1. Field of the Invention
This invention relates generally to microwave devices, such as antennas, waveguides, couplers, and the like such as those used in telecommunications devices, sensor devices, and other electromagnetic transmitters and receivers. More particularly, the invention relates to high-efficiency, inexpensive planar transmission line antennas, microstrip antennas, and other space conserving and/or high frequency antennas for use in telecommunications devices, sensor devices, and other devices including, but not limited to cellular phone devices, satellite transmission and receiving devices, remote sensing devices, high-frequency transmitters/receivers, and other electronic devices.
2. Description of the Related Art
For many years, planar metallic microwave structures, such as microstrip lines, microstrip filters, and microstrip antennas, have been extensively used in telecommunications and sensor devices. These structures may consist of a metallic strip/patch placed above a grounded substrate and usually fed through a coaxial probe or an aperture. The large popularity of the planar metallic microwave components is due to this fact that it is inexpensive to manufacture using modern printed-circuit technology. However, the energy loss in most of these components is dominated by a frequency dependent metal loss due to the finite conductivity of metals and the skin effect. Therefore, the efficiency of these elements is not high, especially at upper microwave, millimeter-wave and higher frequencies, and a considerable portion of the input energy is wasted due, for example, to the surface current loses in the metal.
On the other hand, conventional dielectric microwave elements such as dielectric resonator antennas are three dimensional structures which are mostly fabricated from hard ceramics. The dielectric components offer many appealing features and performance advantages over their metallic counterparts (e.g. higher efficiency and bandwidth, miniaturized structure). However, ceramic-based structures involve a more complex and costly fabrication process due in part to their three-dimensional structure and in part due to the abrasive nature of the ceramic material. Conventional machining fabrication has been limited to relatively simple and large structures. Mass production by machining is not an attractive option since the hardness of ceramic requires diamond cutting tools, which wear out relatively quickly due to the abrasive material. Array structures are even more difficult to fabricate due to the requirement of individual element placement and bonding to the substrate.
Dielectric resonator antennas (DRAs) provide high radiation efficiency which makes them suitable at millimeter-wave frequencies, where the loss in metallic antennas, such as microstrip patch antennas, is significant. However fabrication of DRAs is challenging due to their tiny structures and the high precision required at these frequencies. Different solutions have been previously introduced in the literature. For instance a larger DRA was designed and fabricated to operate at higher-order modes to alleviate the tolerance and size problems (Pan et al., 2011). Polymer-based DRAs were also introduced to simplify the fabrication process because of their natural softness and possibility of constructing DRAs using deep polymer-based lithographies (Rashidian et al., 2010).
Recently, traditional printers are modified to produce dielectric films with any desired shape. This technology is known as “thin/thick film technology” and can deliver ceramic films with a thickness from approximately 10 nm to over 100 μm. The fabrication of ceramic films can be divided in three steps: (1) the synthesis of ceramic powder which is usually performed by some thermal treatments, (2) the shaping of the ceramic films by mixing the ceramic powder in a solvent and depositing the mixture by screen printing, inkjet printing, 3D printing, layer deposition, or other deposition methods, and (3) a densification step by evaporation of solvent, or by solid-state sintering. Depending on the fabrication processes and parameters, the ceramic film can achieve permittivities over 1000 and dielectric loss tangent less than 0.01 at gigahertz frequencies. So far, microwave applications of ceramic film technology are concentrated on tunable microwave devices using BST (barium-strontium-titanate: a kind of ceramic material) film on a top side of the substrate. In those applications, by depositing (e.g., printing) metallic microwave structures on BST films and applying an external electrostatic field, the permittivity of ceramic film is changed, which enables the realization of tunable metallic microwave devices.
A radically different approach is described here to exploit ceramic films directly, as highly-efficient dielectric microwave devices without using metallic structures. In this approach the ceramic film of very high-permittivity is printed on another dielectric body of low-permittivity to realize antennas, waveguides, and other microwave devices.
A new class of antennas and other microwave components are introduced. In this approach a high-permittivity dielectric film is applied (e.g., printed) on a dielectric substrate, which may be grounded. By changing the shape of the high-permittivity film, different microwave devices (e.g. waveguides, filters, couplers, and antennas) are produced. By changing the size and permittivity of the high-permittivity film and dielectric substrate, these elements are designed at different frequencies for different applications. Highly-efficient microwave devices are resulted due to the absence of surface currents.
