fun. It also produces higher treatment compliance rates, especially in children who need to learn early on about proper diabetes self-management.


EXAMPLE 4
Non-Insulin Dependent Diabetes Management

A video game treatment can be used for management of non-insulin dependent cases of diabetes (NIDDM). In such cases the video game is an interactive information resource, as well as a role-playing game. The game helps the patient, especially an adult patient, explore the topic of Staged Diabetes Management. The information is presented in hypertext format, allowing the patient to select a stage, read a brief overview of it, and select details to examine it in greater depth in desired. The game encourages active involvement in learning and provides opportunities to rehearse various health behaviors and see the consequences that result by observing what happens to a graphical game character who displays these behaviors.


The content of the game is based on the Staged Diabetes Management program, developed by the International Diabetes Center and Becton Dickinson & Company. The progressive set of stages ranges from least to most severe. For example, a patient in Stage I will learn to manage NIDDM through diet alone.


In the video game the user can configure the graphical game character in many ways. A checklist of chokes allows the patient to combine a variety of physical features and clothes, as well as specifics about the character's health status including weight, age, and medications taken.


The game character, and thus the patient, will make decisions in realistic settings such as restaurants and parties where rich foods are available. Also, an exercise plan will fit in with the character's busy schedule of family, community, and work commitments. This format provides the patient with a playful atmosphere in which choices which the patient faces in his or her own life can be rehearsed.


If blood glucose levels do not remain in the normal range in Stage I, then the patient is instructed by the graphical game character to advance to the next treatment steps, eventually arriving at the stage where the patient will be instructed to inject insulin to control blood glucose levels. The goal of the NIDDM game is to remain at Stage I.


Similar video games can help to deal with hemophilia, and other medical condition requiring the patient to be aware of his or her surroundings.


EXAMPLE 5
Asthma

A youngster diagnosed with asthma is given an asthma self-management game for hand-held unit 430. The graphical game character, a young dinosaur from the pre-historic town of Saurian, must cope with and manage his asthma. The game San character confronts common asthma triggers, while learning to recognize early warning signs of an oncoming asthmatic episode. Asthma management techniques including avoidance, relaxation, and medicinal inhalers are part of the daily routine for the young dinosaur who must return to his cave. The dinosaur runs, jumps, and shoots a squirt gun at oncoming triggers while conquering each level and mastering his condition. In addition to these inputs, the dinosaur requests the player to input the player's asthma condition by using physical parameter measuring device 454, which in this case is a respiratory flow meter. These data can then be transmitted to the physician as described above.


Playing the video game involving these real asthma triggers, relaxation techniques, etc., affects the mental state of the player to improve his own asthma management outside of video game sessions. This treatment based on role-playing and positive reinforcement makes the patient aware of the importance of prescribed drugs and teaches appropriate measures for dealing with the patient's condition in real life situations.


EXAMPLE 6
Eating Disorder

The physician determines that the patient suffers from an eating disorder causing the patient to gorge. The physician loads into the patient's microprocessor-based unit 410 or hand-held unit 430 a video game in which the graphical game character has to stay thin to survive. The game challenges confronting the game character include avoiding fatty foods to stay trim and eating a sufficient amount to combat dragons and surmount obstacles on his way. Doing this involves making choices about what food presented on the screen to eat, keep for later, or reject. Wrong food choices have immediate consequences in the graphical character's ability to survive. The game is scored according to the length of time the patient is capable of keeping his game character alive and obstacles the character overcomes.


The physician instructs the patient to play the game every time the patient feels an eating urge outside regular meal times. During a regular follow-up visit the doctor evaluates the patient's progress and checks the scores obtained in playing the video game. Based on the analysis of the sores the physician determines the severity of the problem and gets an insight into the patient's motivation to comply with the therapy. Sufficiently high scores reflect progress and readiness to proceed with the next treatment stage. At this point the physician may instruct the patient to play another video game designed for milder eating disorders or a game utilizing a different psychological approach, e.g., negative reinforcement or distraction.


