Diaphragm pacing systems and methods of use

Information

  • Patent Grant
  • 10561844
  • Patent Number
    10,561,844
  • Date Filed
    Monday, August 27, 2018
    6 years ago
  • Date Issued
    Tuesday, February 18, 2020
    4 years ago
Abstract
Diaphragm pacing systems and methods are disclosed for providing respiratory therapy to a patient. The diaphragm pacing systems can provide rapid insertion and deployment of pacing electrodes in critically ill patients who require intubation and invasive Positive Pressure Mechanical Ventilation (PPMV) in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation. The diaphragm pacing systems can be designed to seamlessly interface with any commercially available positive-pressure ventilatory assistance/support equipment such as is commonly in use in hospital intensive care units (ICU) for treating critically ill patients with breathing insufficiencies, pain, trauma, sepsis or neurological diseases or deficits.
Description
BACKGROUND

Patients in hospital Intensive Care Units (ICU) may experience impairment in their ability to breathe volitionally due to their underlying disease condition and require positive pressure mechanical ventilation (PPMV) to provide ventilatory assistance. PPMV is routinely used in combination with sedation in the ICU to provide artificial ventilation for these critically ill individuals. Additionally, many patients undergoing surgery under general anesthesia, for example in hospital Operating Rooms (OR), or procedures under anesthesia or sedation, for example in hospital Emergency Rooms (ER), commonly require PPMV for ventilatory assistance while anesthetized or sedated.


Although mechanical ventilation is a life-sustaining modality, when combined with sedation or anesthesia it interferes with active contraction of the diaphragm. Prolonged totally controlled mechanical ventilation can result in the complete absence of neural activation and mechanical activity of the diaphragm and has been shown to induce muscle atrophy, proteolysis, and reactive oxygen species liberation, leading to rapid loses in diaphragmatic function, a syndrome known as Ventilator-Induced Diaphragmatic Dysfunction (VIDD).


The onset of diaphragm disuse atrophy is rapid, leading to slower patient recovery, which often results in ventilator dependence and translates into higher incidence of ventilator-acquired pneumonia and nosocomial infections, longer stays in the ICU, and escalating hospitalization costs.


In addition to ICU patients, mechanical ventilation is the primary modality of ventilatory assistance for individuals with disease conditions that adversely affect neurological function, such as Spinal Cord Injury (SCI). These individuals may experience impairment in their ability to breathe volitionally due to partial or complete loss of control of the diaphragm, and are prone to lifelong dependence on a mechanical ventilator.


Several viable alternatives to PPMV for assisting breathing are currently available, and have been indicated for use in patients requiring long-term ventilatory assistance such as Spinal Cord Injury (SCI) patients or patients with Congenital Central Hypoventilation Syndrome (CCHS). They include phrenic nerve stimulation and diaphragmatic pacing. These methods use electrical stimulation to induce contraction of the diaphragm using an electrode and an external pacing control box or an implanted pacemaker device.


The two phrenic nerves, which control activation of the diaphragm, run through the thorax, along the left and right sides of the heart, and then to the diaphragm. Phrenic nerve stimulation is performed by electrically stimulating the phrenic nerve to control the patient's diaphragm, which may induce a respiratory cycle. Conventional techniques include surgically implanting a nerve cuff around the phrenic nerve (at the neck or chest level), and then delivering an electrical stimulus from an externally located controller through the cuff to the phrenic nerve. This procedure is quite invasive, requiring incisions when deploying the nerve cuffs, and quite expensive, so it is only selectively used in patients with a life-long requirement for assisted ventilation. In addition, the direct placement of the nerve cuffs around the phrenic nerves may damage the phrenic nerves. These phrenic nerve stimulation systems have not heretofore been prescribed for temporary use in critically ill ICU patients.


Other phrenic nerve stimulation techniques are known, such as that described in U.S. Pat. No. 8,195,297. However, the system disclosed in the '297 patent does not allow for rapid, short term use in an ICU environment for the management of ICU patients particularly in the first few days after start of PPMV.


Another method for electrically stimulating the diaphragm is known as diaphragmatic pacing. Conventionally, diaphragmatic pacing is performed by laparoscopically implanting four electrodes directly on the diaphragm (two on each side), with electrical leads connected to a controller residing external to the body. Conventional diaphragmatic pacing procedures are also quite time consuming and relatively invasive, requiring incisions during implantation, presenting risk during the implantation procedure and risk of chronic infection at the lead entrance sites to the body. Accordingly, these diaphragmatic pacing systems have not heretofore been prescribed for temporary use in critically ill ICU patients.


One such diaphragmatic pacing system is described in U.S. Pat. No. 7,962,215. In addition to being surgically demanding, the diaphragmatic pacing system of the '215 patent is employed to administer therapy to convert Type IIa (fast-type) muscle fibers to Type I (slow-type) muscle fibers in patients who have been ventilated for prolonged periods, whose muscle fibers have all atrophied and converted to Fast-type (VIDD). The therapy described in the '215 patent, however, will not be desirable in the treatment of critical care patients that still have both Type IIa (fast-type) muscle fibers and Type I (slow-type) and will need to have both types to successfully wean off of PPMV.


Accordingly, there exists a need for minimally invasive diaphragm pacing systems and methods for rapid, short term use, as appropriate in the ICU environment, for the management of ICU patients particularly in the first few days or weeks after start of PPMV.


SUMMARY

Examples of systems and methods disclosed herein address this need and others by providing a minimally invasive nerve stimulation system that paces the phrenic nerves transvascularly via disposable endovascular electrodes that can be percutaneously placed under local anesthesia. As will be described in the Detailed Description, such pacing systems and methods can be employed to provide short periods of electrical stimulation for preventing diaphragm disuse atrophy in patients at risk of becoming ventilator-dependent and/or to rehabilitate diaphragm disuse atrophy in ventilator-dependent patients.


The system is designed to work either in conjunction with a mechanical ventilator, causing diaphragmatic contractions in synchrony with each ventilator administered breath, intermittently synchronized to some ventilator breaths, or as a stand-alone system. In some embodiments, the systems and methods may be employed just minutes or hours after first intubation of the subject. Such diaphragm pacing therapy is expected to prevent, reduce or reverse diaphragm disuse atrophy that typically occurs in patients who are on PPMV or are expected to require PPMV and sedation for prolonged periods and by extension, the adverse effects associated with PPMV will be avoided or reduced. As a result, patients may be successfully weaned from PPMV earlier than currently known methods, providing drastic health benefits to patients not to mention substantial reductions in total in-patient costs.


In accordance with one aspect of the present disclosure, a method is provided for administering a treatment plan designed for preventing or reversing diaphragm disuse atrophy in a patient receiving respiratory assistance from a ventilator. The ventilator is employed to provide a breath cycle to the patient, the patient having a prescribed assist level. The method comprises monitoring the breath cycle of the ventilator, administering a pre-programmed stimulation signal to the patient to recruit the phrenic nerve of the patient, and regulating the diaphragm output of the patient for each breath cycle. In some embodiments, the stimulation signal is administered via one or more endovascular electrodes.


In accordance with a first embodiment, the administration of the stimulation signal can occur within a time period, such as 1 hour, 3 hours, 6 hours, 12 hours, 1 day, 3 days, and 1 week, of the patient's first reception of respiratory assistance from the ventilator.


In accordance with a second embodiment, the method also includes obtaining data indicative of at least one of: one or more ventilator breath parameters; one or more pacing parameters; and a prescribed assist level for the patient.


In accordance with a third embodiment, the one or more ventilator breath parameters includes timing data indicative of the duration of a ventilated breath.


In accordance with a fourth embodiment, the method also includes maintaining synchrony between the delivery of the stimulation signal and the ventilator breath cycle.


In accordance with a fifth embodiment, maintaining synchrony includes determining the current breath cycle via data from one or more sensors, and comparing the current breath cycle with the timing data from at least one previous breath cycle.


In accordance with a sixth embodiment, recruitment of the diaphragm provides at least a portion of the prescribed assist level.


In accordance with a seventh embodiment, the method further comprises determining a diaphragm contribution level attributable to the administration of the stimulation signal, wherein the prescribed assist level is the sum of the diaphragm contribution level and a ventilator contribution level.


In accordance with an eight embodiment, the simulation signal includes stimulation signal characteristics that cause the stimulation signal, when delivered to the patient, to satisfy the diaphragm contribution level.


In accordance with a ninth embodiment, the diaphragm contribution level is measured in tidal volume or pressure, individually, in combination, and including components thereof.


In accordance with a tenth embodiment, the prescribed diaphragm contribution level is dependent on the condition of the patient and the contractile capacity and/or functional status of the diaphragm.


In accordance with a eleventh embodiment, determining the contractile capacity includes measuring strength and endurance from the response of the diaphragm to test stimulation patterns.


In accordance with a twelfth embodiment, the condition of the patient and contractile capacity of the diaphragm and/or functional status of the phrenic nerves are assessed prior to the administration of the treatment plan and/or during administration of the treatment plan.


In accordance with a thirteenth embodiment, determining the strength and endurance of the patient's diaphragm includes measuring maximum diaphragm output and fatigue characteristics of the diaphragm.


In accordance with a fourteenth embodiment, monitoring the breath cycle includes sensing breath cycle data via a breath sensor discrete from and interfaced with a breathing circuit of the ventilator and the patient airway, and determining the inspiration phase and the expiration phase of the breath cycle and the duration of each phase from the sensed breath cycle data.


In accordance with a fifteenth embodiment, monitoring the breath cycle further includes determining at least one of the amplitude and rate of change of ventilator output signals for each breath.


In accordance with a sixteenth embodiment, administering a stimulation signal includes generating a stimulation signal in accordance with one or more pacing parameters; and delivering the stimulation signal in relation to a ventilator breath cycle.


In accordance with a seventeenth embodiment, regulating the diaphragm output of the patient for each breath cycle, such as a paced breath cycle, includes monitoring the diaphragm output in response to the last administered stimulation signal; and comparing the diaphragm output of the last administered stimulation signal to a preset target range. Alternatively, the method can skip pacing for one breath cycle (MV-Only), but stimulate the at the next breath cycle (i.e., mechanical ventilation and diaphragm pacing. The method can then compare both of these values and regulate the next paced breath.


In accordance with an eighteenth embodiment, monitoring the diaphragm output in response to the last administered stimulation signal includes sensing diaphragm output data via one or more sensors, wherein the diaphragm output data is indicative of one or more of: air flow, tidal volume, pressure, and/or parameters derived from combinations of flow, tidal volume and/or pressure; and processing the sensed diaphragm data to determine the diaphragm output.


In accordance with a nineteenth embodiment, regulating the diaphragm output of the patient for each breath cycle further includes modifying the stimulation signal to be administered with the next ventilator breath if the diaphragm output of the last administered stimulation signal is outside of the preselected target range.


In accordance with a twentieth embodiment, the preselected target range includes a diaphragm contribution level.


In accordance with a twenty-first embodiment, the method further comprises determining a cause if the diaphragm output of the last administered stimulation signal is outside of the preselected target range.


In accordance with a twenty-second embodiment, if the cause is due to a variation in the respiratory mechanics of the patient, then the condition of the patient's diaphragm and respiratory system during administration of the treatment plan is assessed.


In accordance with a twenty-third embodiment, the method further comprises reprogramming the stimulation signal based on the condition of the assessed diaphragm.


In accordance with a twenty-fourth embodiment, assessing the diaphragm includes monitoring data indicative of flow and pressure of the ventilator breath cycle to determine timing of the end expiration delay; progressively stimulating the diaphragm with stimulating signals based on the monitored data of the ventilator breath cycle; and determining one or more functional characteristics of the diaphragm and respiratory system, wherein the one or more functional characteristics includes one or more of Maximum Static Inspiratory Pressure, Inspiratory Capacity, Work of Breathing, Pressure-Time Product, Pressure-Time Index, Electromyogram (EMG), Maximum Relaxation Rate, and Expiration Time Constant.


In accordance with a twenty-fifth embodiment, the diaphragm stimulation is targeted to take place during each ventilator breath in order to reduce positive pressure and reduce the risk of Ventilator Induced Lung Injury (VILI).


In accordance with a twenty-sixth embodiment, monitoring the breath cycle of the ventilator includes sensing signals indicative of ventilator inspiration and expiration; and calculating one or more of: inspiration phase; expiration phase; inspiration pause; expiration pause.


In accordance with a twenty-seventh embodiment, administering the stimulation signal includes delivery of the stimulation signal contemporaneously with inspiration phase.


In accordance with anther aspect of the present disclosure, a transvascular diaphragm pacing system is provided for preventing or reversing diaphragm disuse atrophy in a patient receiving respiratory assistance from a ventilator. The system comprises at least one endovascular electrode configured to transmit a stimulation signal delivered thereto. The stimulation signal in some embodiments is configured to recruit a phrenic nerve of the patient, the stimulation signal in some embodiments have one or more stimulation parameters. The system also includes one or more sensors configured to sense breath cycle signals from an associated ventilator and diaphragm response from recruitment of the phrenic nerve, and a pulse generator coupled in electrical communication with the at least one endovascular electrode, and at least one input device configured to input data indicative of one or more aspects of a therapy plan. The system further includes a controller coupled in electrical communication with the one or more sensors, the at least one input device, and the pulse generator. The controller is some embodiments is programmed to: receive input data indicative of one or more aspects of the therapy plan, wherein the input data includes sensed signals indicative of ventilator operation and one or more pacing parameters; monitor the breath cycle signals and determine the inspiration phase and expiration phase of the breath cycle; generate the stimulation signal according to the one or more pacing parameters and delivering the generated stimulation signal to the at least one transvascular electrode at a preselected time of the ventilator breath cycle; and regulate the diaphragm output of the patient for each breath cycle.


In accordance with a twenty-eighth embodiment, the controller is further programmed to regulate the diaphragm output of the patient to satisfy a prescribed assist level of the patient.


In accordance with a twenty-ninth embodiment, the controller is further programmed to maintain synchrony of the delivery of the stimulation signal with the ventilator breath cycle.


In accordance with a thirtieth embodiment, the controller is further programmed to: monitor the diaphragm output in response to the last administered stimulation signal; and compare the diaphragm output of the last administered stimulation signal to a preselected target range.


In accordance with a thirty-first embodiment, the controller is programmed to monitor the diaphragm output by sensing diaphragm output data via one of said one or more sensors and processing the sensed diaphragm data to determine the diaphragm output, wherein the diaphragm output includes flow, tidal volume and/or pressure and/or parameters derived from combinations of flow, tidal volume and/or pressure.


In accordance with a thirty-second embodiment, the controller is further programmed to modify the stimulation signal to be administered with the next ventilator breath if the diaphragm output of the last administered stimulation signal is outside a preselected range. Alternatively, the signal could be modified and administered at the next breath with programmed pacing (i.e., a combined breath) as some ventilator breaths may be skipped between stimulations.


In accordance with a thirty-third embodiment, the controller is further programmed to determine a cause if the diaphragm output of the last administered stimulation signal is outside of the preselected target range.


In accordance with a thirty-fourth embodiment, if the controller determines that the cause is due to a variation in the respiratory mechanics of the patient, then the controller is further programmed to assess the condition of the patient's diaphragm and respiratory system during administration of the treatment plan.


In accordance with a thirty-fifth embodiment, the controller is further programmed to reprogram the stimulation signal based on the condition of the assessed diaphragm.


In accordance with a thirty sixth embodiment, the controller is further programmed to assess the diaphragm by monitoring data indicative of flow and pressure of the ventilator breath cycle to determine timing of the end expiration delay, progressively stimulating the diaphragm with stimulating signals based on the monitored data of the ventilator breath cycle, and determining one or more functional characteristics of the diaphragm and respiratory system. In some embodiments, the one or more functional characteristics includes one or more of Maximum Static Inspiratory Pressure, Inspiratory Capacity, Work of Breathing, Pressure-Time Product, Pressure-Time Index, EMG, Maximum Relaxation Rate, and Expiration Time Constant.


In accordance with a thirty-seventh embodiment, the controller is further programmed to determine the readiness to wean from the ventilator based on the assessment of the diaphragm.


In accordance with a thirty-eighth embodiment, the stimulation signal includes a doublet or triplet pulse at the beginning of the stimulation train or in the middle of the simulation train.


In accordance with another aspect of the present disclosure, a method is provided for preventing respiratory disuse atrophy in a patient who is attached to a mechanical ventilator and receiving artificial breath cycle respiratory assistance and sedation. The method comprises placing a first electrode in the patient's vasculature in proximity to the left phrenic nerve, placing at second electrode in the patient's vasculature in proximity to the right phrenic nerve, and within hours of attaching the patient to the ventilator, delivering a pre-programmed stimulation signal to the first and second electrodes in order to stimulate the diaphragm in synchrony with the ventilator breath cycle.


In accordance with a thirty-ninth embodiment, within hours includes one of the following: within twelve hours; within six hours, within five hours; within four hours, within three hours; and within one hour.


