Information
-
Patent Grant
-
6314849
-
Patent Number
6,314,849
-
Date Filed
Friday, September 19, 199727 years ago
-
Date Issued
Tuesday, November 13, 200122 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 083 121
- 083 122
- 083 124
- 083 408
- 083 69851
- 241 166
- 241 167
-
International Classifications
-
Abstract
An apparatus for cutting a food product is disclosed including a stationary structure with a food product guide surface for guiding a food product along a path of travel, the apparatus having a knife wheel rotatable about a knife wheel axis, the knife wheel having at least one knife blade and located such that rotation of the knife wheel about the knife wheel axis causes the knife blade to cut through the food product as it moves along the path of travel. The apparatus also includes a knife wheel support which rotatably supports the knife wheel, the knife wheel support being pivotally attached to the stationary structure so as to pivot about a pivot axis extending substantially parallel to the knife wheel axis, such that the knife wheel axis is movable along an arcuate path about the pivot axis. By readily positioning the knife wheel in one of a plurality of discrete positions along the arcuate path, a visually acceptable square diced food product may be obtained from food products having a variety of thicknesses. The apparatus also includes a plurality of adjustable stripper plates extending between adjacent ones of a plurality of circular knives which slice the food product into a plurality of strips prior to the food product being cut by the cross-cut knife wheel. The stripper plates have an adjustable attaching mechanism connecting them to the stationary structure to facilitate the adjustment of the distance between the stripper plates and the food guide surface so as to readily accommodate a food product having a variety of thicknesses.
Description
BACKGROUND OF THE INVENTION
The present invention generally involves a field of technology pertaining to apparatus for cutting and dicing food products into discrete particles of predetermined shape and size. More particularly, the invention relates to a dicing machine having features to improve the squareness of cubed pieces cut from the food product.
Devices for cutting food products into smaller, discrete portions through a series of cutting operations are well-known in the art. Such machines are particularly suited for cutting food products into discrete pieces having substantially rectangular or cubical configurations. Generally, this is accomplished by conveying the food product over a slicing knife which severs a relatively thin slice of the food product, conveying the food product slice through a rotating bank of circular knives which cut the sliced food product into a plurality of elongated strips and thereafter directing these strips into a cross-cut knife assembly wherein a rotating bank of elongated knives cut the food product transversely into diced sections having either a rectangular or cubical configuration. The bank of circular knives may be associated with a stationary stripper plate having fingers extending between adjacent circular knives to prevent the food product from adhering to the circular knives as they rotate.
An important factor in a customer's selection of a cutting or dicing machine is the visual appearance of the cut food product produced by the machine. The squareness of the sides of the cubed material plays an important part in the overall appearance. Obtaining a square cut (one in which the sides of the cubed food product are perpendicular to adjacent sides, as well as to the top and bottom of the cube) using a circular shaped cross-cut spindle is difficult to achieve utilizing the known apparatus. Typically, such apparatus utilizes a rotating cross-cut spindle having a plurality of knives extending from a periphery of the spindle. As the spindle rotates, the knives sequentially contact and cut the moving food product, which may have been previously cut into a plurality of strips. The cross-cut knives transversely cut the product strips into a cubed food product.
In the prior machines, the position of the cross-cut spindle relative to a shear edge, which interacts with the cross-cut knives to cut the food product, is not easily adjustable. Thus, while the known machines may be set to provide a cubed food product having satisfactory squareness for a given thickness of the food product slice, any variation in this food product slice thickness will cause the cubed end product to be unacceptably out of “square”. In order to achieve an optimum squareness of cut, the cross-cut knife must enter the top of the continuously moving food slice and progress through the food product at the proper speed and angle past the shear edge. The size and squareness of the cut by the cross-cut knives are determined by the diameter of the circular path traveled by the cutting edges of the cross-cut knives, the number of knives on the cross-cut spindle, the angular location of the cross-cut spindle center relative to the shear edge, and the timing relationship between the speed of the sliced food product and the rotational speed of the cross-cut spindle. The cross-cut knives must be able to make the cuts without impeding the movement of the sliced food product, or accelerating the food product slice which is typically traveling at the speed of the circular knives. Typically, the timing and the angular location of the cross-cut spindle are set to achieve the optimum squareness of cut for given thickness of sliced food product. As the thickness of the food product becomes thicker or thinner than that for which the machine is set, the slice squareness gets progressively worse. Due to these difficulties with known dicing apparatus, it can be seen that a need exists for a dicing machine having the ability to provide square cut cubed food products from food product slices having a variety of thicknesses.