EXAMPLE 7
Depression

A psychiatrist enrolls a patient in a series of home-based interactive video game sessions, which the patient accesses from his microprocessor-based unit 410 through hospital network 426. The video game is then transmitted from the hospital network server 428 to the patient's unit 410. The game involves interaction with a graphical game character resembling the Yoda character from the popular movie “Star Wars”. Yoda acts as a counselor and mentor to the patient, preparing him for various trial episodes in the video game. Based on patient's scores in playing the video game sent, the physician reviews how the patient responds to video game counseling and prepares another game to be transmitted to the patient. This treatment method is part of an on-going therapy for mild to medium-severe depression. This approach is also used for schizophrenia and other purely psychological disorders.


Summary, Ramifications, and Scope


The reader will thus see that I have presented a particularly simple method for treating medical conditions in human patients using a microprocessor-based video game. This method gives a better picture of the ailment through its standardized scoring procedure and makes the treatment much less costly by considerably reducing the number of therapy sessions with the physician or health care professional. In addition, video games emphasize superior treatment in the patient's own environment. This leads to self-help responses difficult to foster in therapy sessions. The patient recognizes the importance of medications and treatment regimens in an entertaining manner. Moreover, the patient participates actively in the treatment by following instructions embedded in the video game or even generating positive physiological responses due to stimuli presented in the video game.


The method of the invention also provides a treatment to which the patient can resort as the need arises. The intrinsic fun in playing video games ensures higher treatment compliance for all patients, and in particular children. The self-treatment instructions communicated by this method can be used to additionally induce patients to independently perform measurements of physical parameters associated with their medical condition.


Finally, the scoring of the video game provides an excellent standardized measure for evaluating treatment results and improving continued treatment. In carrying out the method the microprocessor-based system can be expanded to use any number of communications devices, monitoring set-ups, and other state-of-the-art medical equipment. Therefore, the scope of the invention should be determined, not be examples given, but by the appended claims and their legal equivalents.

