This invention relates to diagnostic imaging systems, and more particularly, to controls for a diagnostic imaging system which perform multiple functions.
Diagnostic imaging systems, such as diagnostic ultrasound imaging systems, are complex instruments with a multitude of different control parameters. The user can vary numerous setting in order to obtain the best diagnostic image. For example, the user can adjust the transmit power, receiver gain, time gain control, lateral gain variation, image depth, and imaging modes, among other things. Because there are so many variable control parameters, fully featured imaging systems have control panels with a significant number of controls. Accordingly, designers of such systems are constantly trying to provide control panels with simpler control configurations, while retaining the ability to easily and intuitively control all imaging variables. In particular, such control panels usually try to arrange the control configuration so that the controls needed for a particular procedure are closely grouped on the control panel so that the user can reach them quickly, preferably without moving the hand. For example, the main controls on a diagnostic imaging system control panel are the trackball and the keys which are arrayed in an arc around the trackball. The trackball is used primarily to move cursors and other markers around the display screen. The keys arrayed around the trackball are those most often used by the clinician, such as an “image freeze” key, a “print” key, a “measurement” key, a “select” key and an “update” key. However the space available for such keys is limited. It would be desirable for a control panel to have a control configuration that enables the control of greater functionality within easy reach of the user but without undue mechanical and control complexity.
In accordance with the principles of the present invention, a variable control for a diagnostic imaging system is provided which performs multiple functions. In one embodiment the control is one with a continuous range of control such as a trackball, slider, or knob. When the control is manipulated in a normal manner, it provides a first type of control function. When the control is manipulated in a rapid fashion, the velocity of the control action is sensed and the control changes to a different control function. An embodiment of this invention can obviate the need for a separate control, or for additional hand motion of the user, in order to control multiple functions.
In the drawings:
Referring first to
The control panel 72 includes a number of controls which have a continuous range of adjustment. Three such controls are a trackball 76, a slider 36, and a knob 34. These controls have a continuous range of motion through which the user moves the control when using the control to adjust a system function or parameter. The trackball 76, for instance, can be rolled or spun by the operator in a continuous manner. The slider 36 and knob 34 will generally not have the unlimited continuous range of motion of the usual trackball, but will generally have ranges of travel which are mechanically limited. The travel of the slider 36 is limited by the length of the control and its opening on the control panel, for example. The knob 34 will generally have end stops at its minimum and maximum limits of rotation. However, knobs which can be continuously turned are also known and can also be employed in an embodiment of the present invention.
In accordance with the principles of the present invention, a control with a continuous range of adjustment such as those described above is used to control several functions. For example, the trackball 76 can be used to control the location of an image plane in a 3D ultrasound imaging mode known as “biplane.” The biplane mode is described in detail in US patent [application serial number 10/231,704}, entitled “BIPLANE ULTRASONIC IMAGING” and U.S. Patent (attorney docket ATL-326, filed May 12, 2003), entitled “IMAGE ORIENTATION DISPLAY FOR A THREE DIMENSIONAL ULTRASONIC IMAGING SYSTEM” which are incorporated herein by reference. In the biplane mode described in these patents, an array transducer images one image plane which extends normal to the face of the transducer which is referred to as the reference image. The reference image is oriented with respect to the transducer as would a normal 2D image during two dimensional imaging. In the biplane mode there is a second image, the plane of which can be moved with respect to the reference image. In one biplane function the reference image and the second image have a common center line. The second image can be rotated about this common center line. This means that the two images can be co-planar, can be oriented at 90° with respect to each other, or any intermediate rotational angular orientation.. This is known as the “rotate” biplane mode. Another biplane function is known as the “lateral tilt” biplane mode. In this mode the two images are oriented at 90° with respect to each other, with the center line of the second line sharing a selectable line of the reference image. When the two images are sector images, this means that the second image can be tilted away from a normal orientation to the probe, from one lateral side of the reference image to the other. Yet a third biplane function is the “elevation tilt” biplane mode, in which the second image can be moved in the elevation direction of the reference image. This means that the two images can be co-planar, or that the second image can move to an elevation plane in front of or behind the plane of the reference image.
In accordance with the principles of the present invention, the trackball 76 is used to control the position of the second plane of biplane mode. The trackball can also be used to switch to one or more of the other biplane functions. This is done by rapidly spinning the trackball. When the ultrasound system senses the high velocity movement of the trackball, the system switches to another biplane function. The trackball is then used to control the position of the second plane in the new biplane function. This enables the user to move the second plane in one biplane function to search for the best view of anatomy of interest. If the user is dissatisfied with these views, he can momentarily spin the trackball to switch to a new biplane function, in which the second plane can be moved to a different range of orientations with respect to the reference plane. In this way the clinician can maintain one anatomy in view in the reference image to establish a reference view, and can manipulate the second plane to a wide range of other views and orientations, all with the same user control.
For example, suppose that the clinician is holding the ultrasound probe so that a valve of the heart is shown in the plane of the reference image. The clinician is operating elevation tilt function of the biplane mode. As the clinician gently moves the trackball with his fingers, the second image moves from being co-planar with the reference plane to positions which intersect the heart chamber in front of and substantially parallel to the heart valve. If the heart valve has a jet, the second plane ay cut across this jet. But in this orientation the jet will generally appear only as a pot in the elevation plane of the second image. The clinician may now want to see the full length of the jet in the second image plane, which extends approximately normal to the valve. This may require switching to the lateral tilt function of the biplane mode. To make this change the clinician gives the trackball a quick, rapid spin with the fingers. The ultrasound system senses this high velocity movement of the trackball and switches to the lateral tilt function. The clinician can now resume normal control of the trackball to laterally tilt the second plane until the entire length of the jet is captured in the plane of the second image.
In box 12 of
In box 16 v is compared to a threshold. The threshold determines whether the control's motion is normal low velocity motion, in which case no functional change is made, or that the control is being moved at a high velocity which dictates a change in the function of the control. In one embodiment the threshold may be set at the factory by the ultrasound system manufacturer in consideration of empirical knowledge of how the control is manipulated in normal operation. In another embodiment the threshold may be adjusted by the user in consideration of his or her personal style of control manipulation. In the second embodiment the user will set the threshold so that all of the velocities of his normal usage of the control are below the threshold. This prevents the control from inadvertently switching to a different function during normal control adjustment. If v is below the threshold, the control continues to perform its current function (box 18) and the motion of the control is used accordingly.
For example, if the control was being used to adjust the elevation tilt of the second plane, the new setting of the trackball is used to effect a new elevation tilt position of the second plane.
However, if v is above the threshold, the control has been moved at an abnormally high velocity. The function of the control is then changed by the ultrasound system (box 26). The control may continue to move at the abnormally high velocity for several or many Δt measurement intervals. During this period the v value is ignored for control purposes until the control resumes a normal velocity v or v=0 (box 28). When the control is operating normally again or has come to rest, the sequence continues (box 12, etc.) The use of the high velocity to change the function of the control may be used to toggle back and forth between two different functions. In the above example a quick movement of the trackball 76 while in the elevation tilt mode can switch to the lateral tilt mode. When the user is in the lateral tilt mode a quick spin of the trackball can return the control to operation of the elevation tilt mode. Alternatively, rapid movement of the trackball can switch the control to the rotate biplane mode, from which another rapid movement switches to the elevation tilt mode.
In another embodiment the direction of the control movement can dictate the new function. As
A system which uses the flowchart of
Other control devices than those shown in
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB04/01707 | 5/6/2004 | WO | 11/21/2005 |
Number | Date | Country | |
---|---|---|---|
60473855 | May 2003 | US |