In accordance with a yet another aspect of the present disclosure, a method is provided for administering a treatment plan for preventing or speeding up reversal of diaphragm disuse atrophy in a patient receiving respiratory assistance from a ventilator. The ventilator provides a breath cycle to the patient and the patient has a prescribed assist level. The method comprises storing a measurement value indicative of a preselected range of diaphragm output, wherein the diaphragm output is at least a portion of the prescribed assist level, monitoring the breath cycle of the ventilator, administering a stimulation signal to the patient in synchrony with the breath cycle of the ventilator to recruit the diaphragm of the patient, the recruitment of the diaphragm causing a level of diaphragm output, and regulating the diaphragm output of the patient attributable to phrenic recruitment for each stimulated breath cycle in order to fall within the preselected range of diaphragm output.


In accordance with a fortieth embodiment, regulating the diaphragm output of the patient for each breath cycle includes monitoring the diaphragm output in response to the last administered stimulation signal, and comparing the diaphragm output of the last administered stimulation signal to the preselected range of diagram output.


In accordance with a forty-first embodiment, monitoring the diaphragm output in response to the last administered stimulation signal includes sensing diaphragm output data via one or more sensors, and processing the sensed diaphragm output data to determine the diaphragm output. In some embodiments, the diaphragm output includes one or more of: air flow, tidal volume, pressure, and/or parameters derived from combinations of flow, tidal volume and/or pressure.


In accordance with a forty-second embodiment, regulating the diaphragm output of the patient for each breath cycle further includes comparing the determined diaphragm output to the preselected range of diagram output, and modifying the stimulation signal to be administered with the next ventilator breath if the diaphragm output from the last administered stimulation signal fell outside of the preselected range of diagram output.


In accordance with a forty-third embodiment, modifying the stimulation signal includes increasing the intensity of the stimulation signal.


In accordance with a forty-fourth embodiment, increasing the intensity includes one or more of: increasing the frequency of stimulation signal pulses; increasing the amplitude of stimulation signal pulses; and/or increasing the duration of stimulation signal pulses.


In accordance with a forty-fifth embodiment, diaphragm output includes tidal volume, pressure, or combinations thereof.


In accordance with a still another aspect of the present disclosure, a method is provided for preventing diaphragm disuse atrophy in a critically ill patient. The method comprises attaching a patient to a ventilator, monitoring the breath cycle of the ventilator; administering, within one of twelve hours or six hours of attaching the patient to the ventilator, a pre-programmed stimulation signal to the patient to recruit the diaphragm of the patient for outputting a level of diaphragm output, and regulating the level of diaphragm output of the patient for each breath cycle based on the administration of the stimulation signal to match or exceed a preselected threshold.


In accordance with yet still another aspect of the present disclosure, a method is provided for constructing a therapy plan for a patient. The therapy plan attempts to prevent disuse atrophy or rehabilitate the patient's diaphragm. The method comprises assessing the diaphragm for maximum diaphragm output and fatigue characteristics, and determining one or more stimulation signals that cause diaphragm output to be a preselected percentage of the maximum diaphragm output.


In accordance with a forty-sixth embodiment, the method further comprises creating a stimulation administration plan including a series of discrete stimulation signals, wherein the series of stimulation signals can vary by rate, duration, pulse width, frequency, and amplitude.


In accordance with still yet another aspect of the present disclosure, a method is provided for assessing a diaphragm. The method comprises monitoring data indicative of flow and pressure of a ventilator breath cycle, stimulating the diaphragm with stimulating signals based on the monitored data of the ventilator breath cycle, and determining one or more functional characteristics of the diaphragm from the response generated from the stimulation of the diaphragm with the stimulation signals. In some embodiments, the one or more functional characteristics including one or more of Maximum Static Inspiratory Pressure, Inspiratory Capacity, Work of Breathing, Pressure-Time Product, Pressure-Time Index, EMG, Maximum Relaxation Rate, and Expiration Time Constant.


In accordance with still another aspect of the present disclosure, a transvascular diaphragm pacing system is provided for constructing a therapy plan for a patient. The therapy plan in some embodiments prevents diaphragm disuse atrophy or rehabilitates the patient's diaphragm. The system includes at least one endovascular electrode configured to transmit a stimulation signal delivered thereto. The stimulation signal in some embodiments is configured to recruit a phrenic nerve of the patient and the stimulation signal has one or more stimulation parameters. The system also includes one or more sensors configured to sense breath cycle signals from an associated ventilator and diaphragm response from recruitment of the phrenic nerve, a pulse generator coupled in electrical communication with the at least one endovascular electrode, and at least one input device configured to input data indicative of one or more aspects of a therapy plan. The system further includes a controller coupled in electrical communication with the one or more sensors, the at least one input device, and the pulse generator. The controller is some embodiments is programmed to assess the diaphragm for maximum diaphragm output and fatigue characteristics, and determine one or more stimulation signals that cause diaphragm output to be a preselected percentage of the maximum diaphragm output.


In accordance with yet still another embodiment, a transvascular diaphragm pacing system is provided for assessing a diaphragm. The system includes at least one endovascular electrode configured to transmit a stimulation signal delivered thereto. The stimulation signal in some embodiments is configured to recruit a phrenic nerve of the patient and the stimulation signal has one or more stimulation parameters. The system also includes one or more sensors configured to sense breath cycle signals from the ventilator and the diaphragm response from recruitment of the phrenic nerve, a pulse generator coupled in electrical communication with the at least one endovascular electrode, and at least one input device configured to input data indicative of one or more aspects of a therapy plan. The system further includes a controller coupled in electrical communication with the one or more sensors, the at least one input device, and the pulse generator. The controller is some embodiments is programmed to: monitor data indicative of flow and pressure of a ventilator breath cycle; stimulate the diaphragm with stimulating signals based on the monitored data of the ventilator breath cycle; and determine one or more functional characteristics of the diaphragm from the response generated from the stimulation of the diaphragm with the stimulation signals. In some embodiments, the one or more functional characteristics include one or more of Maximum Static Inspiratory Pressure, Inspiratory Capacity, Work of Breathing, Pressure-Time Product, Pressure-Time Index, EMG, Maximum Relaxation Rate, and Expiration Time Constant.


This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.





DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of the claimed subject matter will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a schematic diagram of one example of a transvascular diaphragm pacing system formed in accordance with aspects of the present disclosure;



FIG. 2 is a schematic diagram of the location of the left and right phrenic nerves in a patient in relation to the heart and diaphragm of the patient;



FIG. 3A is one example of one pair of catheter-mounted phrenic nerve stimulating electrodes positioned within the left subclavian vein of the patient;



FIG. 3B is one example of one pair of catheter-mounted phrenic nerve stimulating electrodes positioned within the superior vena cava of the patient;



FIG. 4 is a block diagram of the components of one embodiment of the system of FIG. 1;



FIG. 5 illustrates the shift in force generated when stimulating with a train that begins with a doublet/triplet;



FIG. 6 illustrates one example of the programmable parameters of each stimulation pulse as well as the ratiometric relationship between the charge injection pulse and charge balance pulse when exemplifying net-charge;



FIG. 7 illustrates one example of three stimulation trains, in each of which the pulse width and frequency are modulated to increase from the start to end of the stimulation train to cause graded contraction of the diaphragm;



FIG. 8 illustrates one example of three stimulation trains, in each of which the pulse width and frequency are modulated to first increase and then decrease from the start to end of the stimulation train to cause graded contraction of the diaphragm;



FIG. 9 illustrates examples of representative ramp envelopes where the ramp slopes represent the modulations in pulse width and/or pulse frequency within a train;



FIG. 10 illustrates examples of representative pulse width ramp envelopes and stimulus frequency envelopes, which can be combined together to form a single pacing ramp;



FIG. 11 illustrates examples of timing for the start time and end time of stimulation trains generated and delivered to the phrenic nerves, relative to a ventilator breath;



FIG. 12 illustrates other examples of timing for the stimulation trains generated and delivered to the phrenic nerves;



FIGS. 13A-C illustrate yet other examples of timing as well as amplitude modulations for the stimulation trains generated and delivered to the phrenic nerves.



FIG. 14 illustrates one example of a process configured to carry out one or more functions of the system 20, including but not limited to the Ventilator Initiated Pacing Mode;



FIG. 15 illustrates one feedback scheme that may be practiced by the process of FIG. 14 and the system of FIG. 1;



FIG. 16 illustrates one example of a change in respiratory mechanics during pacing in synchrony with a volume controlled mechanical ventilator;



FIG. 17A-B illustrate examples of maintaining the diaphragm output at a prescribed level despite a time dependent fatiguing and drop-out of stimulated Type IIb fibers;



FIG. 17C illustrates a process for using doublets to enhance force in fatiguing muscle;



FIG. 18 illustrates one example of progressive recruitment of nerve axons across the cross-section of the phrenic nerve and their associated motor units by increasing the pacing intensity;



FIG. 19 is a graphical representation for scaling the contribution of the system of FIG. 1 to prescribed assist level and determining one or more initial pacing parameters using, for example, a binary algorithm;



FIG. 20A is a schematic representation of one example of scaling the contribution of the system of FIG. 1 to diaphragm response;



FIG. 20B is a schematic representation of another example of scaling the contribution of the system of FIG. 1 to diaphragm response;



FIG. 21 is a graphical representation of one example of calculating the Work of Breathing (WOB), the calculation in turn used to regulate diaphragm contribution;



FIG. 22 is one example of a routine for assessing the diaphragm without disconnecting the patient from the ventilator;



FIGS. 23 and 24 illustrate examples of the timing of administered stimulus in relation to the phases of the breath cycle;



FIG. 25 is a graphical representation of airway pressure data obtained from a volume controlled ventilator with and without stimulation;



FIG. 26 is a graphical representation of one example of calculating the Pressure-Time Product, the calculation in turn used to regulate diaphragm contribution.



FIG. 27 is one example of an assessment routine carried out by the system of FIG. 1;



FIG. 28 is a graphical representation of end expiratory pauses, sometimes referred to as quiet periods;



FIG. 29 is one example of a routine for determining the duration of the end-expiratory pause;



FIG. 30 is a schematic diagram showing one example of a Pacer-Initiated Ventilation Mode that can be carried out by one or more embodiments of the system shown in FIG. 1;



FIG. 31 illustrates the relationship between the pacing system and the ventilator in Pacer-Initiated Ventilation Mode:



FIG. 32 is a schematic diagram showing one example of a pacing system operating in an Autonomous Mode; and



FIG. 33A-C graphically represent the benefits of examples of the system of FIG. 1 in preventing diaphragm disuse atrophy or rehabilitating the diaphragm for successful weaning from respiratory assistance.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the appended drawings where like numerals reference like elements is intended as a description of various embodiments of the disclosed subject matter and is not intended to represent the only embodiments. Each embodiment described in this disclosure is provided merely as an example or illustration and should not be construed as preferred or advantageous over other embodiments. The illustrative examples provided herein are not intended to be exhaustive or to limit the claimed subject matter to the precise forms disclosed.


The following discussion provides examples of transvascular diaphragm pacing systems (TDPS) and methods for providing respiratory therapy to a patient. Some examples of the TDPS provide rapid insertion and deployment of endovascular pacing electrodes in critically ill patients who require intubation and invasive PPMV in order to support the physiological requirements of the human ventilatory system. Examples described herein make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation applied to endovascular electrodes that are temporarily and reversibly inserted in central veins of the patient, such as the left subclavian vein and the superior vena cava. In some examples, the TDPS is designed to seamlessly interface with any commercially available positive-pressure ventilatory assistance/support equipment such as is commonly in use in hospital intensive care units (ICU) for treating critically ill patients with breathing insufficiencies, pain, trauma, sepsis or neurological diseases or deficits.


Rapid insertion and deployment of the disclosed systems can be effected via employment of minimally invasive central line catheter-based electrodes, such as those described in U.S. application Ser. No. 12/524,571, filed Jul. 25, 2009, which can be quickly installed in the patient under local anesthesia and rapidly activated, such that a pacing therapy can be initiated within one or a few hours of admission/intubation. If indicated by the patient clinical status, pacing via electrical stimulation can proceed in synchrony with ventilator breaths provided by virtually any brand or model of commercially available positive-pressure ventilator operating in typical modes such as Control Mode, Support Mode or Assist Mode. Once therapy is complete, the pacing catheter electrodes can be easily removed. In some embodiments, system pacing follows the operation of a ventilator while in other embodiments, the ventilator initiates and/or assists a breath cycle based on physiological responses generated by the pacing system.


Rapid deployment, i.e., within a few hours of admission/intubation, is advantageous in preventing the ill effects of muscle disuse atrophy, which are known to occur very quickly in ventilated and sedated patients, and to maintain diaphragm muscle strength and endurance during the critical period when a patient is unable to breathe independently. FIG. 33A-C illustrate examples of employing the TDPS to prevent diaphragm disuse atrophy or rehabilitate the diaphragm for successful weaning from respiratory assistance. As a result, early and successful weaning from the ventilator can be realized. Another advantage stemming from the rapid deployment capability of the systems described herein and a rapid initiation of a diaphragm pacing therapy is that this intervention will help prevent/reduce the deleterious effects of high positive airway/lung pressures (such as Ventilator Induced Lung Injury, VILI) that are commonly encountered in patients subjected to mechanical ventilation and contribute to failure to wean and protracted dependence on ventilation in many cases. Patients who remain on mechanical ventilation have high risk of ventilator-associated pneumonia (VAP) and of contracting nosocomial (hospital-borne) infections. It is therefore important to ensure that a patient on mechanical ventilation is liberated (weaned) from ventilation as soon as medically possible. Examples of the pacing systems and methods described herein address this need and others.


As will be described in more detail below, the systems of the present disclosure are designed to stimulate the right phrenic nerve (to recruit the right hemi-diaphragm), the left phrenic nerve (to recruit the left hemi-diaphragm), or both phrenic nerves in order to recruit the entire diaphragm muscle. Furthermore, each phrenic nerve may be recruited using a single channel of stimulation or two or more channels of stimulation per nerve. An example showing one embodiment employing two channels of stimulation per phrenic nerve is shown in FIG. 3. In some examples that employ two channels of stimulation per nerve, the stimulation pulses can be delivered 180 degrees out of phase.


In the following description, numerous specific details are set forth in order to provide a thorough understanding of one or more embodiments of the present disclosure. It will be apparent to one skilled in the art, however, that many embodiments of the present disclosure may be practiced without some or all of the specific details. In some instances, well-known process steps have not been described in detail in order not to unnecessarily obscure various aspects of the present disclosure. Further, it will be appreciated that embodiments of the present disclosure may employ any combination of features described herein.


Turning now to FIG. 1, one example is shown of a transvascular diaphragm pacing system, generally designated 20, formed in accordance with aspects of the present disclosure. As best shown in FIGS. 1 and 4, the system 20 includes a stimulator 24 coupled in electrical communication (e.g., wired or wireless) with one or more transvascular electrodes 28 suitable for placement in-vivo near the left and/or right phrenic nerves. In use, the stimulator 24 is configured to transmit a stimulatory signal in the form of stimulation pulses to one or more of the electrodes 28. The electrodes 28, in turn, emit the stimulatory signal in the vicinity of a left and/or right phrenic nerve. Stimulation of the left and/or right phrenic nerve, in turn, aims to cause recruitment of the subject's diaphragm.


As will be described in more detail below, the parameters (amplitude, duration, frequency, etc.) of stimulation pulses affect the amount of diaphragm recruitment, and the resulting output (such as tidal volume, pressure) therefrom. In that regard, and as will be described in more detail below, sensors 48 configured to sense various physiological parameters of the patient, some indicating diaphragm output, can provide feedback to the stimulator 24 for regulation of the administered therapy.


As described herein, the system 20 can be the sole respiratory aid for the patient. In other embodiments, the system 20 operates in conjunction with a positive pressure mechanical ventilator 32 (“ventilator 32”) in order to satisfy the respiratory needs of the patient. In some embodiments, signals sensed from a breath sensor 50 that monitors the breath cycle of the ventilator 32 can be employed to synchronize the delivery of the stimulation signals with the ventilator breath cycle.


The respiratory needs of the patient are sometimes referred to as the patient's prescribed assist level. The prescribed assist level is generally quantified as the amount of tidal volume or pressure (or a combination of the two) provided to the patient during one breath cycle that satisfies the minimum physiological functions of the patient. Generally, the prescribed assist level in terms of tidal volume is approximately 7-10 mL per Kg of patient weight. In some embodiments, the prescribed assist level is satisfied solely via artificial means (e.g., via system 20, via ventilator 32, or a combination of the two). This may occur in patients that are heavily sedated and/or unconscious. In other embodiments, the prescribed assist level may include some patient initiated respiratory effort.