Claims
  • 1. A method of diabetes management, comprising: (a) providing a glucose meter, wherein said glucose meter is (i) in communication with a portable microprocessor-based unit and (ii) separate from said portable microprocessor-based unit;(b) advising a user to measure a blood glucose level by transmitting blood glucose level data into the portable microprocessor-based unit from the glucose meter;(c) running a program of instructions on the portable microprocessor-based unit, the glucose meter, or both, using data corresponding to the blood glucose level data, wherein said program of instructions presents an interactive presentation to said user via a display screen of said portable microprocessor-based unit, said interactive presentation reinforcing compliance with a diabetes management plan by presenting negative consequences in said interactive presentation in response to said blood glucose level data being outside an optimal range;(d) inputting said data based upon said blood glucose level data as input data for the program of instructions; and(e) advising said user to inject insulin based upon said diabetes management plan.
  • 2. The method of claim 1, said program of instructions further comprising said diabetes management plan, and said method further comprising sending a signal from said glucose meter to said portable microprocessor-based unit to advance between steps of said diabetes management plan.
  • 3. The method of claim 1, further comprising displaying an indicator to check the blood glucose level on the display screen of the portable microprocessor-based unit.
  • 4. The method of claim 1, further comprising displaying an indicator to select an insulin plan on the display screen of the portable microprocessor-based unit.
  • 5. The method of claim 1, further comprising displaying an indicator to get a menu of foods to eat on the display screen of the portable microprocessor-based unit.
  • 6. The method of claim 1, further comprising connecting said portable microprocessor-based unit with a remote communication unit.
  • 7. The method of claim 6, further comprising connecting said portable microprocessor-based unit with a computer in a hospital, wherein said computer is remotely located from said portable microprocessor-based unit.
  • 8. The method of claim 7, said connecting including connecting said portable microprocessor-based unit with said computer via a telephone line.
  • 9. The method of claim 1, wherein said user is advised to inject said insulin when said blood glucose level data indicates said blood glucose level does not remain in a predetermined range.
  • 10. One or more storage devices having program code embodied therein for programming one or more processors to perform a method of diabetes management using a system including a glucose meter in communication with a portable processor-based device, wherein the method comprises: (a) advising a user to measure glucose levels with the glucose meter, wherein said glucose meter is separate from said portable microprocessor-based unit;(b) advising said user to measure said glucose levels by transmitting blood glucose level data into the portable microprocessor-based unit from the glucose meter;(c) running a program of instructions on the portable microprocessor-based unit, the glucose meter, or both, using data corresponding to the blood glucose level data, wherein said program of instructions presents an interactive presentation to said user via a display screen of said portable microprocessor-based unit, said interactive presentation reinforcing compliance with a diabetes management plan by presenting negative consequences in said interactive presentation in response to said blood glucose level data being outside an optimal range;(d) inputting said data based upon said blood glucose level data as input data for the program of instructions; and(e) advising said user to inject insulin based upon said diabetes management plan.
  • 11. The one or more storage devices of claim 10, wherein said program instructions further comprise said diabetes management plan, and said method further comprise sending a signal from said glucose meter to said portable microprocessor-based unit to advance between steps of said diabetes management plan.
  • 12. The one or more storage devices of claim 10, wherein the method further comprises displaying an indicator to check the glucose levels on the display screen of the portable microprocessor-based unit.
  • 13. The one or more storage devices of claim 10, wherein the method further comprises displaying an indicator to select an insulin plan on the display screen of the portable microprocessor-based unit.
  • 14. The one or more storage devices of claim 10, wherein the method further comprises displaying an indicator to get a menu of foods to eat on the display screen of the portable microprocessor-based unit.
  • 15. The one or more storage devices of claim 10, wherein the method further comprises connecting said portable microprocessor-based unit with a remote communication unit.
  • 16. The one or more storage devices of claim 15, further comprising connecting said portable microprocessor-based unit with a computer in a hospital, wherein said computer is remotely located from said portable microprocessor-based unit.
  • 17. The one or more storage devices of claim 16, further comprising connecting said portable microprocessor-based unit with said computer via a telephone line.
  • 18. The one or more storage devices of claim 10, wherein advising said user to inject said insulin occurs when said glucose levels do not to remain in a predetermined range.
  • 19. A diabetes management system, comprising: (a) a hand-held microprocessor-based unit capable of accessing blood glucose level data therein and said hand-held microprocessor-based unit is (i) in communication with a glucose meter and (ii) separate from said glucose meter, said glucose meter configured to produce said blood glucose level data and communicate said blood glucose level data to said hand-held microprocessor-based unit;(b) a remote communications unit in communication with said hand-held microprocessor-based unit;(c) a program of instructions running on the hand-held microprocessor-based unit, the remote communications unit, or both, which uses said blood glucose level data as input data, wherein said program of instructions presents an interactive presentation to a user via a display screen of said hand-held microprocessor-based unit, said interactive presentation positively reinforcing compliance with a diabetes management plan by presenting negative consequences in said interactive presentation in response to said blood glucose level data being outside an optimal range; and(d) wherein said program of instructions further includes instructions to advise said user to inject insulin based upon said diabetes management plan.
  • 20. The system of claim 19, further comprising a blood glucose meter signal coupled with said hand-held microprocessor-based unit from which said blood glucose level data are downloaded.
  • 21. The system of claim 19, said program of instructions including (i) said diabetes management plan and (ii) instructions to advance between steps of said diabetes management plan in response to a signal from said glucose meter to said hand-held microprocessor-based unit.
  • 22. The system of claim 19, said program of instructions including instructions to run an operation to check blood glucose level.
  • 23. The system of claim 19, said program of instructions including instructions to run an operation to select an insulin plan.
  • 24. The system of claim 19, said program of instructions including instructions to run an operation to get a menu of foods to eat.
  • 25. The system of claim 19, wherein said system advises said user to inject said insulin based on said blood glucose level data indicating blood glucose levels do not to remain in a predetermined range.
RELATED APPLICATIONS

