The present disclosure relates generally to the field of transmission of audio/video data packets over a network.
Multimedia streaming applications using the Real-time Transport Protocol (RTP) are notoriously difficult to troubleshoot. The stringent Quality of Service (QoS) requirements associated with most RTP applications can lead to an assortment of problems, including dropped packets, excessive delay, inter-packet jitter, etc. Furthermore, some RTP applications stream packets from multiple sources to multiple destinations, often using Internet Protocol (IP) multicast technology. A variety of different media formats may contribute to the scope of a single RTP session. For example, a video conference may include endpoint devices operating in accordance with different media formats (e.g., H.261, H.264, MPEG2, etc.) and mixed into a single composite video image.
While many analysis tools exist to help troubleshoot single RTP flows, troubleshooting is greatly complicated when an RTP stream having one type of media format flows into a device, such as a mixer or translator, and is translated or transformed to emerge as a completely different RTP stream. By way of example, the logical flow of a video stream may be from a source video endpoint to a video switch, to a transcoder, to a compositor that mixes multiple video streams from different sources in order to produce a composite output video stream that is then sent to the various destination endpoints. Likewise, a Session Border Controller (SBC) may control and transform RTP and RTCP flows associated with voice, video, or multimedia session content across network borders. An administrator attempting to analyze transmission problems on the network generally must be able to analyze both the input and output streams to the mixer or translator device, and also recognize that they are related to one another. The difficulty, however, with troubleshooting multi-mixer, multi-translator RTP systems is that the mixer or translator device normally obliterates the original stream characteristics. The network administrator, therefore, is often unable to back-trace to the source of the problem.
The present invention will be understood more fully from the detailed description that follows and from the accompanying drawings, which however, should not be taken to limit the invention to the specific embodiments shown, but are for explanation and understanding only.
In the following description specific details are set forth, such as protocols, configurations, methods, etc., in order to provide a thorough understanding of the present invention. However, persons having ordinary skill in the relevant arts will appreciate that these specific details may not be needed to practice the embodiments described.
In the context of the present disclosure, an endpoint is any device, component, element, or object capable of initiating or participating in audio/video packet-data exchanges over a network. An endpoint may comprise a personal computer (PC), video IP phone, personal digital assistant (PDA), laptop or notebook computer, or other audio or video conferencing equipment.
A mixer is an intermediate device or system that receives a sequence of RTP packets, often called a session or a stream, from one or more sources, possibly changes the data format, combines the packets in some manner and then forwards a new RTP packet. Data packets originating from a mixer, for instance, are identified as having a synchronization source (SSRC), RTP sequence number, and timestamp allocated and maintained by the mixer. Mixers may include the SSRC fields of contributing RTP sessions in the contributing source field (CSRC) of the outgoing RTP session.
A translator is an intermediate device or system that forwards RTP packets with their SSRC intact. A translator may thus comprise a node or network element that provides a translation function between different transmission formats and communication procedures. Examples of translators include devices that convert encodings without mixing (e.g., transcoders), replicators from multicast to unicast, and application-level filters in firewalls. In addition, a translator may support communications between endpoints and video terminals operating in accordance with different protocols.
A computer network, in the context of this disclosure, is a geographically distributed collection of interconnected subnetworks for transporting data between nodes, such as intermediate nodes and end nodes (also referred to as endpoints). A local area network (LAN) is an example of such a subnetwork; a plurality of LANs may be further interconnected by an intermediate network node, such as a router, bridge, or switch, to extend the effective “size” of the computer network and increase the number of communicating nodes. Examples of the devices or nodes include servers, mixers, translators, control units, and personal computers. The nodes typically communicate by exchanging discrete frames or packets of data according to predefined protocols.
According to one embodiment, a multi-segment RTP analysis tool or diagnostic framework is provided that allows coherent collection of RTP statistics associated with a particular stream in order to facilitate rapid and easy troubleshooting of RTP applications utilizing mixers and translators. This tool correlates multiple different RTP streams (i.e., RTP streams with different SSRC fields) so as to present a unified picture of the flow all the way from sources to destinations in a multi-hop environment, i.e., multiple RTP application layer (i.e., Layer 7) segments or hops between devices that include endpoints, mixers, and translators.
In a specific embodiment, a method is provided to take multiple different RTP streams and correlate them based on the distinction between “upstream” RTP segments that input into an intermediate device such as a mixer or translator, versus “downstream” RTP segments that are output from the intermediate devices. An application (e.g., a graphical user interface (GUI)) then takes the results of these correlations and displays them so that a user or administrator can obtain a visual, full end-to-end picture of RTP quality from a source endpoint, through one or more mixers, translators, through SBC boundaries, etc., and ultimately to a given destination endpoint. By presenting the correlations in a graphical manner, the administrator may quickly diagnose problems in a network (e.g., voice quality) across multiple RTP hops.
With reference now to
In the example of
In
The SDA is operable to convert call-based addresses to stream-based addresses. This information is generated for use by the other components (e.g., the RMUI) in the architecture. By way of example, the SDA associated with primary mixer 15 may receive a request from the RMUI running on PC 27 to locate a set of RTP streams/segments that represents, say, a call between Alice and Bob, or the mixed, streaming audio conference with ID number 01236. In response, the SDA takes the signaling level information associated with the specific request and converts it to stream-level information comprising information such as flow for the RTP session, SSRC, CNAME, etc.