As will be described below, in some embodiments, the clinician, as part of a therapy plan, can program the system 20 in order to satisfy the prescribed assist level (i.e., in tidal volume, pressure, or both) via recruitment of the diaphragm. In other embodiments, the clinician can program the system 20 to contribute only a percentage of the prescribed assist level (in volume, pressure, or both), referred to herein as the diaphragm contribution or diaphragm contribution level, via electrical recruitment of the phrenic nerve or nerves. The percentage can vary, and is patient-dependent based on a variety of factors, such as the condition of the patient, the ailment afflicting the patient, time elapsed preceding any stimulation therapy, etc. In this embodiment, the remaining percentage of the prescribed assist level can then be satisfied by the ventilator 32, which can be appropriately programmed by the clinician at the onset of or during administration of the therapy plan.


In some embodiments, as will be described in more detail below, the system 20 carries out one or more assessments of the patient in order to determine, for example, the current condition of the patient's diaphragm, the stimulation signal characteristics that relate to the recruitment of the diaphragm, such as threshold pulse width, pulse amplitude, pulse frequency, sub-maximal pulse width, and supra-maximal pulse width, etc. Threshold Pulse Width refers to a minimum pulse width at and above which there is a diaphragmatic response. Threshold Frequency refers to a minimum frequency at and above which partly or completely fused Tetanic contractions are produced, so as to generate useful diaphragmatic force and/or work.


Turning now to FIG. 2, placement of the electrodes 28 will now be described with reference to a heart H and diaphragm D of a patient P. As shown in FIG. 2, the left and right phrenic nerves run along the lateral and medial side of the heart to a diaphragm D. The left subclavian vein traverses in proximity to the left phrenic nerve and transmits blood from the upper extremities to the heart H. The superior vena cava traverses near the right phrenic nerve and carries deoxygenated blood from the upper half of the body to the heart's right atrium. As known in the art, when either left or right phrenic nerve receives a high enough electric stimulus as a voltage (V), current (mA) or charge (nano-coulombs) the phrenic nerve is activated and causes the diaphragm D to contract.



FIG. 3 illustrates one embodiment showing two channels of transvascular stimulation delivered to the left phrenic nerve by endovascular electrodes placed in the left subclavian vein and two channels of transvascular stimulation delivered to the right phrenic nerve by endovascular electrodes placed along the lateral wall of the superior vena cava. Each phrenic nerve can be partially or fully recruited from more than one endovascular electrode combination. Partial nerve recruitment from more than one electrode combination is useful to reduce muscle fatigue over time.


Turning now to FIG. 4, the components of the system will now be described in detail. As shown in FIG. 4, the system 20 includes a first electrode 28A having anodal and cathodal electrode contacts 30A, 32A placed within the left subclavian vein and positioned in the vicinity of the left phrenic nerve. In the embodiment shown, a second electrode 28B having anodal and cathodal electrode contacts 30B, 32B may be also placed within the left subclavian vein and positioned in the vicinity of the left phrenic nerve.


The system 20 further includes a third electrode 28C having anodal and cathodal electrode contacts 30C, 32C placed within the superior vena cava and positioned in the vicinity of the right phrenic nerve. In the embodiment shown, a fourth electrode 28D having anodal and cathodal electrode contacts 30D, 32D may be also placed within the superior vena cava and positioned in the vicinity of the right phrenic nerve.


While two electrodes are shown and described for stimulating each of the left and right phrenic nerves, it will be appreciated that other numbers of electrodes may be practiced with embodiments of the present disclosure. For example, four electrodes can be used for stimulating each phrenic nerve. For more information regarding the placement of a plurality of electrodes endovascularly as well as the configuration of one type of electrode structure that can be practiced with embodiments of the present disclosure, please see U.S. application Ser. No. 12/524,571, filed Jul. 25, 2009, the disclosure of which is hereby expressly incorporated in its entirety. Additionally, while electrodes with anodal and cathodal electrode contacts are utilized to emit the stimulation pulses into the phrenic nerves, other configurations are possible. For example, several cathodal electrode contacts may be used in conjunction with a single anodal electrode contact, and vice versa.


Each electrode 28 is connected in electrical communication with the stimulator 24. In the embodiment shown, each electrode 28 is electrically connected to the stimulator 24 via lead(s) 40.


The system 20 further includes one or more sensors 48 configured to monitor the response to phrenic nerve stimulation and/or other physiological characteristics of the patient. As will be described in more detail below, the one or more sensors 48 can be part of a feedback control scheme for regulating the stimulation administered to the patient. The plurality of sensors 48 can transmit data to the stimulator 24 indicative of one or more of the following: electromyographic activity (intramuscular, surface, and/or intraesophageally monitored), central venous pressure (any specific component of this signal), heart rate, chest wall acceleration, blood oxygen saturation, carbon dioxide concentration, catheter position/depth within vein, mechanical movement (i.e., from accelerometers, length gauges, and/or strain gauges) resistance (i.e., from impedance pneumographs, and/or piezoresistive sensors) and/or other physiological or mechanical parameters. It will be appreciated that the information can be appropriately processed (e.g., filtered, conditioned, amplified, etc.) prior to use by the stimulator 24.


The term “volume” as used herein includes, but is not limited to, Inspired Tidal Volume, Expired Tidal Volume or Minute Volume. The term “pressure” as used herein includes, but is not limited to, Airway Pressure, Alveolar Pressure, Ventilator Pressure, Esophageal Pressure, Gastric Pressure, Transdiaphragmatic Pressure, Intra-Thoracic Pressure Positive End-Expiratory Pressure or Pleural Pressure. Any pressure may be Peak Pressure, Mean Pressure or Baseline Pressure. The term “flow” as used herein includes, but is not limited to, Inspiratory Flow or Expiratory Flow.


In some embodiments, the electrodes 28 can also monitor physiological variables of the subject by virtue of their placement in the central veins. Such monitored physiological variables can include, but are not limited to: central venous pressure, electrocardiogram, and mixed venous oxygen saturation. It will be appreciated that one or more sensors discrete from the electrodes, such as one or more of the sensors 48, may be used to monitor such physiological variables.


In some embodiments, the system 20 can additionally or alternatively include a breath sensor 50 for sensing parameters of the ventilator 32. In that regard, the breath sensor 50 can be configured to interface with any standard breathing circuit used in critical care ventilators and therefore the pacing system is independent of the brand of ventilator used. The breath sensor 50, by virtue of its location in the breathing circuit, can monitor and/or measure several ventilation parameters and communicate such parameters to the stimulator 24. As will be described in more detail below, the breath sensor 50 can be part of or used solely as a feedback control scheme for regulating the stimulation administered to the patient. The sensed ventilation parameters may include, but not limited to, airflow (inspired and/or expired), volume, pressure (airway, esophageal, gastric, and/or some combination/derivative of the former). In some embodiments, other sensors may aid in the procurement of one or more ventilation parameters.


In some embodiments, the example parameters are being measured both to and from the ventilator 32. In the embodiment shown, the breath sensor 50 is external to the ventilator 32 so that the system is independent of ventilator model. However, the system 20 could also be integrated to use a ventilator's internal sensors or signals externally supplied by the ventilator can provide the information to the system 20 for proper operation so that an external breath sensor can be omitted.


The stimulator 24 functions, in part, as a signal generator for providing therapy to the diaphragm in response to information received from the one or more of the sensors 48 and 50 and/or information programmed into the system 20 by the clinician. In that regard, the stimulator 24 delivers pulses to the endovascular electrodes 28 in accordance with one or more protocols described herein. As will be described in more detail below, the pulses in some embodiments are generated by the stimulator 24 with characteristics that deliver a suitable charge to the phrenic nerves in order to provide enough diaphragm recruitment to satisfy the selected diaphragm contribution (e.g., in volume, pressure, both, or derived parameters from volume and pressure) of the prescribed assist level described above.


Towards that end, the stimulator 24 is configured to deliver fully programmable stimulation, including, but not limited to, the following: any number of pulses, any combination of the defined pulses, any order of delivery of the defined pulses, multiple instances of any defined pulse(s), any frequency of stimulation, and/or any delay between pulses (interpulse delay). Each pulse can be independently programmable (e.g., frequency, amplitude, duration, etc.). The stimulation pulse(s) and/or train(s) may or may not generate a repeatable pattern.


Each pulse includes a charge injection phase and a charge balance phase (biphasic). In some embodiments, the balance phase duration and amplitude is programmable as a ratio of the charge phase duration and amplitude so that zero net charge is maintained, as shown in FIG. 6. This ratio, denominated as the Charge:Balance Ratio (C:B Ratio), is applied so that the product of amplitude and duration (charge) is equal in both the charge phase and the balance phase. In some embodiments, each pulse is programmable via the following parameters: ratio of charge phase duration to balance phase duration; pulse width range; stimulation amplitude (current level); and delay between the charge phase and the balance phase. Stimulation amplitude may be changed during the same phase (i.e., generate a gradually decreasing current for the charge pulse width). While zero net change is preferred, non-netzero charges may be used.


Because the diaphragm is skeletal muscle, pacing may be accomplished by delivering one or more stimulation signals to produce a mechanically effective contraction of the diaphragm. In that regard, the stimulation signals may include a plurality of pulses that are grouped in stimulation trains. As used herein, a stimulation train is defined as a collection of stimulation pulses. This definition does not imply a specific composition, order of delivery, and/or shape profile or envelope. FIGS. 7 and 8 illustrate examples of stimulation trains generated by the stimulator 24 and delivered to the electrodes 28 for stimulating the phrenic nerves. The stimulation trains may start with a doublet (pair of pulses) or a triplet, which can be physiologically relevant; two or three pulses in quick succession at the beginning of recruitment has been shown to increase the overall force profile by shifting the baseline up during the initial onset of recruitment, as demonstrated in FIG. 5. Similarly, a doublet or triplet delivered part-way through a train can cause a sustained force increase. The upward shift in early force production infers that fewer stimulation pulses can be used to generate the same amount of force from the diaphragm in a comparable period of time. This can be quite beneficial since over-activating the diaphragm with excessive numbers of stimulation pulses may induce fatigue, and may also cause conversion of fibers from fast-twitch (powerful, but fatigued easily) to slow-twitch (fatigue-resistant but unable to produce large amounts of force).


Stimulation or pulse trains are typically characterized by the rate, the duration, the pulse width, the frequency, and the amplitude of the signals. The rate of the stimulation train corresponds to the number of stimulation trains delivered per minute, which can correlate with the patient's respiratory rate or mechanical ventilator rate. The duration of the stimulation train refers to the length of time the stimulation train is delivered. The pulse width indicates the duration of each individual pulse creating the stimulation train. Similarly, the frequency indicates the number of individual pulses delivered per second. Finally, the amplitude refers to the voltage of each pulse delivered. The parameters of amplitude, frequency, and pulse width determine the strength of the induced diaphragmatic pacing.


In some embodiments, the stimulation trains form ramp trains. For example, ramp trains can be formed by linearly increasing (or decreasing) either the instantaneous frequency of consecutive pulses in a train, the durations (pulse widths) of consecutive pulses in a train, or both. Ramp trains indicate that a change in injected charge is induced by the programmed stimulation parameters and any applied modulation.


Variations in pulse width and frequency modulation allow different ramp train envelopes to be designed. Referring to FIG. 9, ramp envelopes can be generated during a single pacing ramp in pulse width alone, frequency alone or both in pulse width and frequency. Pulse width and stimulus frequency envelopes can be modulated together or combined, as shown in the examples of FIG. 10, during pacing to generate a desired ramp train. For example, combination AF will cause a graded recruitment of the phrenic motoneurons at a constant frequency (no rate coding) and Combination BA will gradually recruit and de-recruit the motoneurons, with a steadily increasing rate coding; although any combination is possible. It will also be possible to alter the rate of recruitment and de-recruitment (slope) of motoneurons, independent of the rate coding, by adjusting the relative percentage of pulse width increase and decrease duration within a single pacing ramp. Further, the pulse width and frequency modulation can be defined mathematically as piecewise functions in time, thereby allowing any desired ramp envelope to be generated while remaining within the scope of the present disclosure.


Although a large set of ramp trains can be generated, there will be some embodiments where the ramp trains aim to achieve one or more of the following: 1) mimic physiological contraction of the diaphragm by independently controlling recruitment and rate coding by means of pulse width and frequency modulation, respectively; 2) delay the onset of neuromuscular fatigue; 3) maintain the native fiber composition of the healthy diaphragm; 4) condition the diaphragm towards a specific fiber type, for e.g. Type I (Slow Twitch, Fatigue Resistant).


With the various programmable stimulation trains or ramp trains, a therapy plan can be constructed by the clinician with or with the aid of the system 20. The therapy plan constructed by the clinician is patient dependent in order to achieve various goals. The therapy plan may include one or more of the following: timing of delivery of pacing in relation to ventilator breaths (e.g., every breath, every other breath, every five breaths, etc.); intermittent stimulation segments (e.g., stimulation delivery for 15 minutes every hour), etc. As an example, in a patient who requires PPMV and sedation, a therapy plan would take into consideration both major objectives of minimizing VIDD and minimizing risk of VILI. As another example, in a therapy plan for a patient who able to remain awake during part of the day and breathe independently for some hours and will soon be attempting to wean, it may be desirable to not pace while the patient is breathing spontaneously but, conversely, to pace at a low assistive level during the night while the patient is again sedated and placed back on PPMV, in order to reduce the peak pressure required for ventilation and thus reduce risk of VILI.


In some embodiments, the therapy plan includes the ability to skip stimulation, sometimes referred to as skipped breaths, which allows for a ventilator breath to be delivered without being accompanied by stimulation from the system 20. Additionally or alternatively, the therapy plan may include sigh breaths. Sigh breaths are characterized as intermittently programmable breaths that inject more charge than a normal breath (i.e. a higher magnitude stimulation train). Physiologically, this results in a more forceful contraction of the diaphragm. Both functions are programmable independently and can be repeatable. For sigh breaths only, the percentage increase in amplitude is programmable based on the amplitude of a typical paced breath. It is possible to implement these features independently or combined.



FIG. 13A-C illustrate an example of skipped breaths, sigh breaths, and a combination of skipped breaths and sigh breaths, respectively. FIG. 13A is an example of skipped breaths, where the system 20 skips every 3rd breath. This means that during the skipped breath, the patient receives the ventilatory support entirely from the ventilator 32. During the skipped breaths, respiratory mechanics such as tidal volume, compliance of the lungs, resistance to airflow or the recruitment of the lung regions may vary. FIG. 13B is an example of sigh breaths generated by the system 20 while operating in synchrony with the ventilator 32. In this example, a sigh breath is delivered every 3rd breath. Depending upon whether flow is controlled or pressure controlled, the sigh breaths can alter the respiratory mechanics. This feature mimics a feature of spontaneous breathing namely, variable tidal volume. FIG. 13C is an example of both skipped and sigh breaths being administered in a periodic manner by the system 20.


The stimulator 24 in some embodiments is configured to generate constant-amplitude current pulses with pulse duration in the range from 50-300 microsec, controllable in increments of 10 microsec. The amplitude and duration of each pulse in a train can be independently programmed. The amplitude of pulses can be selected between 0.1 and 10 mA in 0.1 mA increments. The main parameter that determines whether a stimulus pulse will be sufficient to activate a nerve axon (reach its threshold to fire an action potential) is the charge delivered by the stimulus, where charge (in nC)=pulse current amplitude (in mA)×pulse duration (in microsec). In this regard, the stimulator 24 can produce pulses in the range from 5 nC to 3000 nC and the charge per pulse can be specified in increments of 1 nC.



FIG. 4 shows a schematic diagram of one embodiment of the stimulator 24. As shown in FIG. 4, the stimulator 24 includes a controller 60, which receives signals sensed from one or more sensors 48 and/or the breath sensor 50. The stimulator 24 may also include a timer 64 coupled to controller 60, and a power source 68. The controller 60 is coupled to a pulse generation circuit 70, which delivers stimulation signals to one or more of the electrodes 28 via leads 40. In one embodiment, the components described above are coupled via bus 72. In some embodiments, the power source 68 of the stimulator 24 includes one or more batteries. In other embodiments, the power source 68 includes a power regulation section that receives power from standard “mains,” and transforms it into appropriate power for the circuitry of the stimulator 24.


Those skilled in the art and others will recognize that the controller 60 serves as the computational center of the stimulator 24 for carrying out logic or by supporting the execution of routines, instructions, etc., for providing functionality to the stimulator 24. In that regard, the logic, routines, instructions, etc., described herein may be implemented in hardware, in software, or a combination of hardware and software.


In some embodiments, the controller 60 includes one or more processors and memory. The logic, routines, instructions, etc., may include a set of control algorithms, including resident program instructions and calibrations stored, for example, in the memory and executed to provide a desired functionality of the system 20. The algorithms may be executed during preset loop cycles such that each algorithm is executed at least once each loop cycle. Algorithms stored in non-volatile storage medium can be executed by the processor to: 1) monitor inputs from the sensors 48, 50 and other data transmitting devices or polls such devices for data to be used therein; 2) cause the pulse generator to generate and transmit one or more pulses to the electrodes 28; and 3) regulate the diaphragm output of the patient, among other functions. Loop cycles are executed at regular intervals, for example each 3.125, 6.25, 12.5, 25 and 100 milliseconds during ongoing operation of the system 20. Alternatively, algorithms may be executed in response to the occurrence of an event.