This application is a Continuation of application Ser. No. 11/748,031, filed May 14, 2007, now U.S. Pat. No. 7,871,376 which is a Continuation of application Ser. No. 11/583,433, filed Oct. 19, 2006, now U.S. Pat. No. 7,867,165 which is a Divisional of application Ser. No. 10/673,045, filed Sep. 26, 2003, which is a Continuation of application Ser. No. 09/971,785, filed Oct. 4, 2001, now abandoned, which is a Continuation of application Ser. No. 09/119,546 filed Jul. 20, 1998, now U.S. Pat. No. 6,330,426, which is a Continuation-In-Part of application Ser. No. 08/953,883 filed Oct. 20, 1997, now abandoned, which is a Continuation-In-Part of application Ser. No. 08/757,129 filed Dec. 3, 1996, now U.S. Pat. No. 6,144,837, which is a Continuation-In-Part of U.S. application Ser. No. 08/334,643, filed on Nov. 4, 1994, now U.S. Pat. No. 5,601,435; and the application Ser. No. 09/119,546 filed Jul. 20, 1998, now U.S. Pat. No. 6,330,426, is also a Continuation of application Ser. No. 08/958,786, filed Oct. 29, 1997, now U.S. Pat. No. 5,913,310, which is a Continuation-In-Part of application Ser. No. 08/857,187, filed May 15, 1997, now U.S. Pat. No. 5,918,603, which is a Divisional of application Ser. No. 08/247,716, filed May 23, 1994, now U.S. Pat. No. 5,678,571. All of the above applications are hereby incorporated by reference.