SUMMARY OF THE INVENTION
An apparatus for cutting a food product is disclosed including a stationary structure with a food product guide surface for guiding a food product along a path of travel, the apparatus having a knife wheel rotatable about a knife wheel axis, the knife wheel having at least one knife blade and located such that rotation of the knife wheel about the knife wheel axis causes the knife blade to cut through the food product as it moves along the path of travel. The apparatus also includes a knife wheel support which rotatably supports the knife wheel, the knife wheel support being pivotally attached to the stationary structure so as to pivot about a pivot axis extending substantially parallel to the knife wheel axis, such that the knife wheel axis is movable along an arcuate path about the pivot axis. By readily positioning the knife wheel in one of a plurality of discrete positions along the arcuate path, a visually acceptable square diced food product may be obtained from food products having a variety of thicknesses. The apparatus also includes a plurality of adjustable stripper plates extending between adjacent ones of a plurality of circular knives which slice the food product into a plurality of strips prior to the food product being cut by the cross-cut knife wheel. The stripper plates have an adjustable attaching mechanism connecting them to the stationary structure to facilitate the adjustment of the distance between the stripper plates and the food guide surface so as to readily accommodate a food product having a variety of thicknesses.
The positions of the stripper plates are readily adjusted to accommodate the thickness of the food product being cut to insure that the food product remains on the food product guide surface and does not adhere to the circular knives. The knife wheel support extends between side plates located on either side of the path of travel of food product and is readily affixed in one of a plurality of positions by holes formed in the knife wheel support and corresponding holes formed in the side plates. The insertion of a bolt, pin, or the like through the aligned holes will securely affix the knife wheel support in the desired position to achieve the optimum cut squareness.
BRIEF DESCRIPTIONS OF THE DRAWINGS
FIG. 1
is a partial, cross-sectional view of the apparatus according to the present invention.
FIG. 2
is a partial, side view illustrating the knife wheel support mounting system according to the present invention.
FIG. 3
is a schematic diagram of the prior art cutting apparatus illustrating the sliced food product adhering to the circular cutting knives.
FIG. 4
is a partial, cross-sectional view of a prior art apparatus illustrating a fixed stripper plate used with a sliced food product too thin to achieve the optimum squareness of cut.
FIG. 5
is a front view, partially in cross-section, illustrating the stripper plate adjusting mechanism according to the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The apparatus according to the present invention, as best illustrated in
FIG. 1
, has a rotatable drum
10
into which food products
12
are placed, the drum
10
having a plurality of generally radially orientated pusher vanes
14
mounted therein such that rotation of the drum
10
in the direction of arrow
16
causes the food product
12
to be urged by centrifugal force against the inner periphery of stationary cylinder
18
located around the outer periphery of the drum
10
. An opening
20
is formed in the stationary cylinder
18
and a slicing knife
22
is attached to the stationary cylinder
18
such that the cutting edge of the slicing knife extends through the gap and into the space bounded by the stationary cylinder
18
. As the pusher vanes
14
push the food product
12
against the cutting edge
20
of the slicing knife
22
, a predetermined thickness of food product
12
a
is cut from the food product
12
and passes over the food product guide surface
22
a,
in this case formed on the outer surface of the slicing knife
22
. Guide surface
22
a
terminates at shear edge
22
b
, to be further described below. Shear edge
22
b
extends transversely relative to the direction of motion of sliced food products. A known mechanism
24
is utilized to adjust the dimensions of the opening
20
which, in turn, adjusts the thickness of the sliced food product
12
a.
The apparatus may also include a plurality of circular knives
26
rotatably mounted on a common axle
28
such that all of the knives
26
are rotated simultaneously in the direction of arrow
30
. As can be seen, the plurality of circular knives
26
are located such that these knives cut the sliced food product
12
a
into a plurality of elongated strips as the sliced food product
12
a
travels along the food product guide surface
22
a.
After being sliced into a plurality of elongated strips, the sliced food product
12
a
encounters a cross-cut knife wheel
32
which rotates in the direction of arrow
34
about axle
36
. Cross-cut knife wheel
32
has a plurality of cross-cut knife blades
38
extending from the periphery, each cross-cut knife blade having a cutting edge. The cutting edges of the knife blades
38
interact with shear edge
22
b,
in this particular instance formed by a transverse end of slicing knife
22
, to transversely cut the elongated sliced food product
12
a
so as to form cubed food products
12
b.
However, it is to be understood that the shear edge
22
b
may be formed as part of the stationary structure of the apparatus and need not be associated with the slicing knife
22
.
The stationary structure of the apparatus also includes side plates
40
located on opposite lateral sides of the path of travel of the food product and to which the axle
28
may be affixed to rotatably support the circular cutting knives
26
.