As used herein, the term processor is not limited to integrated circuits referred to in the art as a computer, but broadly refers to a microcontroller, a microcomputer, a microprocessor, a programmable logic controller, an application specific integrated circuit, other programmable circuits, such as programmable gate arrays, combinations of the above, among others. In some embodiments, the controller 60 may include additional components including but not limited to a high speed clock, analog to digital (A/D) and digital to analog (D/A) circuitry, input/output circuitry and devices (I/O) and appropriate signal conditioning and buffer circuitry.


It will be appreciated that the signals received from the sensors 48, 50 may be processed by an optional signal processing section 80 prior to arriving at the controller 60. For example, the signal processing section 80 may include dedicated circuits, processors, such as digital signal processors (DSP), etc., for receiving, processing and filtering electrical signals sensed by the sensors associated with the subject and/or the ventilator 32. Signal processing section 80 can include amplifiers and circuits to condition, filter and/or amplify the electrical signals supplied thereto. In some embodiments, the signal processing section 80 carries out discrete tasks, such as the determination of one or more physiological states. One physiological state that can be determined by signal processing section 80 is a patient's minute volume or ventilation. Minute ventilation is a respiratory related parameter that is a measure of the volume of air inhaled and exhaled during a particular period of time. The minute ventilation is the product of respiration rate and tidal volume. Signal processing section 80 can also be used to receive and process signals representing other respiratory activity such as intrathoracic pressure, chest wall motion, etc. Of course, the determination of one or more physiological states, processing of signals, implementation of logic or processes, etc., can be carried out solely by the controller 60.


Still referring to FIG. 4, the stimulator 24 includes one or more input devices 86. The input devices 86 may include switches, knobs, etc., supported by the housing of the stimulator, and/or computer style devices, such as a keyboard, a touchpad, etc. The input devices 86 provide for the input of data, such as the pacing parameters, ventilator parameters, etc., into the stimulator 24. Output devices 92, such as a monitor, may also be provided.


In accordance with aspects of the present disclosure, one or more embodiments of the system 20 can be operated in various pacing modes. The pacing modes may be alternatively employed by a clinician, depending on the clinical status and needs of each patient and on the operational properties of a ventilator, such as ventilator 32, which may be available in a particular ICU. The pacing modes can include but are not limited to Ventilator-Initiated Pacing Mode, Pacer-Initiated Ventilation Mode, and Autonomous Pacing Mode. Those skilled in the art will understand that these modes may be engaged in many ways to generate different combinations of system functionality, but for reasons of brevity all possible combinations are not listed herein. Each of these modes will now be described in some detail.


The first mode of the system 20 to be described herein is the Ventilator Initiated Pacing Mode. As will be described in more detail below, this mode operates the stimulator 24 in synchrony with the operation of the ventilator 32. This mode can work with any mechanical ventilator in control mode, whereby the flow or pressure is controlled by the ventilator and delivered at a pre-determined frequency (breath rate). Delivery of stimulation ramp trains generated by the stimulator 24, such as any of those shown in FIGS. 9 and 10, can be synchronized with the ventilator 32 in several ways, some of which are shown in FIGS. 11 and 12. For example, stimulation can begin at any time before, during, or after the onset of the inspiratory phase of the ventilator 32 and/or can end at any time before, during, or after the end of the inspiratory phase of the ventilator 32.


Turning now to FIG. 14, there is shown one example of a routine 100 configured to carry out one or more functions of the system 20, including the Ventilator Initiated Pacing Mode. As will be appreciated by one skilled in the art, the logic or routines described herein may represent one or more of any number of processing strategies such as event-driven, interrupt-driven, multi-tasking, multi-threading, and the like. As such, various acts or functions illustrated may be performed in the sequence illustrated, in parallel, or in some cases omitted. Likewise, the order of processing is not necessarily required to achieve the features and advantages, but is provided for case of illustration and description. Although not explicitly illustrated, one or more of the illustrated acts or functions may be repeatedly performed depending on the particular strategy being used. Some of the functions carried out by the routine can be combined or can be further separated into additional steps or acts.


As shown in FIG. 14, the routine 100 begins at block 102, where the system is initialized. Initialization allows a clinician to program the system 20, for example, by inputting via input devices 86 various system parameters according to a therapy plan. As was described in some detail above, the therapy plan can include a level of diaphragm contribution and the prescribed assist level if not already known by the system 20 or derivable from other data known by system 20. In some embodiments, the level of diaphragm contribution can be entered as either a percentage of prescribed assist level or as tidal volume, pressure or both volume and pressure, or as a parameter derived from volume and pressure.


In some embodiments, the clinician can input the prescribed assist level for the patient depending upon clinical status. The prescribed assist level in some embodiments is programmed as tidal volume. Alternatively, it can also be programmed as: (1) a desired amount of pressure generated by the diaphragm; (2) the product of pressure and volume, referred to as Work of Breathing (WOB) shown in FIG. 21; (3) the integral of pressure with respect to time, referred to as Pressure-Time Product (PTP); (4) indices derived from the monitored variables, such as Pressure-Time Index (PTI); or (5) a reduction in the airway pressure attained by PPMV plus Pacing, when compared to PPMV alone. The prescribed assist level can be set in terms of one of the parameters mentioned above or as a combination of one or more of these parameters, while remaining within the scope of the claimed subject matter.


Along with the diaphragm contribution level, the clinician can program the system 20 with one or more stimulation parameters, such as amplitude, duration, frequency, etc., that are capable of recruiting the diaphragm in order to satisfy the diaphragm contribution level (e.g., in volume or pressure, or both). In other embodiments, as will be described in detail below, some of the stimulation parameters which correspond to the diaphragm contribution level, may have been previously programmed into or obtained by the system 20.


The clinician may also enter the amount of therapy to be provided per 24 hour period. For example, the clinician may wish to administer therapy for eight (8) hours out of each 24 hour period. The therapy can be administered consecutively for 8 hours, or can be segmented into time period blocks (e.g., 2 hrs., 1 hr., 30 minutes, 15 minutes, etc.), which can be either constant or variable. If variable, the time period blocks can form a repeatable pattern, if desired. The therapy may also vary the diaphragm contribution throughout the period of administered stimulation. In some embodiments, the clinician can program sigh breaths or skipped breaths, as described above with reference to FIG. 13A-C. The clinician can further enter one or more ventilation parameters, such as ventilator operating mode, breath cycle timing (i.e., breaths per minute), etc. It will be appreciated that other data may be entered by the clinician during the initialization stage for providing functionality to the system 20.


Returning to FIG. 14, the routine 100 proceeds to block 104, where the respiratory cycle of the patient and/or the ventilator are monitored. In one embodiment, the routine 100 carries out a breath detection algorithm, which uses data from the breath sensor 50 and detects the different phases of ventilator breath or a spontaneous breath, such as inspiration phase, inspiration pause, expiration phase and expiration pause. Further, the breath detection algorithm can quantify the different attributes of a breath such as duration of any of the breath phases mentioned above. The breath detection algorithm can use any of the monitored signals, such as flow, volume or pressure to evaluate a series of conditional expressions to identify and/or calculate the attributes of a breath cycle. The method of identifying and/or calculating the attributes of a breath cycle may include, but is not limited to, Slope Threshold Detection, Amplitude Threshold Detection or a combination thereof. Furthermore, the breath detection algorithm can store and/or process waveform data of the current breath or any set of previous breaths. The breath detection algorithm may also facilitate the operation of the system in an event-predictive or in an event-triggered manner. In case of detection of a spontaneous breath, the system may either stop ongoing stimulation, continue stimulating so as to add to the spontaneous breath, or skip the next breath.


Next, at block 106, synchrony between the ventilator 32 and the administration of pacing therapy is maintained. This ensures that diaphragm pacing by stimulation signals emitted by the electrodes is synchronized with each breath administered by the ventilator 32. If an uncoupling is suspected, pacing may be skipped and resumed as soon as the ventilatory pattern stabilizes again. In other embodiments, the pacing can continue while synchrony is reestablished. In some embodiments, synchrony is determined by comparing the attributes of at least one previous breath cycle (e.g., 12 breaths per minute, etc.) with the attributes of the current breath cycle of the ventilator 32 as determined via processing of the signals from the breath sensor 50 and/or one or more of the sensors 48.


From block 106, the routine proceeds to block 108. At block 108, the diaphragm output (e.g., tidal volume, pressure, or a combination of the two) is regulated to ensure the programmed prescribed assist level is satisfied. In this regard, in some embodiments, the system 20 monitors the data from one or more of the sensors 48 and/or sensor 50 for determining the diaphragm contribution (tidal volume, pressure, or both) for each ventilator breath. This may be calculated from the measured output (i.e., the sum of diaphragm contribution and ventilator contribution) of each ventilator breath or can be calculated directly from the sensor data. If the diaphragm output (or diaphragm contribution) from the previous administered stimulation signal is within a preselected range, the programmed stimulation parameters are maintained, and will be subsequently employed to generate the stimulation train for therapy administration at the next breath.


If the calculated diaphragm contribution resulting from the last administered stimulation signal differs from the target diaphragm contribution value by more than a preselected amount, the stimulation parameters may be modified (e.g., amplitude and/or duration are increased) so as to maintain the diaphragm output within a desired range. Such a difference between the calculated diaphragm contribution responsive to the last administered stimulation signal and the programmed diaphragm contribution value can be seen as a change in either the pressure (in Volume-Controlled Modes/Ventilators) or as a change in tidal volume (in Pressure-Controlled Modes/Ventilators) or as a change in any signal sensed by one or more of the sensor(s) 48 or sensor 50. The modified stimulation parameters are then stored in memory. In some embodiments, the system 20 operates in accordance with a “closed-loop” feedback scheme to regulate the diaphragm output during operation of the system 20, one example of which is shown in FIG. 15.


In some embodiments, an evaluation is carried out to determine the reason for such a drop in tidal volume or pressure. For example, in some embodiments, the discrepancy in reaching the diaphragm contribution target may be due to a displacement of a stimulation electrode away from an optimal position. In other embodiments, the discrepancy or variability in tidal volume or pressure between breaths can be attributable to either changing respiratory mechanics of the patient or to time-dependent fatigue of the higher force producing fast-fatigable (Type IIb) fibers.


Changes in respiratory mechanics may include changes in airway resistance and/or compliance of the lungs/chest wall. For example, in the embodiment shown in FIG. 16, the tidal volume is controlled during all breaths, representing a ventilator operating in a Volume Controlled Mode. If any changes occur to the resistive load or the compliance load, these will be reflected as changes in the airway pressure represented in the plot below the tidal volume. In the example of FIG. 16, the first two breaths illustrate the baseline level of airway pressure when pacing the diaphragm in synchrony with the ventilator 32. On the 3rd breath, the system encounters a change in compliance load, which can be inferred from the increased peak airway pressure and change in slope of the airway pressure waveform.


In the 4th breath shown in FIG. 16, the system 20 can validate the measured drop in compliance and assumes it is due, for example, to a reduction in force contribution of fast fatigable Type IIb fibers. By the 5th breath, the system 20 has adjusted its pacing parameters to restore the desired level of diaphragm contribution (negative pressure) to the overall ventilatory assist system, thereby returning the airway pressure to the prescribed assist level.


It will be appreciated that similar principles can be applied to a pressure controlled ventilator, where changes in respiratory mechanics may be indicated by changes in tidal volume between breaths. The system 20 may be configured to adaptively modify the pacing parameters to return the tidal volume to the prescribed assist level.


As described above, the discrepancy or variability in tidal volume or pressure between breaths can be also attributable to time-dependent fatigue of the higher force producing fast-fatigable (Type IIb) fibers. For example, FIG. 17A illustrates a natural progressive decline in the percentage of Type IIb Fast Fatigable Motor Units contributing to force development. Initially, Type IIb Motor Units can produce much larger forces than Type I Motor Units and their larger diameter axons are also easiest to be recruited by electrical stimulation. Therefore, a low level of intensity of phrenic nerve stimulation is initially sufficient to produce the diaphragm contribution level, as illustrated by FIG. 17B. As shown schematically in FIG. 18, initially perhaps only 15% of all motor units in a phrenic nerve need to be recruited by the system 20 to meet the prescribed force/pressure levels of the diaphragm contribution.


As shown in FIG. 17, Type IIb Motor Units tend to fatigue and produce less force with the passage of time, leading to a decline in the force (Diaphragm Contribution) below the programmed level of diaphragm contribution. To maintain the diaphragm contribution, the intensity of stimulation can be progressively increased so as to recruit additional Type I and Type IIa Motor Units. As a result, the stimulation spreads across a higher cross-sectional area (e.g. 30%) of the phrenic nerve to recruit more Type I and Type II Motor Units and the prescribed force is produced.


The force declines again as the Type IIb Motor Units present in the newly activated cross-section of the phrenic nerves, fatigue in turn. At this point the pacing intensity is increased again by the pacing control system in order to activate an even larger cross-sectional area of the phrenic nerve, recruiting more Motor Units to reestablish the force output. This progressively increasing activation of the phrenic nerve continues and finally up to 100% of the phrenic nerve motor units may be recruited. Eventually all the Type IIb Motor Units are knocked out by fatigue and only the Type I and Type IIa Motor Units continue to contribute force.


It will be appreciated that the increase in the stimulation may be a simple linear equation or a complex equation with weights assigned to the proportion of available fibers and their fatigue resistant properties. The loss of force may be attributed specifically to the fatigue of the fast fatigable fibers, using parameters such as Maximum Relaxation Rate and half-relaxation time. The changes in slope of the first half of the diaphragm relaxation curve indicative of the relative contribution of Type I and Type II fibers to force development may also be used. Other parameters specific to fatigue such as Pressure-Time Index, Expiratory Time Constant, EMG (and any derived parameters thereof such as power spectrum), Ratio between slow and fast twitch amplitudes, may also be employed to infer the varying conditions and to determine the modified stimulation parameters.


In another embodiment, the closed-loop control strategy may include using doublets/triplets in response to contractile slowing accompanying fatigue of the diaphragm Motor Units. When fatigue is detected by the system 20, the stimulation pattern is automatically changed to include doublet/triplets and otherwise lower stimulation frequency, as this form of stimulation is known in the art to optimize force production in fatiguing/fatigued motor units. Once the fatigued motor units have recovered their strength, the stimulation pattern can again be changed to moderate stimulation frequency with or without doublets. This closed-loop scheme allows for continuous pacing of the diaphragm irrespective of the onset or progression of fatigue, also reduces the number of stimulation pulses delivered and protects the muscle from potential injury that could be caused by over-stimulation.


Returning to FIG. 14, the stimulation therapy is administered at block 110. Administration of the stimulation therapy includes generation of a stimulation signal, such as a stimulation or ramp train. Depending on the result of block 108, the stimulation signal is generated in accordance with either the original stimulation perimeters or the stimulation parameters as modified in block 108 described above. Delivery timing of the stimulation ramp train is also determined at block 110. For example, the routine can determine the appropriate timing for phrenic nerve stimulation in relation to the actual breath cycle of the ventilator 32. Generally described, the routine controls the timing of stimulation according to predefined rules, based on parameter estimates from the breath detection algorithm, etc. The predefined rules can include whether stimulation begins at any time before, during, or after the onset of the inspiratory phase of the ventilator 32, which is shown in FIGS. 11 and 12, or whether stimulation begins during the expiratory phase, as shown in FIG. 24.


For example, depending on the ventilator mode, the system 20 can trigger off pressure or airflow signals. Once the inspiration/expiration phases have been determined, such as in block 104, to stimulate during the inspiration phase, the stimulation train can either be started by triggering off the start of the expiration phase followed by a delay or the start of the inspiration phase, as shown in FIG. 23. Triggering off the start of the expiration phase allows stimulation to be generated prior to the start of the inspiration phase to maximize diaphragmatic force during the inspiration phase. In addition, stimulation during the expiration phase can be achieved by triggering off the start of the expiration phase or the start of the inspiration phase with a delay, as shown in FIG. 24. While using the inspiration or expiration start is preferred, the end of the inspiration/expiration periods could conceivably be used as well. Furthermore, it is also possible to provide delayed stimulation such that stimulation would begin in the middle of the inspiration phase for example.


Once timing is determined, the routine at block 110 delivers the stimulation pulses to the stimulating electrodes 28 at the appropriate time for transmission therefrom. The routine returns to block 104 until the time period for therapy has expired or a clinician halts operation of the system 20.


In some embodiments, the system 20 may assist the clinician in determining the appropriate level of diaphragm contribution to be input into the system 20. In that regard, the diaphragm contribution can be dependent on the condition of the patient's diaphragm. For example, in a patient that has only a maximum diaphragm output of 750 mL and the clinician intends to target an assist level of 500 mL, the clinician may unknowingly choose a diaphragm contribution level that would require delivery of the maximum stimulation charge, which will cause premature fatigue, etc. Given this patient's present diaphragm condition, the clinician may wish to choose a much lower percentage so that the stimulation charge is in-between the threshold charge and the supra-maximal charge.