US Referenced Citations (384)
Number Name Date Kind
3426150 Tygart Feb 1969 A
3566365 Rawson et al. Feb 1971 A
3566370 Worthington, Jr. et al. Feb 1971 A
3581072 Nymeyer May 1971 A
3768014 Smith Oct 1973 A
3811116 Takeuchi et al. May 1974 A
3883235 Lynn et al. May 1975 A
3910257 Fletcher et al. Oct 1975 A
3920005 Gombrich et al. Nov 1975 A
3996928 Marx Dec 1976 A
4004577 Sarnoff Jan 1977 A
4051522 Healy et al. Sep 1977 A
4060915 Conway Dec 1977 A
4130881 Haessler et al. Dec 1978 A
4150284 Trenkler et al. Apr 1979 A
4151407 McBride et al. Apr 1979 A
4151831 Lester May 1979 A
4173971 Karz Nov 1979 A
4216462 McGrath et al. Aug 1980 A
4227526 Goss Oct 1980 A
4253521 Savage Mar 1981 A
4259548 Fahey et al. Mar 1981 A
4270547 Steffen et al. Jun 1981 A
4296756 Dunning et al. Oct 1981 A
4347568 Giguere et al. Aug 1982 A
4347851 Jundanian Sep 1982 A
4360345 Hon Nov 1982 A
4412287 Braddock, III Oct 1983 A
4417306 Citron et al. Nov 1983 A
4422081 Woods Dec 1983 A
4428733 Kumar-Misir Jan 1984 A
4449536 Weaver May 1984 A
4465077 Schneider Aug 1984 A
4473884 Behl Sep 1984 A
4518361 Conway May 1985 A
4519398 Lisiecki et al. May 1985 A
4531527 Reinhold, Jr. Jul 1985 A
4546436 Schneider et al. Oct 1985 A
4566461 Lubell et al. Jan 1986 A
4576578 Parker et al. Mar 1986 A
4592546 Fascenda et al. Jun 1986 A
4627445 Garcia Dec 1986 A
4674652 Aten et al. Jun 1987 A
4686624 Blum et al. Aug 1987 A
4694490 Harvey et al. Sep 1987 A
4695954 Rose et al. Sep 1987 A
4712562 Ohayon et al. Dec 1987 A
4722349 Baumberg Feb 1988 A
4729381 Harada et al. Mar 1988 A
4730253 Gordon Mar 1988 A
4731726 Allen, III Mar 1988 A
4738451 Logg Apr 1988 A
4768229 Benjamin et al. Aug 1988 A
4779199 Yoneda et al. Oct 1988 A
4782511 Nemec et al. Nov 1988 A
4789928 Fujisaki Dec 1988 A
4796639 Snow et al. Jan 1989 A
4799156 Shavit et al. Jan 1989 A
4799199 Scales, III et al. Jan 1989 A
4803625 Fu et al. Feb 1989 A
4835372 Gombrich et al. May 1989 A
4838275 Lee Jun 1989 A
4846797 Howson et al. Jul 1989 A
4853521 Claeys et al. Aug 1989 A
4858354 Gettler Aug 1989 A
4858617 Sanders Aug 1989 A
4890621 Hakky Jan 1990 A
4894777 Negishi et al. Jan 1990 A
4897869 Takahashi Jan 1990 A
4899839 Dessertine et al. Feb 1990 A
4903201 Wagner Feb 1990 A
4907973 Hon Mar 1990 A
4916441 Gombrich Apr 1990 A
4931934 Snyder Jun 1990 A
4933873 Kaufman et al. Jun 1990 A
4933876 Markoff et al. Jun 1990 A
4950246 Muller Aug 1990 A
4950264 Osborn, III Aug 1990 A
4953552 DeMarzo Sep 1990 A
4958632 Duggan Sep 1990 A
4958641 Digby et al. Sep 1990 A
4967756 Hewitt Nov 1990 A
4977899 Digby et al. Dec 1990 A
4978303 Lampbell Dec 1990 A
4978335 Arthur, III Dec 1990 A
4979509 Hakky Dec 1990 A
5007429 Treatch et al. Apr 1991 A
5009645 Silver et al. Apr 1991 A
5016172 Dessertine May 1991 A
5019974 Beckers May 1991 A
5024225 Fang Jun 1991 A
5025374 Roizen et al. Jun 1991 A
5034807 Von Kohorn Jul 1991 A
5035625 Munson et al. Jul 1991 A
5036462 Kaufman et al. Jul 1991 A
5049487 Phillips et al. Sep 1991 A
5050612 Matsumura Sep 1991 A
5056059 Tivig et al. Oct 1991 A
5059394 Phillips et al. Oct 1991 A
5065315 Garcia Nov 1991 A
5068536 Rosenthal Nov 1991 A
5074317 Bondell et al. Dec 1991 A
5077476 Rosenthal Dec 1991 A
5077665 Silverman et al. Dec 1991 A
5095798 Okada et al. Mar 1992 A
5104380 Holman et al. Apr 1992 A
5109414 Harvey et al. Apr 1992 A
5109974 Beer et al. May 1992 A
