Preferred embodiments of the invention will be described hereafter in detail with reference to accompanying drawings.
As shown in the drawings, a vacuum pump is formed by sequentially assembling a motor 1, a housing 2, a diaphragm guide 3, an air port 4, a cover 5, screws 6, and bolts 7, and a fixture 8 that is connected to the shaft of the motor 1 is provided in the housing 2.
A three-point diaphragm 10 that is combined with a rolling plate 9 is provided in the diaphragm guide 3, and intake valves 11 and guide rings 12 are combined with the air port 4.
An inclined pin 13 that is inclined to the rotational center is fixed at a predetermined distance from the rotational center in the fixture 8 connected to the shaft of the motor 1.
The inclined pin 13 is inserted in an insertion hole formed at the center of the rolling plate 9 and makes the rolling plate 9 eccentrically shake up and down by turning around the rotational center by rotation of the fixture 8.
In detail, when a side of the rolling plate 9 is perpendicular to the rotational center, the other side is inclined from the rotational center, such that the rolling plate 9 compresses or decompresses the three-point diaphragm 10 combined with the rolling plate 9.
When the rolling plate 9 is perpendicular to the rotational center, the three-point diaphragm 10 is compressed, and when the rolling plate 9 is inclined from the rotational center, the three-point diaphragm 10 is decompressed.
As the internal volume of the three-point diaphragm 10 decreases, the inside air pushes an exhaust valve 15 through exhaust passages 14 formed at a side of the insertion wall of the guide ring 12 and is then exhausted out of an exhaust port 17 through an exhaust hole 16. In contrast, as the internal volume increases, the air that flows through an intake port 18 formed at the cover 5 flows along grooves 19 formed on the upper surface of the air port 4 into the three-point diaphragm 10 through the intake valves 11.
The three-point diaphragm 10, the intake valves 11, and the exhaust valve 15 are formed of a flexible material, such that they can be easily deformed by external force, and the three-point diaphragm 10 and exhaust valve 15 are integrally formed.
The guide ring 12 is fixed in an insert groove 21 formed on the bottom of the air port 4 such that the exhaust passage 14 formed through the insertion wall faces the exhaust hole 16 and contacts the exhaust valve 15 extending from the three-point diaphragm 10 to the outside of the exhaust passage 14. Therefore, the exhaust valve 15 is closed by contacting the exhaust passage 14 in the intake process and pushed by the pressure of air in the exhaust process to exhaust the air.
Further, the guide ring 12 prevents the outer wall of the three-point diaphragm 10 from deforming inside by negative pressure in the intake process by strongly pressing the outside of the three-point diaphragm 10 against the wall of the diaphragm guide 3.
Further, a boss 20 that contacts to the center of the rolling plate 9 that eccentrically shakes under the diaphragm guide 3 is provided; therefore, it is possible to prevent the rolling plate from being sucked up in the intake process of the three-point diaphragm 10.
As described above, according to the embodiment of the invention, three cycles of pumping is possible for every two rotations of the motor 1; therefore, it is possible to effectively form a vacuum from a compact configuration.
As described above, the present invention provides a vacuum pump equipped with a diaphragm that is manufactured at low cost and effectively operates in a compact size.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0087250 | Sep 2006 | KR | national |