Thus, in some embodiments, in order to appropriately select the diaphragm contribution level, the condition of the diaphragm and the respiratory system is first assessed by the system 20. In that regard, the system 20 is configured to run one or more assessments on the patient's diaphragm and/or respiratory mechanics. The assessment determines the maximum diaphragm output (in volume, pressure, or both) and other parameters such as the fatigue characteristics of the diaphragm, the resistance, compliance and relaxation characteristics of the respiratory system and its components, etc. The assessment can be also run in-between or during periods of the operation of the system 20 in synchrony with the ventilator 32. These tests can either be run by shortly disconnecting the patient from the ventilator 32 and pacing the diaphragm in isolation or can be run with the patient connected to the ventilator 32 by employing a sequence of pauses in the operation of the ventilator 32 during which the diaphragm is paced in isolation. The sequence of pauses may either be employed manually by the clinician, or natural pauses that are part of a regular ventilator breath cycle (such as an End-Inspiratory Pause or an End-Expiratory Pause) may be automatically identified and used by the system 20.


Generally described, after the flow of gas from the ventilator 32 is momentarily occluded, the maximal static pressures generated by the diaphragm in response to supramaximally stimulating the phrenic nerves to elicit twitch, ramp, or tetanic contractions of the diaphragm are measured as well as the diaphragm relaxation characteristics during the inspiration and expiration phases. The assessment can pace the diaphragm in isolation with a preset duty cycle to assess diaphragm function with regard to its strength and endurance properties. From the data sensed by one or more sensors 48 and/or the sensor 50, measures and/or indices can be derived that include, but are not limited to, Maximum Static/Dynamic Inspiratory Pressures, Inspiratory Capacity, Pressure-Volume loop relationships, Work of Breathing. Pressure-Time Product, Pressure-Time Index, EMG, Maximum Relaxation Rate, and Expiration Time Constant. Diaphragm fatigue can be induced by continuous or intermittent stimulation of the phrenic nerves to assess endurance limits and to detect the presence of low frequency and/or high frequency fatigue. As the normal values for most of the calculated or derived parameters have a wide normal range, serial measurements set apart in time ranging from a few minutes to days, can be done on a patient by the pacing system to provide a complete picture of evolving changes in the diaphragm strength and endurance of the patient.


In some embodiments, a knowledge-based algorithm may be used to monitor instantaneous and/or trend data of the monitored signals. Such instantaneous and/or trend data may allow the assessment to predict weaning readiness of the patient and/or a time course for weaning. Such capability can also be extended to make the diaphragm assessment tests as a standalone screening and/or confirmatory tool by clinicians in the ICU, as the method of transvascular pacing of the diaphragm enables the clinician to assess the true status of the diaphragm in the absence of confounding factors (such as decreased central drive) usually associated with voluntary breathing maneuvers.


Once the maximum diaphragm output is determined, the diaphragm contribution level can be chosen with knowledge of the relationship between the prescribed assist level and the maximum diaphragm output. In order to understand this relationship, the controller 60 in some embodiments, via one or more subroutines, can recursively estimate the percentage of maximum diaphragm output required to generate 100% of the prescribed assist level. Of course, this and other calculations can be made on a separate computer system and imported or otherwise inputted into the controller 60 prior to operation of the system 20. One example of this recursive estimate is shown in FIG. 19.


In some embodiments, and described generally above, the clinician has the option to adjust the diaphragm contribution during operation of the system 20 from 0 to 100% of the prescribed assist level, as illustrated by the dial of FIG. 20, depending upon the status of the patient and the therapeutic goal.



FIG. 20A illustrates an example of setting the desired diaphragm contribution to 75% of the prescribed assist level (i.e., the target diaphragm contribution level). In this example, the remaining 25% of the ventilatory work is carried out by the ventilator 32. The clinician can therefore adjust the ventilator settings to contribute 25% of the ventilatory work, either as tidal volume or as pressure assist, as illustrated by the bottom plot of FIG. 20A. FIG. 20B illustrates another example of setting the desired diaphragm contribution to only 25% of the prescribed assist level (i.e., the target diaphragm contribution level). In this example, the remaining 75% of the ventilatory work is carried out by the ventilator 32. The clinician can therefore adjust the ventilator settings to contribute 75% of the ventilatory work, either as tidal volume or as pressure assist, as illustrated by the bottom plot of FIG. 20B. Alternatively, the PPMV can be set to a mode where the remaining portion of the prescribed assist level is determined and adjusted automatically by the ventilator on an Inter-Breath or Intra-Breath basis (e.g. Pressure Regulated Volume Control Mode). In some embodiments, the system 20 also calculates or otherwise obtains the stimulation characteristics that correspond to the diaphragm contribution. In other embodiments, the clinician can enter data indicative of these stimulation characteristics.


In some embodiments, the condition of the diaphragm is periodically reassessed after the therapy has been administered for a period of time (e.g. 12 hours, 1 day, etc.). For example, as described briefly above with regard to the closed-loop control method for regulating the diaphragm output, the variability in volume or pressure between breaths in some instances is attributable to changing respiratory mechanics of the patient, including changes to airway resistance and/or compliance of the lungs/chest wall. In other embodiments, the diaphragm muscle, through the administration of the therapy, has strengthened, and thus, the diaphragm contribution can be increased or the intensity of stimulation can be decreased to adjust the diaphragm contribution. In these cases, it may be beneficial to periodically reassess the diaphragm and optimize pacing therapy accordingly, after therapy has been initiated.


One example of a routine for measuring changes in the diaphragm condition without removing the patient from the ventilator 32 is shown in FIG. 22. Similar to the diaphragm assessment described above, a successive approximation routine in some embodiments can be used to determine the optimal parameters of stimulation for the patient.


As best shown in FIG. 22, the routine 200 begins with the clinician providing the initial system parameters, which may include maximum allowable stimulation parameters. Stimulation parameters can be provided either as a predefined stimulation train with fixed duration such that the stimulation train is fully defined by the user using methods as previously described or as a stimulation train in which the number of pulses and the train duration are based on the detected ventilator inspiration time. Next, the routine carries out the breath detection algorithm to detect the inspiration and expiration phases using the flow/pressure data sensed by breath sensor 50. In addition, the flow and pressure data for one or more breaths without stimulation are collected and stored.


Depending on the ventilator mode, the system 20 can trigger off pressure or airflow signals. Once the inspiration/expiration phases have been determined, to stimulate during the inspiration phase, the stimulation train can either be started by triggering off the start of the expiration phase followed by a delay or the start of the inspiration phase, as shown in FIG. 23. Triggering off the start of the expiration phase allows stimulation to be generated prior to the start of the inspiration phase to maximize diaphragmatic force during the inspiration phase. In addition, stimulation during the expiration phase can be achieved by triggering off the start of the expiration phase or the start of the inspiration phase with a delay, as shown in FIG. 24. While using the inspiration and expiration start are preferred, the end of the inspiration/expiration periods could conceivably be used as well. Furthermore, it is also possible to provide delayed stimulation such that stimulation would begin in the middle of the inspiration phase for example.


Flow, volume, and/or pressure data, or derived parameters thereof, for at least one breath with stimulation is recorded. For the data with stimulation as well as without, if more than one breath of information has been recorded the data can be averaged together. The collected flow/volume/pressure data with stimulation is then subtracted from the collected flow/volume/pressure data without stimulation. The difference, calculated as an area (and shown as the blacked-out area), can be used as a relative measurement of force generated by the diaphragm, and is shown in FIG. 26. In the case of a pressure controlled ventilation, the difference in volume (area under flow curve) would be used as the measurement. In the case of a volume controlled ventilator, the area under the pressure graph would be used as the measurement.



FIG. 27 is one example of another assessment routine 300 carried out by the system 20. The assessment routine 300 can be used to guide the placement of endovascular electrodes during normal ventilator operation (i.e., without interference to the ventilator operation or disconnecting the ventilator), and can assess the diaphragm recruitment in response to varying (decreasing or increasing) stimulation charges. When executing the assessment routine 300, the system 20 can administer low-frequency stimulation (such as 1 Hz to 5 Hz), during one or more quiet expiratory periods, to elicit unfused diaphragm contractile responses in the form of single twitches. The charge delivered can be progressively increased to build a complete nerve recruitment curve for each endovascular location, and the operator can define across how many breath periods this stimulation is delivered. The system 20 can analyze this stimulation and response information to algorithmically estimate the best position of the electrodes to stimulate one or both phrenic nerves using minimal amounts of charge (highest degree of efficiency). During this assessment routine, the system 20 can also gather information regarding the relationship between the stimulation train profiles and the corresponding diaphragm response, including diaphragm output (in volume, pressure, or both). Some stimulation parameters that may be obtained include but are not limited to Threshold Pulse Width and Supra-maximal Pulse Width required to recruit each phrenic nerve from appropriate endovascular electrode locations.


As exemplified in FIG. 28, the stimulation charges in routine 300 can be programmed to periodically occur during periods of baseline flow/volume, which can occur at the end-expiratory pause of the ventilator breath cycle, which can also be referred to as the end-expiratory delay. The benefit of selective stimulation during the end-expiratory pause is that the length of the diaphragm muscle fibers is the same before each stimulus is delivered and thereby establishes standardized conditions for obtaining comparable results. This provides a standard baseline to compare the diaphragm twitch responses and can guide the placement of the endovascular electrodes.


This period of zero volume can be determined prior to stimulation to determine the duration of the end-expiratory pause. In that regard, FIG. 29 illustrates one example of a routine 400 for determining the duration of the end-expiratory pause. With this routine, flow data is collected and the end expiratory pause is estimated. In some embodiments, volume of the inspiration and expiration phases are calculated. The point at which the expired volume reaches a user-programmable percentage of the inspiration volume is used as the start time for the end-expiratory pause. In one embodiment, the percentage used as a default is 85% of the inspired volume. In some embodiments, volume is used as it is less influenced by noise than other measures.


While using volume data in some embodiments is one technique, this does not preclude using other measures of the end expiratory phase such as a slope close to zero or simply using a fixed time interval at the end of the expiration phase as the end expiratory pause. In other embodiments, the system 20 can compute relaxation characteristics of the respiratory system, such as Expiratory-Time Constant (i.e. time required to exhale a certain percentage of the air from the lungs) to determine the ideal end-expiratory pause duration and prompt the clinician to adjust the ventilator settings accordingly. At any point in the assessment, the user has the ability to manually override the system and select the duration of the end-expiratory pause as a percentage or absolute value of the measured expiratory phase duration.


Returning to FIG. 27, the assessment routine 300 will be described in some detail. Routine 300 begins at block 302 with the clinician providing the initial system parameters or accepting internal default values, which may include the characteristics of a low-level starting stimulation signal, the maximum stimulation level, the estimated duration of the end-expiratory pause, one or more ventilator parameters, etc. In some embodiments, the characteristics of the low-level starting stimulation signal are based on the estimated duration of the end-expiratory pause.


Next, at block 304, the breath detection algorithm described above can be employed to synchronize the administered stimulation with the end-expiratory pause period of the ventilator 32. For example, the breath detection algorithm can be employed to identify the period of interest during a breath cycle when stimulation can be delivered, as shown in FIG. 28. The diaphragm being a skeletal muscle, its force output changes with its length, as described by its length-tension relationship. Therefore, it is beneficial to stimulate the diaphragm near its resting length, as it provides a standard baseline to compare the diaphragm twitch responses. The resting length of the diaphragm is reached at the end of every expiration phase, as the lungs reach their Functional Residual Capacity. Therefore the inspired and expired volumes can be monitored to provide a non-invasive estimate of when the lungs reach functional residual capacity. In addition, signals from one or more of the sensors 48 and/or sensor 50, such as pressure signals in the form of esophageal or intrathoracic pressure can be used to confirm that the lungs have reached Functional Residual Capacity.


At block 306, based on the aforementioned monitored parameters, a determination is made as to whether the patient's lungs have returned to Functional Residual Capacity as the ventilator carries out the breath cycle. When it is determined that the Functional Residual Capacity is reached, the system 20 administers a starting stimulation signal at block 308 and then monitors and measures the diaphragm response to the administered stimulation at block 310. Signals that can be monitored and measured to quantify the diaphragm response may include, but are not limited to, EMG, Airway Pressure, Airway Flow, Intra-Thoracic Pressure, Pleural Pressure, Central Venous Pressure, Thoraco-abdominal motion, various patient impedances, etc.


Next, a determination is made at block 312 as to whether the next ventilator breath is about to begin. Estimated end expiratory pause duration and/or the monitored signals from sensors 48, 50, can aid in this determination. If not, the routine 300 increases the intensity of the stimulation at block 314 and returns to block 308 to administer the increased intensity pulse. If the next ventilator breath is about to begin, stimulation for the current breath is stopped at block 316, the intensity of the current stimulation level can be increased at block 318, and the routine returns to block 304 for another stimulation to be administered in synchrony with the breath cycle. The routine 300 can continue to loop in some embodiments until either the preset range of stimulation intensities has been reached or the maximum stimulation level has been reached.


As the Functional Residual Capacity can change with time, due to factors such as Extrinsic PEEP or Intrinsic PEEP, the system can also employ validation checks to confirm that the functional residual capacity (and therefore the diaphragm resting length) has not changed between breaths. One of the means to perform this validation is to analyze the trend data of the end-expiratory volume, before stimulating the diaphragm.


The next mode of operation that can be carried out by embodiments of the system 20 includes a Pacer-Initiated Ventilation Mode. FIG. 30 illustrates one example of a routine 500 executed by the system 20 to carry out one or more functions, including the Pacer-Initiated Ventilation Mode. In that regard, many mechanical ventilators have an assist/support mode, whereby ventilation is provided when the patient attempts to breathe on their own. In this embodiment, the system 20 can be programmed to trigger the ventilator 32 working in assistive modes by using stimulation shown by “D” in FIG. 31 (and resultant response from the diaphragm) to mimic spontaneous effort by the patient, as shown in FIG. 31. The ventilator 32 responds to this trigger signal/event and delivers a breath to the patient (based on parameters set by the clinician) shown by “B” in FIG. 31. In effect, the system 20 drives breath delivery from the ventilator 32 (which is opposite from the Ventilator-Initiated Pacing Mode described above) shown by “C” in FIG. 31. In some embodiments, the system 20 does not perform breath detection, and thus, the breath sensor 50 can be omitted. In some embodiments, the breath sensor 50 may be used to carry out various assessment routines and feedback schemes. The system 20 can control the rate of pacing via the programmable parameters such as breath rate (in Breaths per minute), skipped breaths and sigh breaths. Similarly, the Pacer-Initiated Ventilation Mode can also include one or more of the adaptive functionality, closed loop control, diaphragm assessment, successive approximation features described above with reference to Ventilator-Initiated Pacing Mode are also applicable to this mode.


In the Pacer-Initiated Ventilation mode, the system 20 can use feedback to ensure proper diaphragm contribution. Some ventilator modes suitable for this embodiment are Pressure Support Ventilation (PSV), Pressure Regulated Volume Control (PRVC), Proportional Assist Ventilation (PAV) and Adaptive Support Ventilation (ASV).


Embodiments of the system 20 can also be operated in Autonomous Mode, or A-Mode. A-Mode is a life-sustaining mode that can operate independently of the ventilator 32. FIG. 32 illustrates one example of a routine 600 executed by the system 20 for carrying out one or more functions, including the Autonomous Mode. In that regard, the A-Mode operates in closed-loop control fashion using feedback from various sensors, such as one or more of the sensors 48, 50. These sensors can be used to monitor physiological variables that can include, but are not limited to: central venous pressure, mixed venous oxygen saturation, heart rate and movement activity levels. A-Mode provides adjustable diaphragmatic pacing to a patient retaining none, some or all of his/her spontaneous breathing and requiring assisted breathing and can automatically adjust to the patient's physiological needs and changed activity levels, as needed.


Although A-mode can be a life-sustaining mode, it may or may not be used in this capacity (i.e. could be interfaced with a backup ventilator). For example, A-Mode may be applicable to patients who are permanently dependent on mechanical ventilators or otherwise in need of continuous pacing from the system 20.


As opposed the embodiments of the system 20 described above for carrying out the Pacer-Initiated Ventilation Mode and the Ventilator-Initiated Pacing Mode, embodiments of the system 20 carrying out the A-Mode can be totally implanted under the skin of the patient in the upper chest area. In this regard, the system 20 is powered by a power storage source, such as either primary or rechargeable implantable batteries, and may be integrated with other implantable devices that support heart or other functions to a patient.


As shown in the embodiment of FIG. 32, the system 20 operating in A-Mode involves a closed-loop operation to autonomously pace the diaphragm. This mode may make use of any patient response signal (feedback) that will help indicate that pacing is required; these signals include, but are not limited to: oxygen saturation, end-tidal CO2 (EtCO2), airflow, heart rate, movement-detecting accelerometer signals, etc. Pacing is administered continuously in A-mode, and an algorithm is used to detect and/or modify physiological response signals to determine whether a change in stimulation pattern, frequency, breath rate, intensity, type, and/or shape profile is required to elicit the expected response.