5111396 Mills et al. May 1992 A
5111817 Clark et al. May 1992 A
5111818 Suzuki et al. May 1992 A
5120230 Clark et al. Jun 1992 A
5120421 Glass et al. Jun 1992 A
5128552 Fang et al. Jul 1992 A
5128752 Von Kohorn Jul 1992 A
5134391 Okada Jul 1992 A
5142358 Jason Aug 1992 A
5142484 Kaufman et al. Aug 1992 A
5143378 Joel Sep 1992 A
5171977 Morrison Dec 1992 A
5176502 Sanderson et al. Jan 1993 A
5182707 Cooper et al. Jan 1993 A
5204670 Stinton Apr 1993 A
5219322 Weathers Jun 1993 A
5222020 Takeda Jun 1993 A
5226895 Harris Jul 1993 A
5227874 Von Kohorn Jul 1993 A
5228450 Sellers Jul 1993 A
5230629 Buschke Jul 1993 A
5231990 Gauglitz Aug 1993 A
5243515 Lee Sep 1993 A
5249044 Von Kohorn Sep 1993 A
5251126 Kahn et al. Oct 1993 A
5261401 Baker et al. Nov 1993 A
5262943 Thibado et al. Nov 1993 A
5265888 Yamamoto et al. Nov 1993 A
5266179 Nankai et al. Nov 1993 A
5275159 Griebel Jan 1994 A
5282950 Dietze et al. Feb 1994 A
5295491 Gevins Mar 1994 A
5299121 Brill et al. Mar 1994 A
5301105 Cummings, Jr. Apr 1994 A
5304112 Mrklas et al. Apr 1994 A
5304468 Phillips et al. Apr 1994 A
5307263 Brown Apr 1994 A
5309919 Snell et al. May 1994 A
5321009 Baeder et al. Jun 1994 A
5325288 Satou Jun 1994 A
5329459 Kaufman et al. Jul 1994 A
5329608 Bocchieri et al. Jul 1994 A
5331549 Crawford, Jr. Jul 1994 A
5333981 Pronovost et al. Aug 1994 A
5335338 Proesel Aug 1994 A
5339821 Fujimoto Aug 1994 A
5341291 Roizen et al. Aug 1994 A
5343239 Lappington et al. Aug 1994 A
5344324 O'Donnell et al. Sep 1994 A
5357427 Langen et al. Oct 1994 A
5366896 Margrey et al. Nov 1994 A
5368562 Blomquist et al. Nov 1994 A
5371687 Holmes, II et al. Dec 1994 A
5375604 Kelly et al. Dec 1994 A
5377100 Pope et al. Dec 1994 A
5390238 Kirk et al. Feb 1995 A
5399821 Inagaki et al. Mar 1995 A
5410471 Alyfuku et al. Apr 1995 A
5410474 Fox Apr 1995 A
5429140 Burdea et al. Jul 1995 A
5431690 Schaldach et al. Jul 1995 A
5431691 Snell et al. Jul 1995 A
5434611 Tamura Jul 1995 A
5438607 Przygoda, Jr. et al. Aug 1995 A
5438983 Falcon Aug 1995 A
5441047 David et al. Aug 1995 A
5449334 Kingsbury Sep 1995 A
5454721 Kuch Oct 1995 A
5454722 Holland et al. Oct 1995 A
5456606 McIntyre Oct 1995 A
5456692 Smith, Jr. et al. Oct 1995 A
5458123 Unger Oct 1995 A
5467269 Flaten Nov 1995 A
5471039 Irwin, Jr. et al. Nov 1995 A
5471382 Tallman et al. Nov 1995 A
5483276 Brooks et al. Jan 1996 A
5488412 Majeti et al. Jan 1996 A
5488423 Walkingshaw et al. Jan 1996 A
5501231 Kaish Mar 1996 A
5502636 Clarke Mar 1996 A
5502726 Fischer Mar 1996 A
5504519 Remillard Apr 1996 A
5517405 McAndrew et al. May 1996 A
5518001 Snell May 1996 A
5519058 Gonick et al. May 1996 A
5519433 Lappington et al. May 1996 A
5523232 Sechler Jun 1996 A
5536249 Castellano et al. Jul 1996 A
5542420 Goldman et al. Aug 1996 A
5544649 David et al. Aug 1996 A
5546943 Gould Aug 1996 A
5549117 Tacklind et al. Aug 1996 A
5550575 West et al. Aug 1996 A
5553609 Chen et al. Sep 1996 A
5558638 Evers et al. Sep 1996 A
5564429 Bornn et al. Oct 1996 A
5569212 Brown Oct 1996 A
5572421 Altman et al. Nov 1996 A
5572646 Kawai et al. Nov 1996 A
5574828 Hayward et al. Nov 1996 A
5576952 Stutman et al. Nov 1996 A
5583758 McIlroy et al. Dec 1996 A
5590648 Mitchell et al. Jan 1997 A
5593349 Miguel et al. Jan 1997 A
5593390 Castellano et al. Jan 1997 A
5594637 Eisenberg et al. Jan 1997 A