The novel mounting of the cross-cut knife wheel is best illustrated in
FIG. 2. A
cross-cut knife wheel support
42
rotatably supports the axle
36
thereon, such knife wheel supports being located at opposite ends of the cross-cut knife wheel
32
. The knife wheel supports
42
rotatably support the cross-cut knife wheel
32
therein such that the cutting edges of the cross-cut knives
38
traverse a circular path of travel
44
. As noted previously, the cutting edges of the cross-cut knives
38
traverse the shear edge
22
b
with a cutting clearance and interact with the shear edge
22
b
to transversely cut the food product.
Each of the knife wheel supports
42
are pivotally attached to the stationary structure of the machine, for instance the side plates
40
, such that the knife wheel supports
42
, along with the entire cross-cut knife wheel
32
may pivot about a pivot axis
46
extending substantially parallel to the rotational axis of the cross-cut knife wheel
32
. The location of the knife wheel support pivot axis
46
is at the intersection of a line extending along the food product guide surface
22
a
and the circular path of travel
44
of the cutting edges of cross-cut knives
38
. This intersection is illustrated at
46
in FIG.
2
. By pivotally attaching the knife wheel supports
42
to the stationary structure of the apparatus, the center of the rotatable cross-cut knife wheel
32
may be moved along arcuate path
48
. Such movement will adjust the positions of the cutting edges of the cross-cut knives
38
relative to the shear edge
22
b
without varying the cutting clearance between the knives and the shear edge such that food products having a variety of thicknesses may be diced into cubical pieces having improved squareness of cut. The position adjustment, as evident from
FIG. 2
, permits adjustment of the angle at which the knives
38
approach the shear edge
22
b
to ensure a desired squareness of cut for various slice thicknesses.
The knife wheel supports
42
may be affixed in one of a plurality of discrete positions by first position holes
50
formed in the knife wheel support
42
and second position holes
52
formed in the stationary structure of the apparatus, in this particular instance, in side plates
40
. Third position holes
54
may be formed in the knife wheel support
42
and fourth position holes
56
formed in the side plates
40
. The cross-cut cutting wheel
32
is properly oriented for a sliced food product having a first thickness by aligning first position holes
50
with the second position holes
52
and inserting a bolt, pin, or the like through the aligned holes to hold the knife wheel support in the desired position relative to the stationary side plates
40
. Adjustment of the position of the cross-cut knife wheel
32
may be accomplished by removing the bolts, pins or the like from aligned holes
50
and
52
, and moving the knife wheel supports
42
such that third position holes
54
are aligned with fourth position holes
56
and reinserting the bolts, pins, or the like. Although the invention has been described and illustrated having two discrete adjustment positions, it is to be understood that more than two such positions may be easily accommodated depending upon the particular usage of the cutting apparatus, without exceeding the scope of this invention.
Another problem affecting the prior art apparatus, as illustrated in
FIGS. 3 and 4
, is the tendency of the sliced food product
12
a
to adhere to the cutting surfaces of the circular cutting knives
26
. Such a tendency will cause the sliced food product
12
a
to be pulled from the food product guide surface
22
a
as best seen in FIG.
3
. Quite obviously, any such tendency will prevent the diced food product from having a square cut by the cross-cut knife wheel.
The use of fixed stripper plates extending between adjacent ones of the plurality of circular cutting knifes
26
is known in the art and is illustrated in FIG.
4
. The stripper plates
60
are typically affixed to the stationary structure of the apparatus and are optimally positioned for a given thickness of sliced food product. If the apparatus is adjusted to produce a thinner than optimal thickness of sliced food product, the sliced food product will tend to adhere to the plurality of circular cutting knives
26
before coming into contact with the stripper plate
60
. Thus, sliced food product will still be removed from the food product guide surface
22
a,
prior to contact with the cross-cut knives
38
, thereby rendering it impossible to produce a square cut diced food product.
Applicant has overcome this problem of the prior art devices by providing an adjustable stripper plate mechanism as illustrated in
FIGS. 1 and 5
. As in the prior art devices, the present invention includes a plurality of stripper plates
60
extending between adjacent pairs of the circular cutting knives
26
to prevent the sliced food product
12
a
from being drawn away from the food product guide surface
22
a
by the circular cutting knives
26
. The plurality of stripper plates
60
extend from an adjustment bar
62
and are located by dowl pins
64
and attached to the adjustment bar by fasteners
66
. Guide pins
68
extend upwardly from the adjustment bar
62
and each are slidably received in bushings
70
fixedly attached to an adjustment mount
72
. As can be seen, the adjustment mount
72
is fixedly attached to the opposite side plates
40
by fasteners
74
.
Shaft
76
is rotatably mounted on the adjustment mount
72
and has a threaded end portion
76
a
which threadingly engages an internally threaded hole
78
formed in a boss
62
a
which extends upwardly from the adjustment bar
62
. A stripper adjustment knob
80
is attached to the end of shaft
76
such that rotation of knob
80
also causes rotation of the shaft
76
.