The principles, representative embodiments, and modes of operation of the present disclosure have been described in the foregoing description. However, aspects of the present disclosure which are intended to be protected are not to be construed as limited to the particular embodiments disclosed. Further, the embodiments described herein are to be regarded as illustrative rather than restrictive.It will be appreciated that variations and changes may be made by others, and equivalents employed, without departing from the spirit of the present disclosure. Accordingly, it is expressly intended that all such variations, changes, and equivalents fall within the spirit and scope of the present disclosure, as claimed.

Claims
  • 1. A method of stimulating a diaphragm, comprising: positioning one or more electrodes under skin of a patient proximate to at least one phrenic nerve within the patient, wherein a stimulator is connected to the one or more electrodes;calculating a level of work to be expended during breathing by the diaphragm of the patient; andcalculating a desired electrical stimulation signal based on the calculated level of work; anddelivering the calculated desired electrical stimulation signal to the one or more electrodes to at least partially activate the patient's diaphragm.
  • 2. The method of claim 1, further including obtaining a measurement of volume and obtaining a measurement of pressure, and the calculated level of work is based on the measurements of volume and pressure.
  • 3. The method of claim 1, further including determining a breath cycle of the patient, and wherein the delivering the calculated desired electrical stimulation signal occurs during the breath cycle and ends before an expiration phase of the breath cycle.
  • 4. The method of claim 1, further including modifying the desired electrical stimulation signal based on if a measured parameter is outside of a preselected target range.
  • 5. The method of claim 1, wherein the one or more electrodes includes an anodal electrode and a cathodal electrode.
  • 6. The method of claim 5, wherein the anodal electrode and the cathodal electrode are a first electrode pair, and the one or more electrodes further includes a second electrode pair, and the method further includes delivering the electrical stimulation to the second electrode pair to at least partially activate the patient's diaphragm.
  • 7. The method of claim 1, wherein the one or more electrodes are disposed on a catheter.
  • 8. The method of claim 1, wherein the one or more electrodes are electrically connected to a stimulator via one or more leads, and wherein the stimulator is configured to be outside of the patient during the method.
  • 9. A method of stimulating a diaphragm, comprising: calculating a level of work to be done by the diaphragm of a patient during a breath cycle, wherein the patient receives respiratory assistance from a ventilator during the breath cycle;calculating a first stimulation signal based on a stimulation parameter, the level of work, and a desired breath parameter;transmitting the first stimulation signal to a plurality of electrodes positioned under skin of a patient, proximate to a phrenic nerve;obtaining a first measurement of a subsequent breath cycle of the patient, wherein the first stimulation signal was transmitted during the subsequent breath cycle of the patient, and the first measurement includes airflow, volume, pressure, or combinations thereof;comparing the first measurement to the desired breath parameter; andbased on the comparison, modifying the stimulation parameter, the amount of respiratory assistance the patient receives from the ventilator, or both.
  • 10. The method of claim 9, further including obtaining a second measurement of a further breath cycle of a patient, wherein the second measurement includes airflow, volume, pressure, or combinations thereof; and based on the stimulation parameter, the second measurement, and the desired breath parameter, transmitting a second stimulation signal to the plurality of electrodes positioned under skin of a patient.
  • 11. The method of claim 10, wherein the first stimulation signal is transmitted to a first pair of electrodes, and the second stimulation signal is transmitted to a second pair of electrodes.
  • 12. The method of claim 10, wherein the first stimulation signal, the second stimulation signal, or both, is transmitted during an inspiration phase of the corresponding breath cycle.
  • 13. The method of claim 9, further including calculating stimulations per minute and breaths per minute, and comparing the stimulations per minute to breaths per minute.
  • 14. The method of claim 13, further including modifying the stimulation parameter based on comparing the stimulations per minute to the breaths per minute.
  • 15. The method of claim 9, further including modifying the stimulation parameter based on the calculated level of work to be done by the patient.
  • 16. The method of claim 9, wherein the desired breath parameter includes an airflow, a volume, a pressure, or combinations thereof.
  • 17. A method of stimulating a diaphragm, comprising: positioning a plurality of electrodes proximate to at least one phrenic nerve within a patient;determining a pressure and a volume of air flow via one or more sensors coupled to a mechanical ventilator;calculating a level of work to be expended during breathing by the diaphragm of the patient, based on the pressure and the volume; andcalculating a desired electrical stimulation signal based on the calculated level of work;delivering the calculated desired electrical stimulation signal to at least one of the plurality of electrodes to at least partially activate the patient's diaphragm;modifying the desired electrical stimulation signal based on if a measured parameter is outside of a preselected target range; anddelivering the modified desired electrical stimulation signal to the at least one of the plurality of electrodes to at least partially activate the patient's diaphragm.
  • 18. The method of claim 17, wherein: the plurality of electrodes includes a first electrode pair that includes an anodal electrode and a cathodal electrode;the plurality of electrodes further includes a second electrode pair; andthe calculated desired electrical stimulation signal and the modified desired electrical stimulation signal is each delivered during an inspiration phase of a breath cycle.
  • 19. The method of claim 18, the desired electrical stimulation signal is delivered to the first electrode pair, and modified desired electrical stimulation is delivered to the second electrode pair.
  • 20. The method of claim 17, wherein the calculated desired electrical stimulation signal and the modified desired electrical stimulation signal is each delivered during 1 out of every n breaths, where n is a number 1 to 10.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/410,022, filed Dec. 19, 2014, which is a National Stage filing under 35 U.S.C. § 371 of International Application No. PCT/CA2013/000594, filed Jun. 21, 2013, which claims the benefit of U.S. Provisional Application No. 61/662,579, filed Jun. 21, 2012. Each of the disclosures of the above applications is expressly incorporated by reference herein.