5596994 Bro Jan 1997 A
5597307 Redford et al. Jan 1997 A
5601435 Quy Feb 1997 A
5613495 Mills et al. Mar 1997 A
5619991 Sloane Apr 1997 A
5624265 Redford et al. Apr 1997 A
5628309 Brown May 1997 A
5629981 Nerlikar May 1997 A
5631844 Margrey et al. May 1997 A
5633910 Cohen May 1997 A
5635532 Samid Jun 1997 A
5640569 Miller et al. Jun 1997 A
5640953 Bishop et al. Jun 1997 A
5642731 Kehr Jul 1997 A
5642936 Evans Jul 1997 A
5651363 Kaufman et al. Jul 1997 A
5651775 Walker et al. Jul 1997 A
5659691 Durward et al. Aug 1997 A
5666487 Goodman et al. Sep 1997 A
5670711 Detournay et al. Sep 1997 A
5675635 Vos et al. Oct 1997 A
5678562 Sellers Oct 1997 A
5678571 Brown Oct 1997 A
5679075 Forrest et al. Oct 1997 A
5680590 Parti Oct 1997 A
5680866 Kangas et al. Oct 1997 A
5687322 Deaton et al. Nov 1997 A
5687717 Halpern et al. Nov 1997 A
5687734 Dempsey et al. Nov 1997 A
5689652 Lupien et al. Nov 1997 A
5692906 Corder Dec 1997 A
5704364 Saltzstein et al. Jan 1998 A
5704366 Tacklind et al. Jan 1998 A
5704902 Vandenbelt et al. Jan 1998 A
5704922 Brown Jan 1998 A
5710178 Samid Jan 1998 A
5710918 Lagarde et al. Jan 1998 A
5711297 Iliff Jan 1998 A
5714319 Joutel et al. Feb 1998 A
5715451 Marlin Feb 1998 A
5715823 Wood et al. Feb 1998 A
5717739 Dyer et al. Feb 1998 A
5717913 Driscoll Feb 1998 A
5720733 Brown Feb 1998 A
5722418 Bro Mar 1998 A
5727153 Powell Mar 1998 A
5730124 Yamauchi Mar 1998 A
5730654 Brown Mar 1998 A
5732696 Rapoport et al. Mar 1998 A
5732709 Tacklind et al. Mar 1998 A
5734413 Lappington et al. Mar 1998 A
5749083 Koda et al. May 1998 A
5752234 Withers May 1998 A
5754740 Fukuoka et al. May 1998 A
5760771 Blonder et al. Jun 1998 A
5772585 Lavin et al. Jun 1998 A
5778882 Raymond et al. Jul 1998 A
5782814 Brown et al. Jul 1998 A
5785650 Akasaka et al. Jul 1998 A
5787295 Nakao Jul 1998 A
5791342 Woodard Aug 1998 A
5792117 Brown Aug 1998 A
5793969 Kamentsky et al. Aug 1998 A
5794219 Brown Aug 1998 A
5794251 Watanabe et al. Aug 1998 A
5796393 MacNaughton Aug 1998 A
5799318 Cardinal et al. Aug 1998 A
5800458 Wingrove Sep 1998 A
5802494 Kuno Sep 1998 A
5802534 Hatayama et al. Sep 1998 A
5806057 Gormley et al. Sep 1998 A
5810747 Brudny et al. Sep 1998 A
5819735 Mansfield et al. Oct 1998 A
5822544 Chaco et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5825283 Camhi Oct 1998 A
5827180 Goodman Oct 1998 A
5828943 Brown Oct 1998 A
5832448 Brown Nov 1998 A
5835896 Fisher et al. Nov 1998 A
5840020 Heinonen et al. Nov 1998 A
5842976 Williamson Dec 1998 A
5868669 Iliff Feb 1999 A
5868683 Protopapas et al. Feb 1999 A
5875432 Sehr Feb 1999 A
5879163 Brown et al. Mar 1999 A
5882338 Gray Mar 1999 A
5887133 Brown et al. Mar 1999 A
5893077 Griffin Apr 1999 A
5893098 Peters et al. Apr 1999 A
5897493 Brown Apr 1999 A
5899855 Brown May 1999 A
5911687 Sato et al. Jun 1999 A
5913310 Brown Jun 1999 A
5918603 Brown Jul 1999 A
5920477 Hofbert et al. Jul 1999 A
5933136 Brown Aug 1999 A
5935060 Iliff Aug 1999 A
5940801 Brown Aug 1999 A
5941829 Saltzstein et al. Aug 1999 A
5945651 Chorosinski et al. Aug 1999 A
5951300 Brown Sep 1999 A
5954641 Kehr et al. Sep 1999 A
5956501 Brown Sep 1999 A
5960403 Brown Sep 1999 A
5961446 Beller et al. Oct 1999 A
5966526 Yokoi Oct 1999 A
5971855 Ng Oct 1999 A
5971922 Arita et al. Oct 1999 A
5983003 Lection et al. Nov 1999 A
5983217 Khosravi-Sichani et al. Nov 1999 A