The example of
A MIB is a database of objects that can be monitored, for example, by a network management system. In the context of the embodiments shown, the MIB information may comprise all sender and receiver statistics gathered for the RTP stream being addressed in the RMA. These statistics include the flowspec (i.e., source and destination IP sockets), associated RTCP-based statistics, plus any additional statistics that might be relevant to the node on which the RMA is hosted. For example, there may be codec-based or mixer-based statistics that are relevant for troubleshooting. In addition to instantaneous statistics, the MIB may also contain some statistical history, allowing the administrator (Ned) to see the evolution of a recent RTP problem over time.
On RTP mixer and translator nodes, the MIB information returned by the RMA includes a list of all streams that have recently contributed to the construction of the requested RTP stream. Note that the RMA retains history of the upstream RTP sessions contributing to the RTP session being requested of the RMA, even if the contributing source (CSRC) field in the outgoing RTP packet headers is not being populated. The CSRC is a source of a stream of RTP packets that has contributed to a combined stream produced by an RTP mixer. The mixer may insert a list (the CSRC list) of the SSRC identifiers of the sources that contributed to the generation of a particular packet into the RTP header of that packet. In
The RMUI may comprise a coded program that is executed by the processor subsystem of a node (e.g., PC 27) associated with a network administrator. For example, the RMUI provides a GUI on PC 27 that allows the administrator, Ned, to browse various RTP flows when looking for problems. The RMUI may be either a web-based or a native GUI application. In one embodiment, the GUI may be generated by software (i.e., code) running on PC 27. In other cases, the GUI may comprise a collaborative web-based application that is accessed by the browser software running on the administrator's PC. For instance, the GUI of the RMUI may comprise an application running on a server, with the GUI being accessed by PC 27 via network 11. In other instances, the RTP management GUI may comprise a downloaded application, or other forms of computer-executable code that may be loaded or accessed by PC 27.
The RMUI then begins a loop that works back through the entire set of streams involved with the problem, starting with the receiving endpoint(s) experiencing the problem and ending with the sources. In block 33, the RMUI uses the stream information to locate the RMA(s) responsible for acquiring data about the stream consumers. The RMUI queries each RMA to gather statistics, e.g., MIB information, about how the stream was received. The RMUI then uses the stream information to locate the sources of each stream, which it then uses to query each RMA to gather statistics about how well each stream was sent (block 34).
From the RMAs that monitor the stream sources, the RMUI also can determine whether these sources are, in turn, fed from additional streams that are received on the same devices for which the RMA is responsible (block 35). If there are additional streams (i.e., additional RTP segments upstream), the RMUI gathers the additional stream information (block 36) and then proceeds back to block 33. The entire process in the loop of gathering information from the stream receivers and sources is repeated until all of the relevant streams have been examined.
If the query of block 35 is negative (i.e., there are no additional streams), the RMUI has gathered all possible stream statistics. It then proceeds to block 37, where the statistical information is displayed for the end user.
The RMUI, for example, may first go to the endpoint experiencing a problem to obtain statistics, then go to the primary mixer and obtain statistics from that device, and then to one of the secondary mixers to gather additional statistics. The RMUI may also gather information regarding any contributors to the RTP flow produced from the secondary mixer. From the statistics of each contributor, the RMUI can trace back to multiple RMAs, and so on, gathering statistics for every recent contributor to the flow. Once the information has been obtained for the end-to-end flow, the RMUI may display the gathered information as a directed graph, with each node in the graph corresponding to an RMA with associated statistics. The administrator can then browse this graph in order to determine the source or cause of a media problem for the conference session in progress.
The above methodology may also be used for other embodiments involving diagnostic operations, such as diagnosis of multicast problems, wherein the RMUI may use the SDA to discover all destination RMAs of a multicast stream, then back-chaining. Another embodiment is in real-time monitoring of a particular unicast problem by having the RMUI periodically gather statistics at all RMAs in a particular path and then dynamically displaying current contributors and statistics. In still another embodiment, an RMA map may be produced that shows a complete directed graph of all flows active in a network. The methods and architecture described above may therefore be used to achieve multi-stream correlation in a wide variety of applications. In each case, the analysis tool allows an administrator to look at end-to-end RTP quality by examining any set of related RTP sessions, even when devices like audio mixers and session border controllers are placed between the original source and the ultimate destination.
It should be understood that elements of the present invention may also be provided as a computer program product which may include a “machine-readable medium” having stored thereon instructions which may be used to program a computer (e.g., a processor or other electronic device) to perform a sequence of operations. A machine-readable medium” may include any computer program product, apparatus and/or device (e.g., magnetic discs, optical disks, memory, Programmable Logic Devices (PLDs) used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. Alternatively, the operations may be performed by a combination of hardware and software. The machine-readable medium may include, but is not limited to, floppy diskettes, optical disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, magnet or optical cards, propagation media or other type of media/machine-readable medium suitable for storing electronic instructions. For example, elements of the present invention may be downloaded as a computer program product, wherein the program may be transferred from a remote computer or telephonic device to a requesting process by way of data signals embodied in a carrier wave or other propagation medium via a communication link (e.g., a modem or network connection).
Furthermore, although the present invention has been described with reference to specific exemplary embodiments, it should be understood that numerous changes in the disclosed embodiments can be made in accordance with the disclosure herein without departing from the spirit and scope of the invention. For instance, although the example of