In certain embodiments, the invention relates to high-efficiency antennas, waveguides, filters, transmission lines and other electric components employing dielectric films and dielectric substrates that improve energy efficiency and allow the manufacture of such elements without metallic components, thus avoiding the surface currents inherent in some metallic components.
In certain embodiments, the invention relates to planar antennas, waveguides, couplers, and other electromagnetic devices that benefit from their planar nature, including but not limited to, reduced component size, ease of fabrication, or physical flexibility such as the ability to be bent.
The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.
The term “coupled” is defined as connected, although not necessarily directly, and not necessarily mechanically. Two items are “couplable” if they can be coupled to each other. The coupling between two items can be, for example, electromagnetic, for which the electromagnetic energy flows from one item to the other item. Unless the context explicitly requires otherwise, items that are couplable are also decouplable, and vice-versa. One non-limiting way in which a first structure is couplable to a second structure is for the first structure to be configured to be coupled to the second structure. The terms “a” and “an” are defined as one or more unless this disclosure explicitly requires otherwise. The term “substantially” is defined as largely but not necessarily wholly what is specified (and includes what is specified; e.g., substantially 90 degrees includes 90 degrees and substantially parallel includes parallel), as understood by a person of ordinary skill in the art. In any disclosed embodiment, the terms “substantially,” “approximately,” and “about” may be substituted with “within [a percentage] of” what is specified, where the percentage includes 0.1, 1, 5, and 10 percent.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, an apparatus or kit, or a component of an apparatus or kit, that “comprises,” “has,” “includes” or “contains” one or more elements or features possesses those one or more elements or features, but is not limited to possessing only those elements or features. Likewise, a method that “comprises,” “has,” “includes” or “contains” one or more steps possesses those one or more steps, but is not limited to possessing only those one or more steps. Additionally, terms such as “first” and “second” are used only to differentiate structures or features, and not to limit the different structures or features to a particular order.
The terms “antenna,” “transmitter,” “receiver,” “waveguide,” and “transmission line” are used broadly throughout this disclosure to include a number of devices or technologies known to persons skilled in the design of electromagnetic devices. These terms are not necessarily mutually exclusive and may be used interchangeably herein. The use of any of the above terms should not be construed as necessarily limiting the specification or claims to one particular technology or device shape, dimensions, type of device, or set of physical properties.
The term “electronic device” (and any form of electronic device, such as “electronics,” and “electrical device”) are used broadly throughout this disclosure to include a number of devices or technologies known to persons skilled in the design of electromagnetic devices including, without limitation: transmitters, receivers, microwave devices, solid state devices, semiconductor devices, devices incorporating electrical components or carrying electrical charges, both passive and powered electronics devices, sensors and the like. Those skilled in the art will recognize many devices and components that may not be listed explicitly herein but which comprise the present invention.
The terms “microwave” and “electromagnetic signal” may be used, without limitation, to describe electromagnetic waves, electromagnetic signals, electronic signals, microwave frequencies, frequency ranges, mixed frequencies, carrier waves and the like. Use of the term “microwave” should not be construed as necessarily limiting frequencies to any particular ranges, or as limiting electromagnetic signal types unless otherwise specified herein.
The term “print” (and any form of print, such as “printed,” “printing,” and “prints”) is used broadly throughout this disclosure to include any technology that is, or may be used to form elements of the present devices and includes without limitation known circuit board, antenna and waveguide manufacturing techniques, in addition to known semiconductor manufacturing techniques, printing techniques, additive techniques (e.g., printing, adhesive techniques, screen printing, masking, vacuum deposition, electroplating, powder coating, extrusion, and sintering), subtractive techniques (e.g., milling, etching, cutting, ablation, erosion, and laser cutting), and other technologies known in the art.
All of the methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the apparatus and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. In addition, modifications may be made to the disclosed apparatus and components may be eliminated or substituted for the components described herein where the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope, and concept of the invention as defined by the appended claims.
Further, a system (such as one of the present dielectric strap waveguide assemblies), a device (such as one of the present devices comprising at least a dielectric strap waveguide), or a component of a device that is configured in a certain way is configured in at least that way, but can also be configured in other ways than those specifically described.