5987471 Bodine et al. Nov 1999 A
5995969 Lee et al. Nov 1999 A
5997476 Brown Dec 1999 A
5997502 Reilly et al. Dec 1999 A
6001065 DeVito Dec 1999 A
6022315 Iliff Feb 2000 A
6022615 Rettenbacher Feb 2000 A
6023686 Brown Feb 2000 A
6024281 Shepley Feb 2000 A
6029138 Khorasani et al. Feb 2000 A
6032119 Brown et al. Feb 2000 A
6035328 Soukal Mar 2000 A
6046761 Echerer Apr 2000 A
6049794 Jacobs et al. Apr 2000 A
6050940 Braun et al. Apr 2000 A
6055314 Spies et al. Apr 2000 A
6055487 Margery et al. Apr 2000 A
6055506 Frasca, Jr. Apr 2000 A
6057758 Dempsey et al. May 2000 A
6068615 Brown et al. May 2000 A
6095985 Raymond et al. Aug 2000 A
6101478 Brown Aug 2000 A
6110148 Brown et al. Aug 2000 A
6113578 Brown Sep 2000 A
6138145 Kawanaka Oct 2000 A
6144837 Quy Nov 2000 A
6151586 Brown Nov 2000 A
6161095 Brown Dec 2000 A
6167362 Brown et al. Dec 2000 A
6167386 Brown Dec 2000 A
6168563 Brown Jan 2001 B1
6177940 Bond et al. Jan 2001 B1
6186145 Brown Feb 2001 B1
6189029 Fuerst Feb 2001 B1
D439242 Brown et al. Mar 2001 S
6210272 Brown Apr 2001 B1
6221012 Maschke et al. Apr 2001 B1
6233539 Brown May 2001 B1
6240393 Brown May 2001 B1
6248065 Brown Jun 2001 B1
6260022 Brown Jul 2001 B1
6270455 Brown Aug 2001 B1
6270456 Iliff Aug 2001 B1
6334778 Brown Jan 2002 B1
6352523 Brown et al. Mar 2002 B1
6368273 Brown Apr 2002 B1
6370513 Kolawa et al. Apr 2002 B1
6375469 Brown Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6381577 Brown Apr 2002 B1
6436036 Miller-Kovach et al. Aug 2002 B1
6513532 Mault et al. Feb 2003 B2
20020019748 Brown Feb 2002 A1
20040106855 Brown Jun 2004 A1
20040107116 Brown Jun 2004 A1
20040117207 Brown Jun 2004 A1
20040117208 Brown Jun 2004 A1
20040117209 Brown Jun 2004 A1
20040117210 Brown Jun 2004 A1
Foreign Referenced Citations (40)
Number Date Country
0286456 Oct 1988 EP
0320749 Jun 1989 EP
370599 May 1990 EP
0461910 Dec 1991 EP
508912 Oct 1992 EP
526166 Feb 1993 EP
0558975 Sep 1993 EP
0653718 May 1995 EP
676709 Oct 1995 EP
680727 Nov 1995 EP
761160 Mar 1997 EP
08131551 Dec 1997 EP
0251520 Jan 1998 EP
2218831 Nov 1989 GB
2225637 Jun 1990 GB
54005785 Jan 1979 JP
54146633 Nov 1979 JP
62226278 Oct 1987 JP
5155024 Jun 1993 JP
5266002 Oct 1993 JP
1995407095963 Apr 1995 JP
WO-8501667 Apr 1985 WO
WO-9000367 Jan 1990 WO
WO-9109374 Jun 1991 WO
WO-9301489 Jan 1993 WO
WO-9302622 Feb 1993 WO
WO-9416774 Aug 1994 WO
WO-9509386 Apr 1995 WO
WO-9520199 Jul 1995 WO
WO-9522131 Aug 1995 WO
WO-9529447 Nov 1995 WO
WO-9607908 Mar 1996 WO
WO-9625877 Aug 1996 WO
WO-9636923 Nov 1996 WO
WO-9708605 Mar 1997 WO
WO-9712544 Apr 1997 WO
WO-9737738 Oct 1997 WO
WO-9816895 Apr 1998 WO
WO-9831275 Jul 1998 WO
WO-9839933 Sep 1998 WO
Related Publications (1)
Number Date Country
20080109172 A1 May 2008 US
Divisions (2)
Number Date Country
Parent 10673045 Sep 2003 US
Child 11583433 US
Parent 08247716 May 1994 US
Child 08857187 US
Continuations (5)
Number Date Country
Parent 11748031 May 2007 US
Child 11924238 US
Parent 11583433 Oct 2006 US
Child 11748031 US
Parent 09971785 Oct 2001 US
Child 10673045 US
Parent 09119546 Jul 1998 US
Child 09971785 US
Parent 08958786 Oct 1997 US
Child 09119546 US
Continuation in Parts (4)
Number Date Country
Parent 08953883 Oct 1997 US
Child 09119546 US
Parent 08757129 Dec 1996 US
Child 08953883 US
Parent 08334643 Nov 1994 US
Child 08757129 US
Parent 08857187 May 1997 US
Child 08958786 US