US Referenced Citations (643)
Number Name Date Kind
1693734 Waggoner Dec 1928 A
2532788 Sarnoff Dec 1950 A
2664880 Wales, Jr. Jan 1954 A
3348548 Chardack Oct 1967 A
3470876 John Oct 1969 A
3769984 Muench Nov 1973 A
3804098 Friedman Apr 1974 A
3817241 Grausz Jun 1974 A
3835864 Rasor et al. Sep 1974 A
3847157 Caillouette et al. Nov 1974 A
3851641 Toole et al. Dec 1974 A
3896373 Zelby Jul 1975 A
3938502 Bom Feb 1976 A
3983881 Wickham Oct 1976 A
4054881 Raab Oct 1977 A
4072146 Howes Feb 1978 A
4114601 Abels Sep 1978 A
4173228 Childress et al. Nov 1979 A
4249539 Mezrich et al. Feb 1981 A
4317078 Weed et al. Feb 1982 A
4380237 Newbower Apr 1983 A
4407294 Vilkomerson Oct 1983 A
4416289 Bresler Nov 1983 A
4431005 McCormick Feb 1984 A
4431006 Trimmer et al. Feb 1984 A
4445501 Bresler May 1984 A
RE31873 Howes Apr 1985 E
4573481 Bullara Mar 1986 A
4586923 Gould et al. May 1986 A
4587975 Salo et al. May 1986 A
4643201 Stokes Feb 1987 A
4674518 Salo Jun 1987 A
4681117 Brodman et al. Jul 1987 A
4683890 Hewson Aug 1987 A
4697595 Breyer et al. Oct 1987 A
4706681 Breyer et al. Nov 1987 A
4771788 Millar Sep 1988 A
4819662 Heil, Jr. et al. Apr 1989 A
4827935 Geddes et al. May 1989 A
4830008 Meer May 1989 A
4840182 Carlson Jun 1989 A
4852580 Wood Aug 1989 A
4860769 Fogarty et al. Aug 1989 A
4905698 Strohl, Jr. et al. Mar 1990 A
4911174 Pederson et al. Mar 1990 A
4934049 Kiekhafer et al. Jun 1990 A
4944088 Doan et al. Jul 1990 A
4951682 Petre Aug 1990 A
4957110 Vogel et al. Sep 1990 A
4989617 Memberg et al. Feb 1991 A
5005587 Scott Apr 1991 A
5036848 Hewson Aug 1991 A
5042143 Holleman et al. Aug 1991 A
5056519 Vince Oct 1991 A
5115818 Holleman et al. May 1992 A
5146918 Kallok et al. Sep 1992 A
5170802 Mehra Dec 1992 A
5184621 Vogel et al. Feb 1993 A
5224491 Mehra Jul 1993 A
5243995 Maier Sep 1993 A
5265604 Vince Nov 1993 A
5267569 Lienhard Dec 1993 A
5314463 Camps et al. May 1994 A
5316009 Yamada May 1994 A
5324322 Grill, Jr. et al. Jun 1994 A
5330522 Kreyenhagen Jul 1994 A
5345936 Pomeranz et al. Sep 1994 A
5383923 Webster, Jr. Jan 1995 A
5411025 Webster, Jr. May 1995 A
5417208 Winkler May 1995 A
5451206 Young Sep 1995 A
5456254 Pietroski et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5476498 Ayers Dec 1995 A
5486159 Mahurkar Jan 1996 A
5507725 Savage et al. Apr 1996 A
5524632 Stein et al. Jun 1996 A
5527358 Mehmanesh et al. Jun 1996 A
5531686 Lundquist et al. Jul 1996 A
5549655 Erickson Aug 1996 A
5555618 Winkler Sep 1996 A
5567724 Kelleher et al. Oct 1996 A
5584873 Shoberg et al. Dec 1996 A
5604231 Smith et al. Feb 1997 A
5665103 Lafontaine et al. Sep 1997 A
5678535 Dimarco Oct 1997 A
5683370 Luther et al. Nov 1997 A
5709853 Iino et al. Jan 1998 A
5716392 Bourgeois et al. Feb 1998 A
5733255 Dinh et al. Mar 1998 A
5755765 Hyde et al. May 1998 A
5776111 Tesio Jul 1998 A
5779732 Amundson Jul 1998 A
5782828 Chen et al. Jul 1998 A
5785706 Bednarek Jul 1998 A
5788681 Weaver et al. Aug 1998 A
5813399 Isaza et al. Sep 1998 A
5814086 Hirschberg et al. Sep 1998 A
RE35924 Winkler Oct 1998 E
5824027 Hoffer et al. Oct 1998 A
5827192 Gopakumaran et al. Oct 1998 A
5916163 Panescu et al. Jun 1999 A
5944022 Nardella et al. Aug 1999 A
5954761 Machek et al. Sep 1999 A
5967978 Littmann et al. Oct 1999 A
5971933 Gopakumaran et al. Oct 1999 A
5983126 Wittkampf Nov 1999 A
6006134 Hill et al. Dec 1999 A
6024702 Iversen Feb 2000 A
6096728 Collins et al. Aug 2000 A
6120476 Fung et al. Sep 2000 A
6123699 Webster, Jr. Sep 2000 A
6126649 Vantassel et al. Oct 2000 A
6136021 Tockman et al. Oct 2000 A
6157862 Brownlee et al. Dec 2000 A
6161029 Spreigl et al. Dec 2000 A
6166048 Bencherif Dec 2000 A
6171277 Ponzi Jan 2001 B1
6183463 Webster, Jr. Feb 2001 B1
6198970 Freed et al. Mar 2001 B1
6198974 Webster, Jr. Mar 2001 B1
6201994 Warman et al. Mar 2001 B1
6208881 Champeau Mar 2001 B1
6210339 Kiepen et al. Apr 2001 B1
6212435 Lattner et al. Apr 2001 B1
6216045 Black et al. Apr 2001 B1
6236892 Feler May 2001 B1
6240320 Spehr et al. May 2001 B1
6251126 Ottenhoff et al. Jun 2001 B1
6269269 Ottenhoff et al. Jul 2001 B1
6292695 Webster, Jr. et al. Sep 2001 B1
6295475 Morgan Sep 2001 B1
6360740 Ward et al. Mar 2002 B1
6397108 Camps et al. May 2002 B1
6400976 Champeau Jun 2002 B1
6415183 Scheiner et al. Jul 2002 B1
6415187 Kuzma et al. Jul 2002 B1
6438427 Rexhausen et al. Aug 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6449507 Hill et al. Sep 2002 B1
6463327 Lurie et al. Oct 2002 B1
6493590 Wessman et al. Dec 2002 B1
6508802 Rosengart et al. Jan 2003 B1
6526321 Spehr Feb 2003 B1
6569114 Ponzi et al. May 2003 B2
6584362 Scheiner et al. Jun 2003 B1
6585718 Hayzelden et al. Jul 2003 B2
6587726 Lurie et al. Jul 2003 B2
6602242 Fung et al. Aug 2003 B1
6610713 Tracey Aug 2003 B2
6630611 Malowaniec Oct 2003 B1
6643552 Edell et al. Nov 2003 B2
6651652 Waard Nov 2003 B1
6682526 Jones et al. Jan 2004 B1
6702780 Gilboa et al. Mar 2004 B1
6718208 Hill et al. Apr 2004 B2
6721603 Zabara et al. Apr 2004 B2
6757970 Kuzma et al. Jul 2004 B1
6778854 Puskas Aug 2004 B2
6779257 Kiepen et al. Aug 2004 B2
6844713 Steber et al. Jan 2005 B2
RE38705 Hill et al. Feb 2005 E
6881211 Schweikert et al. Apr 2005 B2
6885888 Rezai Apr 2005 B2
6907285 Denker et al. Jun 2005 B2
6934583 Weinberg et al. Aug 2005 B2
6981314 Black et al. Jan 2006 B2
6999820 Jordan Feb 2006 B2
7018374 Schon et al. Mar 2006 B2
7047627 Black et al. May 2006 B2
7071194 Teng Jul 2006 B2
7072720 Puskas Jul 2006 B2
7077823 McDaniel Jul 2006 B2
7082331 Park et al. Jul 2006 B1
7130700 Gardeski et al. Oct 2006 B2
7142903 Rodriguez et al. Nov 2006 B2
7149585 Wessman et al. Dec 2006 B2
7155278 King et al. Dec 2006 B2
7168429 Matthews et al. Jan 2007 B2
7184829 Hill et al. Feb 2007 B2
7206636 Turcott Apr 2007 B1
7212867 Van et al. May 2007 B2
7225016 Koh May 2007 B1
7225019 Jahns et al. May 2007 B2
7229429 Martin et al. Jun 2007 B2
7231260 Wallace et al. Jun 2007 B2
7235070 Vanney Jun 2007 B2
7269459 Koh Sep 2007 B1
7277757 Casavant et al. Oct 2007 B2
7283875 Larsson et al. Oct 2007 B2
7340302 Falkenberg et al. Mar 2008 B1
7363085 Benser et al. Apr 2008 B1
7363086 Koh et al. Apr 2008 B1
7371220 Koh et al. May 2008 B1
7416552 Paul et al. Aug 2008 B2
7421296 Benser et al. Sep 2008 B1
7454244 Kassab et al. Nov 2008 B2
7519425 Benser et al. Apr 2009 B2
7519426 Koh et al. Apr 2009 B1
7522953 Gharib et al. Apr 2009 B2
7553305 Honebrink et al. Jun 2009 B2
7555349 Wessman et al. Jun 2009 B2
7569029 Clark et al. Aug 2009 B2
7591265 Lee et al. Sep 2009 B2
7593760 Rodriguez et al. Sep 2009 B2
7613524 Jordan Nov 2009 B2
7636600 Koh Dec 2009 B1
7670284 Padget et al. Mar 2010 B2
7672728 Libbus et al. Mar 2010 B2
7672729 Koh et al. Mar 2010 B2
7676275 Farazi et al. Mar 2010 B1
7676910 Kiepen et al. Mar 2010 B2
7697984 Hill et al. Apr 2010 B2
7747323 Libbus et al. Jun 2010 B2
7771388 Olsen et al. Aug 2010 B2
7783362 Whitehurst et al. Aug 2010 B2
7794407 Rothenberg Sep 2010 B2
7797050 Libbus et al. Sep 2010 B2
7813805 Farazi Oct 2010 B1
7819883 Westlund et al. Oct 2010 B2
7840270 Ignagni et al. Nov 2010 B2
7853302 Rodriguez et al. Dec 2010 B2
7869865 Govari et al. Jan 2011 B2
7891085 Kuzma et al. Feb 2011 B1
7925352 Stack et al. Apr 2011 B2
7949409 Bly et al. May 2011 B2
7949412 Harrison et al. May 2011 B1
7962215 Ignagni Jun 2011 B2
7970475 Tehrani et al. Jun 2011 B2
7972323 Bencini et al. Jul 2011 B1
7974693 David et al. Jul 2011 B2
7974705 Zdeblick et al. Jul 2011 B2
7979128 Tehrani et al. Jul 2011 B2
7994655 Bauer et al. Aug 2011 B2
8000765 Rodriguez et al. Aug 2011 B2
8019439 Kuzma et al. Sep 2011 B2
8021327 Selkee Sep 2011 B2
8036750 Caparso et al. Oct 2011 B2
8050765 Lee et al. Nov 2011 B2
8052607 Byrd Nov 2011 B2
8104470 Lee et al. Jan 2012 B2
8116872 Tehrani et al. Feb 2012 B2
8121692 Haefner et al. Feb 2012 B2
8135471 Zhang et al. Mar 2012 B2
8140164 Tehrani et al. Mar 2012 B2
8147486 Honour et al. Apr 2012 B2
8160701 Zhao et al. Apr 2012 B2
8160711 Tehrani et al. Apr 2012 B2
8195297 Penner Jun 2012 B2
8200336 Tehrani et al. Jun 2012 B2
8206343 Racz Jun 2012 B2
8224456 Daglow et al. Jul 2012 B2
8233987 Gelfand et al. Jul 2012 B2
8233993 Jordan Jul 2012 B2
8239037 Glenn et al. Aug 2012 B2
8244358 Tehrani et al. Aug 2012 B2
8244359 Gelfand et al. Aug 2012 B2
8244378 Bly et al. Aug 2012 B2
8255056 Tehrani Aug 2012 B2
8256419 Sinderby et al. Sep 2012 B2
8265736 Sathaye et al. Sep 2012 B2
8265759 Tehrani et al. Sep 2012 B2
8275440 Rodriguez et al. Sep 2012 B2
8280513 Tehrani et al. Oct 2012 B2
8315713 Burnes et al. Nov 2012 B2
8321808 Goetz et al. Nov 2012 B2
8335567 Tehrani et al. Dec 2012 B2
8340783 Sommer et al. Dec 2012 B2
8348941 Tehrani Jan 2013 B2
8369954 Stack et al. Feb 2013 B2
8374704 Desai et al. Feb 2013 B2
8388541 Messerly et al. Mar 2013 B2
8388546 Rothenberg Mar 2013 B2
8391956 Zellers et al. Mar 2013 B2
8401640 Zhao et al. Mar 2013 B2
8401651 Caparso et al. Mar 2013 B2
8406883 Barker Mar 2013 B1
8406885 Ignagni et al. Mar 2013 B2
8412331 Tehrani et al. Apr 2013 B2
8412350 Bly Apr 2013 B2
8428711 Lin et al. Apr 2013 B2
8428726 Ignagni et al. Apr 2013 B2
8428730 Stack et al. Apr 2013 B2
8433412 Westlund et al. Apr 2013 B1
8442638 Libbus et al. May 2013 B2
8457764 Ramachandran et al. Jun 2013 B2
8467876 Tehrani Jun 2013 B2
8473068 Farazi Jun 2013 B2
8478412 Ignagni et al. Jul 2013 B2
8478413 Karamanoglu et al. Jul 2013 B2
8478426 Barker Jul 2013 B2
8483834 Lee et al. Jul 2013 B2
8504158 Karamanoglu et al. Aug 2013 B2
8504161 Kornet et al. Aug 2013 B1
8509901 Tehrani Aug 2013 B2
8509902 Cho et al. Aug 2013 B2
8509919 Yoo et al. Aug 2013 B2
8512256 Rothenberg Aug 2013 B2
8522779 Lee et al. Sep 2013 B2
8527036 Jalde et al. Sep 2013 B2
8532793 Morris et al. Sep 2013 B2
8554323 Haefner et al. Oct 2013 B2
8560072 Caparso et al. Oct 2013 B2
8560086 Just et al. Oct 2013 B2
8571662 Hoffer Oct 2013 B2
8571685 Daglow et al. Oct 2013 B2
8615297 Sathaye et al. Dec 2013 B2
8617228 Wittenberger et al. Dec 2013 B2
8620412 Griffiths et al. Dec 2013 B2
8620450 Tockman et al. Dec 2013 B2
8626292 McCabe et al. Jan 2014 B2
8630707 Zhao et al. Jan 2014 B2
8644939 Wilson et al. Feb 2014 B2
8644952 Desai et al. Feb 2014 B2
8646172 Kuzma et al. Feb 2014 B2
8650747 Kuzma et al. Feb 2014 B2
8676323 Ignagni et al. Mar 2014 B2
8676344 Desai et al. Mar 2014 B2
8694123 Wahlstrand et al. Apr 2014 B2
8696656 Abboud et al. Apr 2014 B2
8706223 Zhou et al. Apr 2014 B2
8706235 Karamanoglu et al. Apr 2014 B2
8706236 Ignagni et al. Apr 2014 B2
8718763 Zhou et al. May 2014 B2
8725259 Kornet et al. May 2014 B2
8738154 Zdeblick et al. May 2014 B2
8755889 Scheiner Jun 2014 B2
8774907 Rothenberg Jul 2014 B2
8781578 McCabe et al. Jul 2014 B2
8781582 Ziegler et al. Jul 2014 B2
8781583 Cornelussen et al. Jul 2014 B2
8801693 He et al. Aug 2014 B2
8805511 Karamanoglu et al. Aug 2014 B2
8838245 Lin et al. Sep 2014 B2
8858455 Rothenberg Oct 2014 B2
8863742 Blomquist et al. Oct 2014 B2
8886277 Kim et al. Nov 2014 B2
8897879 Karamanoglu et al. Nov 2014 B2
8903507 Desai et al. Dec 2014 B2
8903509 Tockman et al. Dec 2014 B2
8909341 Gelfand et al. Dec 2014 B2
8914113 Zhang et al. Dec 2014 B2
8918169 Kassab et al. Dec 2014 B2
8918987 Kuzma et al. Dec 2014 B2
8923971 Haefner et al. Dec 2014 B2
8942823 Desai et al. Jan 2015 B2
8942824 Yoo et al. Jan 2015 B2
8948884 Ramachandran et al. Feb 2015 B2
8968299 Kauphusman et al. Mar 2015 B2
8972015 Stack et al. Mar 2015 B2
8983602 Sathaye et al. Mar 2015 B2
9008775 Sathaye et al. Apr 2015 B2
9026231 Hoffer May 2015 B2
9037264 Just et al. May 2015 B2
9042981 Yoo et al. May 2015 B2
9072864 Putz Jul 2015 B2
9072899 Nickloes Jul 2015 B1
9108058 Hoffer Aug 2015 B2
9108059 Hoffer Aug 2015 B2
9125578 Grunwald Sep 2015 B2
9138580 Ignagni et al. Sep 2015 B2
9138585 Saha et al. Sep 2015 B2
9149642 McCabe et al. Oct 2015 B2
9168377 Hoffer Oct 2015 B2
9205258 Simon et al. Dec 2015 B2
9216291 Lee et al. Dec 2015 B2
9220898 Hoffer Dec 2015 B2
9226688 Jacobsen et al. Jan 2016 B2
9226689 Jacobsen et al. Jan 2016 B2
9242088 Thakkar et al. Jan 2016 B2
9259573 Tehrani et al. Feb 2016 B2
9295846 Westlund et al. Mar 2016 B2
9314618 Imran et al. Apr 2016 B2
9333363 Hoffer et al. May 2016 B2
9345422 Rothenberg May 2016 B2
9370657 Tehrani et al. Jun 2016 B2
9398931 Wittenberger et al. Jul 2016 B2
9415188 He et al. Aug 2016 B2
9427566 Reed et al. Aug 2016 B2
9427588 Sathaye et al. Aug 2016 B2
9474894 Mercanzini et al. Oct 2016 B2
9485873 Shah et al. Nov 2016 B2
9498625 Bauer et al. Nov 2016 B2
9498631 Demmer et al. Nov 2016 B2
9504837 Demmer et al. Nov 2016 B2
9532724 Grunwald et al. Jan 2017 B2
9533160 Brooke et al. Jan 2017 B2
9539429 Brooke et al. Jan 2017 B2
9545511 Thakkar et al. Jan 2017 B2
9561369 Burnes et al. Feb 2017 B2
9566436 Hoffer et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9597509 Hoffer et al. Mar 2017 B2
9615759 Hurezan et al. Apr 2017 B2
9623252 Sathaye et al. Apr 2017 B2
9662494 Young et al. May 2017 B2
9682235 O'Mahony et al. Jun 2017 B1
9694185 Bauer Jul 2017 B2
9717899 Kuzma et al. Aug 2017 B2
9724018 Cho et al. Aug 2017 B2
9744351 Gelfand et al. Aug 2017 B1
9776005 Meyyappan et al. Oct 2017 B2
9861817 Cho et al. Jan 2018 B2
9872989 Jung et al. Jan 2018 B2
9884178 Bouton et al. Feb 2018 B2
9884179 Bouton et al. Feb 2018 B2
9919149 Imran et al. Mar 2018 B2
9931504 Thakkar et al. Apr 2018 B2
9950167 Hoffer et al. Apr 2018 B2
9956396 Young et al. May 2018 B2
9968785 Hoffer et al. May 2018 B2
9968786 Bauer et al. May 2018 B2
20010052345 Niazi Dec 2001 A1
20020026228 Schauerte Feb 2002 A1
20020056454 Samzelius May 2002 A1
20020065544 Smits et al. May 2002 A1
20020087156 Maguire et al. Jul 2002 A1
20020128546 Silver Sep 2002 A1
20020188325 Hill et al. Dec 2002 A1
20030078623 Weinberg et al. Apr 2003 A1
20030195571 Burnes et al. Oct 2003 A1
20040003813 Banner et al. Jan 2004 A1
20040010303 Bolea et al. Jan 2004 A1
20040030362 Hill et al. Feb 2004 A1
20040044377 Larsson et al. Mar 2004 A1
20040064069 Reynolds et al. Apr 2004 A1
20040077936 Larsson et al. Apr 2004 A1
20040088015 Casavant et al. May 2004 A1
20040111139 McCreery Jun 2004 A1
20040186543 King et al. Sep 2004 A1
20040210261 King et al. Oct 2004 A1
20050004565 Vanney Jan 2005 A1
20050013879 Lin et al. Jan 2005 A1
20050021102 Ignagni et al. Jan 2005 A1
20050027338 Hill Feb 2005 A1
20050033136 Govari et al. Feb 2005 A1
20050033137 Oral et al. Feb 2005 A1
20050043765 Williams et al. Feb 2005 A1
20050065567 Lee et al. Mar 2005 A1
20050070981 Verma Mar 2005 A1
20050075578 Gharib et al. Apr 2005 A1
20050085865 Tehrani Apr 2005 A1
20050085866 Tehrani Apr 2005 A1
20050085867 Tehrani et al. Apr 2005 A1
20050085868 Tehrani et al. Apr 2005 A1
20050085869 Tehrani et al. Apr 2005 A1
20050096710 Kieval May 2005 A1
20050109340 Tehrani May 2005 A1
20050113710 Stahmann et al. May 2005 A1
20050115561 Stahmann et al. Jun 2005 A1
20050131485 Knudson et al. Jun 2005 A1
20050138791 Black et al. Jun 2005 A1
20050138792 Black et al. Jun 2005 A1
20050143787 Boveja et al. Jun 2005 A1
20050165457 Benser et al. Jul 2005 A1
20050182454 Gharib et al. Aug 2005 A1
20050187584 Denker et al. Aug 2005 A1
20050192655 Black et al. Sep 2005 A1
20050251238 Wallace et al. Nov 2005 A1
20050251239 Wallace et al. Nov 2005 A1
20050288728 Libbus et al. Dec 2005 A1
20050288730 Deem et al. Dec 2005 A1
20060030894 Tehrani Feb 2006 A1
20060035849 Spiegelman et al. Feb 2006 A1
20060058852 Koh et al. Mar 2006 A1
20060074449 Denker et al. Apr 2006 A1
20060122661 Mandell Jun 2006 A1
20060122662 Tehrani et al. Jun 2006 A1
20060130833 Younes Jun 2006 A1
20060142815 Tehrani et al. Jun 2006 A1
20060149334 Tehrani et al. Jul 2006 A1
20060155222 Sherman et al. Jul 2006 A1
20060167523 Tehrani et al. Jul 2006 A1
20060188325 Dolan Aug 2006 A1
20060195159 Bradley et al. Aug 2006 A1
20060217791 Spinka et al. Sep 2006 A1
20060224209 Meyer Oct 2006 A1
20060229677 Moffitt et al. Oct 2006 A1
20060229687 Goetz Oct 2006 A1
20060247729 Tehrani et al. Nov 2006 A1
20060253161 Libbus et al. Nov 2006 A1
20060253182 King Nov 2006 A1
20060258667 Teng Nov 2006 A1
20060259107 Caparso et al. Nov 2006 A1
20060282131 Caparso et al. Dec 2006 A1
20060287679 Stone Dec 2006 A1
20070005053 Dando Jan 2007 A1
20070021795 Tehrani Jan 2007 A1
20070027448 Paul et al. Feb 2007 A1
20070087314 Gomo Apr 2007 A1
20070093875 Chavan et al. Apr 2007 A1
20070106357 Denker et al. May 2007 A1
20070112402 Grill et al. May 2007 A1
20070112403 Moffitt et al. May 2007 A1
20070118183 Gelfand et al. May 2007 A1