It is evident that the distance between the stripper plates
60
and the food product guide surface
22
a
maybe easily be adjusted by the rotation of stripper adjustment knob
80
. Such rotation causes rotation of the shaft
76
relative to the threaded boss
62
a,
such relative rotation resulting in the longitudinal movement of adjustment bar
62
relative to the adjustment mount
72
. Thus, the stripper plates
60
can be properly positioned for virtually any thickness of sliced food product to insure that the sliced food product
12
a
follows the food product guide surface
22
a
and is not withdrawn by its tendency to adhere to the circular cutting knives
26
.
The foregoing description is provided for illustrative purposes only and should not be construed as in any way limited this invention, the scope of which is defined solely by the appended claims.
Claims
- 1. Apparatus for cutting a food product including a stationary structure with a food product guide surface terminating at a transversely extending shear edge, the apparatus comprising:a) a knife wheel rotatable about a knife wheel axis, the knife wheel having at least one knife blade extending parallel to the shear edge and the wheel axis and located such that rotation of the knife wheel about the knife wheel axis causes the at least one knife blade to be moved in a circular path of travel and transversely about the wheel axis to cut through a food product delivered to the knife wheel at the shear edge, the at least one knife blade traversing said shear edge with a cutting clearance and at a cutting angle, b) a knife wheel support rotatably supporting the knife wheel, the knife wheel support pivotally attached to the stationary structure so as to pivot about a pivot axis spaced away from and extending substantially parallel to the knife wheel axis and in alignment with the shear edge so that the knife wheel axis is movable along an arcuate path about the pivot axis without varying said cutting clearance, but varying said cutting angle.
- 2. The apparatus of claim 1 further comprising a releasable connection between the knife wheel support and the stationary structure arranged so that the knife wheel and knife wheel support are releasably affixed at a pivoted position relative to the pivot axis in one of a plurality of discrete positions relative to the stationary structure.
- 3. The apparatus of claim 2 wherein the stationary structure includes at least one side plate located adjacent to the knife wheel support and wherein the releasable connection comprises:a) first and second position holes in the knife wheel support; b) third and fourth position holes in the at least one side plate located such that when the knife wheel is in a first desired position the first and third position holes are aligned, and when the knife wheel is in a second desired position, the second and fourth position holes are aligned; and, c) a fastener inserted into the aligned position holes to releasably hold the knife blade wheel in the desired position.
- 4. The apparatus of claim 3 wherein the position holes in at least one of the knife wheel support and the at least one side plate are threaded, and wherein the fastener comprises a bolt threaded into one of the threaded position holes.
- 5. The apparatus of claim 1 wherein the knife wheel comprises a plurality of knife blades.
- 6. The apparatus of claim 1 including a plurality of spaced apart circular knives rotatable about a common circular knife axis and further comprising:a) a plurality of stripper plates, including individual stripper plates extending between adjacent pairs of spaced apart circular knives; and, b) an adjustable mounting device attaching the plurality of stripper plates to the stationary structure such that the distance between the plurality of stripper plates and the food product guide surface is adjustable to accommodate food products of differing thicknesses.
- 7. The apparatus of claim 6 wherein the adjustable mounting device includes a stripper adjustment knob arranged so that rotation of the adjustment knob varies the distance between the plurality of stripper plates and the food product guide surface.
- 8. The apparatus of claim 6 wherein the adjustable mounting device comprises:a) an adjustment mount affixed to the stationary structure; b) an adjustment bar from which the plurality of stripper plates extend, the adjustment bar slidably connected to the adjustment mount; and, c) an adjuster connected to the adjustment mount and the adjustment bar so as to move the adjustment bar relative to the adjustment mount.
- 9. The apparatus of claim 8 wherein the adjustor comprises:a) a threaded portion formed on the adjustment bar; and, b) a shaft rotatably mounted on the adjustment mount, the shaft having a threaded shaft portion engaging the threaded portion of the adjustment bar such that rotation of the shaft causes the adjustment bar to move relative to the adjustment mount.
- 10. The apparatus of claim 9 wherein said stripper adjustment knob is attached to said shaft.
- 11. The apparatus of claim 8 further comprising:a) at least one guide pin extending from one of the adjustment mount and the adjustment bar; and, b) at least one guide bushing located on the other of the adjustment mount and the adjustment bar, and configured to slidably receive the at least one guide pin therein.
- 12. The apparatus of claim 8 further comprising at least one fastener to removably attach the plurality of stripper plates to the adjustment bar.
- 13. The apparatus of claim 8 wherein the stationary structure includes a pair of spaced apart side plates located on opposite sides of the food product guide surface, and wherein the adjustment mount is attached to and extends between the spaced apart side plates.
US Referenced Citations (20)