Referring now to the drawings, and more particularly to
The cutoff frequency of an electromagnetic waveguide is an important parameter that presents the lowest frequency at which a given electromagnetic wave will propagate within the waveguide. The permittivity and thickness of the substrate and width of the high-permittivity film affect the cutoff frequency of the dielectric strap waveguide.
The characteristic impedance of an example DSW (with similar properties demonstrated for
To derive properties of DSW, two microstrip line transitions (706), (707) are considered coupled to the input and output ports in the example shown in
Inspection of the insertion loss at 60 GHz shows that it is 1.28 and 1.88 dB for the 8- and 18-mm DSWs, respectively, including the microstrip line transitions in the ports. The insertion loss contributed from the transition loss and the single DSW is estimated and the results are summarized in Table 1. The insertion loss for the DSW is 0.06 dB/mm, and the insertion loss for two transitions is 0.8 dB.
The electrical properties of the materials (i.e. permittivity and loss tangent) and thickness of the high-permittivity film will affect the results in different ways. For instance, Table 2 shows that by increasing the permittivity of the high-permittivity film from 150 to 1000 the insertion loss for the DSW and two transitions decreases and reaches 0.05 dB/mm and 0.43 dB, respectively. As the thickness of the high-permittivity film increases from 5 μm to 50 μm the insertion loss for the DSW and two transitions decreases, as reported in Table 3, and quantities of 0.05 dB/mm and 0.35 dB are observed, respectively.
Any variation or discontinuity in the high-permittivity line/surface and/or changing the configuration can result in a new passive microwave devices or antenna elements. For instance, this can be in the form of identical or non-identical parallel lines or curves (
DSWs propagate waves in frequencies higher than a certain frequency (i.e. cutoff frequency). Therefore, in some embodiments, one or more DSWs may be considered a high-pass filter. By adjusting the size and the shape of the DSW(s) in some embodiments, other types of filters can be also realized.
In another embodiment, a coupler or coupling device is another essential part of a microwave passive circuit or circuits. An exemplary embodiment of directional couplers, designed using identical parallel DSWs, is shown in
In a further embodiment, a DSA may have small dimensions as depicted in
In a yet further embodiment, a DSA may have larger dimensions as depicted in
In some embodiments, the dielectric substrate may be a multi-layer structure. In the embodiment depicted in
In further embodiments, different excitation methods can be used for the DSA. This can include microstrip, coplanar waveguide (CPW), slot, and probe methods as well as variations of the shapes used for excitation in these methods. In still further embodiments, different DSW waveguide excitation methods may be employed, such as when the DSW and the DSA devices may be realized in a common dielectric layer or in multiple layers. In the example shown in
In
In
In one embodiment of the DSW of
Example 11 shows a Co-Planar DS structure for which the whole circuit is only made in the first surface of the dielectric substrate; therefore has all the advantages of Co-Planar microwave structures, for instance, ease of fabrication process, testing with probes, etc.
In Example 11, the separation between the dielectric film and the metal films in both sides is 100 um. By reducing the substrate thickness from 2 mm to 1 mm, the same performance is achieved, only the impedance of the line is increased from 65 Ohm to 100 Ohm, illustrating the importance of the dielectric substrate in all DS structures.
The above specification and examples provide a complete description of the structure and use of exemplary embodiments. Although certain embodiments have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the scope of this invention. As such, the various illustrative embodiments of the present devices are not intended to be limited to the particular forms disclosed. Rather, they include all modifications and alternatives falling within the scope of the claims, and embodiments other than the one shown may include some or all of the features of the depicted embodiment. For example, components may be combined as a unitary structure and/or alternate geometries may be substituted. Further, where appropriate, aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples having comparable or different properties and addressing the same or different problems. Similarly, it will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments.
The claims are not intended to include, and should not be interpreted to include, means-plus- or step-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase(s) “means for” or “step for,” respectively.
This application claims the benefit of priority of U.S. Provisional Patent Application No. 61/663,417 to Shafai et al. filed on Jun. 22, 2012, and entitled “Apparatus, System, and Method for Dielectric Strap Waveguides, Antennas, and Microwave Devices,” which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2013/001973 | 6/21/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61663417 | Jun 2012 | US |