20070150006 Libbus et al. Jun 2007 A1
20070168007 Kuzma et al. Jul 2007 A1
20070173900 Siegel et al. Jul 2007 A1
20070191908 Jacob et al. Aug 2007 A1
20070196780 Ware et al. Aug 2007 A1
20070203549 Demarais et al. Aug 2007 A1
20070208388 Jahns et al. Sep 2007 A1
20070221224 Pittman et al. Sep 2007 A1
20070240718 Daly Oct 2007 A1
20070250056 Vanney Oct 2007 A1
20070250162 Royalty Oct 2007 A1
20070255379 Williams et al. Nov 2007 A1
20070265611 Ignagni et al. Nov 2007 A1
20070288076 Bulkes et al. Dec 2007 A1
20080039916 Colliou et al. Feb 2008 A1
20080065002 Lobl et al. Mar 2008 A1
20080121231 Sinderby May 2008 A1
20080125828 Ignagni et al. May 2008 A1
20080161878 Tehrani et al. Jul 2008 A1
20080167695 Tehrani et al. Jul 2008 A1
20080177347 Tehrani et al. Jul 2008 A1
20080183186 Bly et al. Jul 2008 A1
20080183187 Bly Jul 2008 A1
20080183239 Tehrani et al. Jul 2008 A1
20080183240 Tehrani et al. Jul 2008 A1
20080183253 Bly Jul 2008 A1
20080183254 Bly et al. Jul 2008 A1
20080183255 Bly et al. Jul 2008 A1
20080183259 Bly et al. Jul 2008 A1
20080183264 Bly et al. Jul 2008 A1
20080183265 Bly et al. Jul 2008 A1
20080188903 Tehrani et al. Aug 2008 A1
20080215106 Lee et al. Sep 2008 A1
20080288010 Tehrani et al. Nov 2008 A1
20080288015 Tehrani et al. Nov 2008 A1
20080312712 Penner Dec 2008 A1
20080312725 Penner Dec 2008 A1
20090024047 Shipley et al. Jan 2009 A1
20090036947 Westlund et al. Feb 2009 A1
20090118785 Ignagni et al. May 2009 A1
20090275956 Burnes et al. Nov 2009 A1
20090275996 Burnes et al. Nov 2009 A1
20090276022 Burnes et al. Nov 2009 A1
20100022950 Anderson et al. Jan 2010 A1
20100036451 Hoffer Feb 2010 A1
20100077606 Black et al. Apr 2010 A1
20100094376 Penner Apr 2010 A1
20100114227 Cholette May 2010 A1
20100114254 Kornet May 2010 A1
20100198296 Ignagni et al. Aug 2010 A1
20100204766 Zdeblick et al. Aug 2010 A1
20100268311 Cardinal et al. Oct 2010 A1
20100319691 Lurie et al. Dec 2010 A1
20110060381 Ignagni et al. Mar 2011 A1
20110077726 Westlund et al. Mar 2011 A1
20110118815 Kuzma et al. May 2011 A1
20110230932 Tehrani et al. Sep 2011 A1
20110230935 Zdeblick Sep 2011 A1
20110230945 Ohtaka et al. Sep 2011 A1
20110270358 Davis et al. Nov 2011 A1
20110288609 Tehrani Nov 2011 A1
20120035684 Thompson et al. Feb 2012 A1
20120053654 Tehrani et al. Mar 2012 A1
20120078320 Schotzko et al. Mar 2012 A1
20120130217 Kauphusman et al. May 2012 A1
20120158091 Tehrani et al. Jun 2012 A1
20120209284 Westlund et al. Aug 2012 A1
20120215278 Penner Aug 2012 A1
20120323293 Tehrani et al. Dec 2012 A1
20130018247 Glenn et al. Jan 2013 A1
20130018427 Pham et al. Jan 2013 A1
20130023972 Kuzma et al. Jan 2013 A1
20130030496 Karamanoglu et al. Jan 2013 A1
20130030497 Karamanoglu et al. Jan 2013 A1
20130030498 Karamanoglu et al. Jan 2013 A1
20130060245 Grunewald et al. Mar 2013 A1
20130116743 Karamanoglu et al. May 2013 A1
20130123891 Swanson May 2013 A1
20130131743 Yamasaki et al. May 2013 A1
20130158625 Gelfand et al. Jun 2013 A1
20130165989 Gelfand et al. Jun 2013 A1
20130167372 Black et al. Jul 2013 A1
20130197601 Tehrani et al. Aug 2013 A1
20130237906 Park et al. Sep 2013 A1
20130268018 Brooke et al. Oct 2013 A1
20130289686 Masson et al. Oct 2013 A1
20130296964 Tehrani Nov 2013 A1
20130296973 Tehrani et al. Nov 2013 A1
20130317587 Barker Nov 2013 A1
20130333696 Lee et al. Dec 2013 A1
20140067032 Morris et al. Mar 2014 A1
20140088580 Wittenberger et al. Mar 2014 A1
20140114371 Westlund et al. Apr 2014 A1
20140121716 Casavant et al. May 2014 A1
20140128953 Zhao et al. May 2014 A1
20140148780 Putz May 2014 A1
20140316486 Zhou et al. Oct 2014 A1
20140324115 Ziegler et al. Oct 2014 A1
20140378803 Geistert et al. Dec 2014 A1
20150018839 Morris et al. Jan 2015 A1
20150034081 Tehrani et al. Feb 2015 A1
20150045810 Hoffer et al. Feb 2015 A1
20150045848 Cho et al. Feb 2015 A1
20150119950 Demmer et al. Apr 2015 A1
20150165207 Karamanoglu Jun 2015 A1
20150196354 Haverkost et al. Jul 2015 A1
20150196356 Kauphusman et al. Jul 2015 A1
20150231348 Lee et al. Aug 2015 A1
20150250982 Osypka et al. Sep 2015 A1
20150265833 Meyyappan et al. Sep 2015 A1
20150283340 Zhang et al. Oct 2015 A1
20150290476 Krocak et al. Oct 2015 A1
20150359487 Coulombe Dec 2015 A1
20150374252 De et al. Dec 2015 A1
20150374991 Morris et al. Dec 2015 A1
20160001072 Gelfand et al. Jan 2016 A1
20160144078 Young et al. May 2016 A1
20160193460 Xu et al. Jul 2016 A1
20160228696 Imran et al. Aug 2016 A1
20160239627 Cerny et al. Aug 2016 A1
20160256692 Baru Sep 2016 A1
20160310730 Martins et al. Oct 2016 A1
20160331326 Xiang et al. Nov 2016 A1
20160367815 Hoffer Dec 2016 A1
20170007825 Thakkar et al. Jan 2017 A1
20170013713 Shah et al. Jan 2017 A1
20170021166 Bauer et al. Jan 2017 A1
20170028191 Mercanzini et al. Feb 2017 A1
20170036017 Tehrani et al. Feb 2017 A1
20170050033 Wechter Feb 2017 A1
20170143973 Tehrani May 2017 A1
20170143975 Hoffer et al. May 2017 A1
20170196503 Narayan et al. Jul 2017 A1
20170224993 Sathaye et al. Aug 2017 A1
20170232250 Kim et al. Aug 2017 A1
20170252558 O'Mahony et al. Sep 2017 A1
20170291023 Kuzma et al. Oct 2017 A1
20170296812 O'Mahony et al. Oct 2017 A1
20170312006 McFarlin et al. Nov 2017 A1
20170312507 Bauer et al. Nov 2017 A1
20170312508 Bauer et al. Nov 2017 A1
20170312509 Bauer et al. Nov 2017 A1
20170326359 Gelfand et al. Nov 2017 A1
20170347921 Haber et al. Dec 2017 A1
20180001086 Bartholomew et al. Jan 2018 A1
20180008821 Gonzalez et al. Jan 2018 A1
20180110562 Govari et al. Apr 2018 A1
20180117334 Jung May 2018 A1
Foreign Referenced Citations (32)
Number Date Country
1652839 Aug 2005 CN
102143781 Aug 2011 CN
0993840 Apr 2000 EP
1304135 Apr 2003 EP
0605796 Aug 2003 EP
2489395 Aug 2012 EP
2801509 Jun 2001 FR
H08510677 Nov 1996 JP
2003503119 Jan 2003 JP
2010516353 May 2010 JP
2011200571 Oct 2011 JP
2012000195 Jan 2012 JP
WO-9407564 Apr 1994 WO
WO-9508357 Mar 1995 WO
WO-9964105 Dec 1999 WO
WO-9965561 Dec 1999 WO
WO-0100273 Jan 2001 WO
WO-02058785 Aug 2002 WO
WO-03094855 Nov 2003 WO
WO-2006110338 Oct 2006 WO
WO-2006115877 Nov 2006 WO
WO-2007053508 May 2007 WO
WO-2008092246 Aug 2008 WO
WO-2008094344 Aug 2008 WO
WO-2009006337 Jan 2009 WO
WO-2009134459 Nov 2009 WO
WO-2010029842 Mar 2010 WO
WO-2010148412 Dec 2010 WO
WO-2011158410 Dec 2011 WO
WO-2012106533 Aug 2012 WO
WO-2013131187 Sep 2013 WO
WO-2013188965 Dec 2013 WO
Non-Patent Literature Citations (58)
Entry
Antonica A., et al., “Vagal Control of Lymphocyte Release from Rat Thymus,” Journal of the Autonomic Nervous System, Elsevier, vol. 48(3), Aug. 1994, pp. 187-197.
Ayas N.T., et al., “Prevention of Human Diaphragm Atrophy with Short periods of Electrical Stimulation,” American Journal of Respiratory and Critical Care Medicine, Jun. 1999, vol. 159(6), pp. 2018-2020.
Borovikovaa L.V., et al., “Role of Vagus Nerve Signaling in CNI-1493-Mediated Suppression of Acute Inflammation,” Autonomic Neuroscience: Basic and Clinical, vol. 85 (1-3), Dec. 20, 2000, pp. 141-147.
Borovikovaa L.V., et al., “Vagus Nerve Stimulation Attenuates the Systemic Inflammatory Response to Endotoxin,” Nature, Macmillan Magazines Ltd, vol. 405, May 25, 2000, pp. 458-462.
Chinese Search Report for Application No. CN2013/80023357.5, dated Jul. 24, 2015.
Co-pending U.S. Appl. No. 15/606,867, filed May 26, 2017.
Daggeti, W.M. et al., “Intracaval Electrophrenic Stimulation. I. Experimental Application during Barbiturate Intoxication Hemorrhage and Gang,” Journal of Thoracic and Cardiovascular Surgery, 1966, vol. 51 (5), pp. 676-884.
Daggeti, W.M. et al., “Intracaval electrophrenic stimulation. II. Studies on Pulmonary Mechanics Surface Tension Urine Flow and Bilateral Ph,” Journal of Thoracic and Cardiovascular Surgery, 1970, vol. 60(1 ), pp. 98-107.
De Gregorio, M.A. et al., “The Gunther Tulip Retrievable Filter: Prolonged Temporary Filtration by Repositioning within the Inferior Vena Cava,” Journal of Vascular and Interventional Radiology, 2003, vol. 14, pp. 1259-1265.
Deng Y-J et al., “The Effect of Positive Pressure Ventilation Combined with Diaphragm Pacing on Respiratory Mechanics in Patients with Respiratory Failure; Respiratory Mechanics,” Chinese critical care medicine, Apr. 2011, vol. 23(4), pp. 213-215.
European Search Report for Application No. 13758363, dated Nov. 12, 2015.
European Search Report for Application No. EP17169051.4, dated Sep. 8, 2017, 7 pages.
Extended European Search Report for Application No. 14864542.7, dated Jun. 2, 2017, 8 pages.
Extended European Search Report for Application No. 15740415.3, dated Jul. 7, 2017.
Fleshner M., et al., “Thermogenic and Corticosterone Responses to Intravenous Cytokines (IL-1β and TNF-α) are Attenuated by Subdiaphragmatic Vagotomy,” Journal of Neuroimmunology, vol. 86, Jun. 1998, pp. 134-141.
Frisch S., “A Feasibility Study of a Novel Minimally Invasive Approach for Diaphragm Pacing,” Master of Science Thesis, Simon Fraser University, 2009, p. 148.
Furman, S., “Transvenous Stimulation of the Phrenic Nerves,” Journal of Thoracic and Cardiovascular Surgery, 1971, vol. 62 (5), pp. 743-751.
Gaykema R.P.A. et al., “Subdiaphragmatic Vagotomy Suppresses Endotoxin-Induced Activation of Hypothalamic Corticotropin-Releasing Hormone Neurons and ACTH Secretion,” Endocrinology, The Endocrine Society, vol. 136 (10), 1995, pp. 4717-4720.
Gupta A.K., “Respiration Rate Measurement Based on Impedance Pneumography,” Data Acquisition Products, Texas Instruments, Application Report, SBAA181, Feb. 2011, 11 pages.
Guslandi M., “Nicotine Treatment for Ulcerative Colitis,” The British Journal of Clinical Pharmacology, Blackwell Science Ltd, vol. 48, 1999, pp. 481-484.
Hoffer J.A. et al., “Diaphragm Pacing with Endovascular Electrodes”, IFESS 2010—International Functional Electrical Stimulation Society, 15th Anniversary Conference, Vienna, Austria, Sep. 2010.
Japanese Office Action in corresponding Japanese Application No. 2014-560202, dated Dec. 6, 2016, 4 pages.
Japanese Office Action in corresponding Japanese Application No. 2014-560202, dated Oct. 17, 2017, 5 pages.
Kawashima K., et al., “Extraneuronal Cholinergic System in Lymphocytes,” Pharmacology & Therapeutics, Elsevier, vol. 86, 2000, pp. 29-48.
Levine S., et al., “Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans,” New England Journal of Medicine, 2008, vol. 358, pp. 1327-1335.
Lung pacer: Therapy, News.< http://lungpacer.com>. Accessed Dec. 27, 2016.
Madretsma, G.S., et al., “Nicotine Inhibits the In-vitro Production of Interleukin 2 and Tumour Necrosis Factor-α by Human Mononuclear Cells,” Immunopharmacology, Elsevier, vol. 35 (1), Oct. 1996, pp. 47-51.
Marcy, T.W. et al., “Diaphragm Pacing for Ventilatory Insufficiency,” Journal of Intensive Care Medicine, 1987, vol. 2 (6), pp. 345-353.
Meyyappan R., “Diaphragm Pacing during Controlled Mechanical Ventilation: Pre-Clinical Observations Reveal a Substantial Improvement in Respiratory Mechanics”, 17th Biennial Canadian Biomechanics Society Meeting, Burnaby, BC, Jun. 6-9, 2012.
Nabutovsky, Y., et al., “Lead Design and Initial Applications of a New Lead for Long-Term Endovascular Vagal Stimulation,” PACE, Blackwell Publishing, Inc, vol. 30(1), Jan. 2007, pp. S215-S218.
Notification of Reasons for Rejection and English language translation issued in corresponding Japanese Patent Application No. 2015-517565, dated Mar. 28, 2017, 6 pages.
Onders R.,, “A Diaphragm Pacing as a Short-Term Assist to Positive Pressure Mechanical Ventilation in Critical Care Patients,” Chest, Oct. 24, 2007, vol. 132(4), pp. 5715-5728.
Onders R.,, “Diaphragm Pacing for Acute Respiratory Failure,” Difficult Decisions in Thoracic Surgery, Chapter 37, Springer-Verlag, 2011, M.K. Ferguson (ed.), pp. 329-335.
Onders R, et al., “Diaphragm Pacing with Natural Orifice Transluminal Endoscopic Surgery: Potential for Difficult-To-Wean Intensive Care Unit Patients,” Surgical Endoscopy, 2007, vol. 21, pp. 475-479.
Pavlovic D., et al., “Diaphragm Pacing During Prolonged Mechanical Ventilation of the Lungs could Prevent from Respiratory Muscle Fatigue,” Medical Hypotheses, vol. 60 (3), 2003, pp. 398-403.
Planas R.F., et al., “Diaphragmatic Pressures: Transvenous vs. Direct Phrenic Nerve Stimulation,” Journal of Applied Physiology, vol. 59(1), 1985, pp. 269-273.
Romanovsky, A.A., et al., “The Vagus Nerve in the Thermoregulatory Response to Systemic Inflammation,” American Journal of Physiology, vol. 273 (1 Pt 2), 1997, pp. R407-R413.
Salmela L., et al., “Verification of the Position of a Central Venous Catheter by Intra-Atrial ECG. When does this method fail?,” Acta Anasthesiol Scand, vol. 37 (1), 1993, pp. 26-28.
Sandborn W.J., “Transdermal Nicotine for Mildly to Moderately Active Ulcerative Colitis,” Annals of Internal Medicine, vol. 126 (5), Mar. 1, 1997, pp. 364-371.
Sandoval R., “A Catch/Ike Property-Based Stimulation Protocol for Diaphragm Pacing”, Master of Science Coursework project, Simon Fraser University, Mar. 2013.
Sarnoff, S.J. et al., “Electrophrenic Respiration,” Science, 1948, vol. 108, p. 482.
Sato E., et al., “Acetylcholine Stimulates Alveolar Macrophages to Release Inflammatory Cell Chemotactic Activity,” American Journal of Physiology, vol. 274 (Lung Cellular and Molecular Physiology 18), 1998, pp. L970-L979.
Sato, K.Z., et al., “Diversity of mRNA Expression for Muscarinic Acetylcholine Receptor Subtypes and Neuronal Nicotinic Acetylcholine Receptor Subunits in Human Mononuclear Leukocytes and Leukemic Cell Lines,” Neuroscience Letters, vol. 266 (1), 1999, pp. 17-20.
Schauerte P., et al., “Transvenous Parasympathetic Nerve Stimulation in the Inferior Vena Cava and Atrioventricular Conduction,” Journal of Cardiovascular Electrophysiology, vol. 11 (1), Jan. 2000, pp. 64-69.
Schauerte P.N., et al., “Transvenous Parasympathetic Cardiac Nerve Stimulation: An Approach for Stable Sinus Rate Control,” Journal of Cardiovascular Electrophysiology, vol. 10 (11), Nov. 1999, pp. 1517-1524.
Scheinman R.I., et al., “Role of Transcriptional Activation of IκBα in Mediation of Immunosuppression by Glucocorticoids,” Science, vol. 270, Oct. 13, 1995, pp. 283-286.
Sher, M.E., et al., “The Influence of Cigarette Smoking on Cytokine Levels in Patients with Inflammatory Bowel Disease,” Inflammatory Bowel Diseases, vol. 5 (2), May 1999, pp. 73-78.
Steinlein, O., “New Functions for Nicotinic Acetylcholine Receptors?,” Behavioural Brain Research, vol. 95, 1998, pp. 31-35.
Sternberg E.M., (Series Editor) “Neural-Immune Interactions in Health and Disease,” The Journal of Clinical Investigation, vol. 100 (11), Dec. 1997, pp. 2641-2647.
Sykes., A.P., et al., “An Investigation into the Effect and Mechanisms of Action of Nicotine in Inflammatory Bowel Disease,” Inflammation Research, vol. 49, 2000, pp. 311-319.
Toyabe S., et al., “Identification of Nicotinic Acetylcholine Receptors on Lymphocytes in the Periphery as well as Thymus in Mice,” Immunology, vol. 92, 1997, pp. 201-205.
Van Dijk A.P.M., et al., “Transdermal Nicotine Inhibits Interleukin 2 Synthesis by Mononuclear Cells Derived from Healthy Volunteers,” European Journal of Clinical Investigation, vol. 28, 1998, pp. 664-671.
Wanner, A. et al., “Trasvenous Phrenic Nerve Stimulation in Anesthetized Dogs,” Journal of Applied Physiology, 1973, vol. 34 (4), pp. 489-494.
Watkins L.R., et al., “Blockade of Interleukin-1 Induced Hyperthermia by Subdiaphragmatic Vagotomy: Evidence for Vagal Mediation of Immune-Brain Communication,” Neuroscience Letters, vol. 183, 1995, pp. 27-31.
Watkins L.R., et al., “Implications of Immune-to-Brain Communication for Sickness and Pain,” PNAS (Proceedings of the National Academy of Sciences of the USA), vol. 96 (14), Jul. 6, 1999, pp. 7710-7713.
Whaley K., et al., “C2 Synthesis by Human Monocytes is Modulated by a Nicotinic Cholinergic Receptor,” Nature, vol. 293, Oct. 15, 1981, pp. 580-582 (and reference page).
Escher, Doris J.W. et al., “Clinical Control of Respiration by Transvenous Phrenic Pacing,” American Society for Artificial Internal Organs: Apr. 1968—vol. 14—Issue 1—pp. 192-197.
Ishii, K. et al., “Effects of Bilateral Transvenous Diaphragm Pacing on Hemodynamic Function in Patients after Cardiac Operations,” J. Thorac. Cardiovasc. Surg., 1990.
Related Publications (1)
Number Date Country
20190030333 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
61662578 Jun 2012 US
Continuations (1)
Number Date Country
Parent 14410022 US
Child 16114064 US