This application claims the benefit of priority under 35 U.S.C. § 119 from European Patent Application No. 22 179 967.9, filed on 20 Jun. 2022, the entire content of which is incorporated herein by reference.
The invention relates to a waveguide, in particular a dielectric waveguide, configured to propagate high-frequency waves, e.g., radar waves, a waveguide arrangement, a manufacturing method and a use.
Waveguides are suitable and/or configured to transmit radio frequency (RF) waves, e.g., from an RF generator to an antenna. For at least some waveguides—e.g., above a certain length of the waveguide—it may be necessary to arrange one or more supports or holders and/or other supporting means on the waveguide, e.g., to support the waveguide. However, for at least some waveguides, e.g., some types of dielectric waveguides, these supports may cause RF waves to leak out of the waveguide and/or cause spurious reflections in the RF-signal.
There may be a desire to provide a device which can help to reduce interfering reflections in the RF-signal. This desire is met by the subject-matter of the independent patent claims. Further embodiments of the present disclosure result from the subclaims and the following description.
One aspect relates to a dielectric waveguide for propagating radio frequency waves, the waveguide comprising:
The dielectric waveguide may be implemented as a plastic filament, having a cross-sectional area of in principle any shape, which in at least some embodiments may be rectangular or circular. The dielectric waveguide may be suitable or adapted to transmit a high-frequency signal, in particular to transmit a high-frequency signal with low loss. For example, a dielectric waveguide may have a cross-sectional area between 0.25 mm2 and 8 mm2. The cross-sectional area may depend on the frequency of the waveguide to be transmitted. In general, a dielectric waveguide with a relatively small cross-sectional area—which may correspond to the first section—may have relatively lower signal attenuation than a waveguide with a relatively larger cross-sectional area. However, a waveguide with a larger cross-sectional area—which may correspond to the second section—may be less sensitive to external influences and objects (such as fixtures) located in close proximity to the waveguide.
Therefore, the dielectric waveguide described herein may be designed as a first section with a substantially uniform cross-section over a major part of its length, and as a second section or flare over at least some parts of its length, the second section having a larger cross-section than the first section. The second section or flare may be particularly suitable for having fastening elements (such as brackets) arranged thereon, for example. Advantageously, this allows a compromise to be achieved between low signal attenuation, which characterizes the first section or sections in particular, and low susceptibility to interference, which is typical of the second section. Furthermore, interference from the waveguide mounts may thereby be minimized and the radar system may be improved with respect to its ringing behavior (interfering reflections in the antenna range and/or close range of the antenna). Furthermore, the measurement reliability in the close range may be increased.
The manufacture of such dielectric waveguides with expansion may be realized by means of various manufacturing processes. For example, production by means of injection molding, in particular plastic injection molding, has proven to be very efficient and/or cost-effective.
In some embodiments, the cross-sectional area of the second section is larger than the cross-sectional area of the first section by a factor of 5 to 80 (between 5 and 80), in particular by a factor of 10 to 50, for example by a factor of 15 to 30. These ranges have proven to be a particularly efficient compromise between low signal attenuation and low interference when arranged with, e.g., mounts.
In some embodiments, a transition between the first section and the second section is stepped, sloped, and/or rounded. The transition at the left and right sides of the second section may have the same design. The design of the transition may depend on the selected manufacturing process.
In some embodiments, the dielectric waveguide has a cross-sectional area between 0.25 mm2 and 8 mm2, in particular between 0.3 mm2 and 3 mm2. The diameter of the cross-section may depend, for example, on the frequency and/or on the shape of the cross section (e.g., rectangular) as well as on the plastic used.
In some embodiments, the dielectric waveguide has a plurality of second sections, and the second sections have a spacing of between 10 mm and 300 mm. The spacing between the expansions of the dielectric waveguide may be equidistant from each other, but non-uniform spacing is also possible. The distances between the expansions may be substantially larger than the length of the expansions. Advantageously, this may emphasize the low signal attenuation.
In some embodiments, the cross-section of the first section and/or the second section is elliptical, in particular round, rectangular, in particular square, and/or polygonal, in particular as an equilateral polygon. The design of the cross-section may depend on the selected measuring frequency, the plastic used, the selected manufacturing process, and/or the objects (e.g., fasteners or holders) arranged thereon.
In some embodiments, the dielectric waveguide has a DK value (relative permittivity εr) between 2 and 5 and/or loss factors tan(0) between 0.00001 and 0.1.
In some embodiments, the dielectric waveguide is made of or comprises a plastic, particularly a material selected from a group including polyetheretherketone (PEEK), polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), polyvinylidene fluoride (PVDF), and/or rigid polyethylene (e.g., high density polyethylene (HDPE)). In particular, the aforementioned plastics may tolerate high process temperatures and/or and be resistant to a variety of chemicals. In addition, from a high-frequency standpoint, these plastics may have small DK values (2≤εr≤3.5) and loss factors (0.00001≤tan(δ)≤0.1).
An aspect relates to a method of manufacturing a dielectric waveguide as described above and/or below by injection molding, in particular by plastic injection molding. This has proven to be very efficient and/or cost-effective.
An aspect relates to a dielectric waveguide assembly comprising a dielectric waveguide as described above and/or below, and a holder at least partially comprising the dielectric waveguide and/or otherwise disposed on the waveguide. Alternatively, a combination of another array of dielectric waveguides and waveguides is possible.
In some embodiments, the holder or retainer is made of or features stainless steel, in particular 316L stainless steel, and/or a plastic, in particular hard polyethylene, HDPE, and/or a metal-coated plastic. Advantageously, the material of the holder may have a lower DK value than the dielectric waveguide. Advantageously, this means that less signal is coupled out at the mountings and the signal attenuation is not significantly worsened. This may also contribute to a low susceptibility to interference of the waveguide arrangement.
In some embodiments, the holder is connected to the dielectric waveguide by means of a form-fit, force-fit, and/or material-fit connection. In this regard, the holder may be releasably connected to the dielectric waveguide.
In some embodiments, the mount is constructed from a first partial mount and a second partial mount. In this case, the second partial holder has a design corresponding to the first partial holder. Advantageously, this allows an exact fit of the partial holders to be achieved.
In some embodiments, the first and/or the second partial holder has a receptacle for the dielectric waveguide. This may, for example, be implemented in such a way that only the first partial holder has a receptacle, or only the second partial holder has a receptacle, or the receptacle is distributed between the partial holders. This may allow a centering of the dielectric waveguide in the first partial holder. This may be particularly advantageous if the second partial holder has a design corresponding to the first partial holder, so that the centering of the dielectric waveguide and the precise fit of the partial holders enable precise guidance of the waveguide.
In some embodiments, the mount and the dielectric waveguide are arranged in a housing. This may result in mechanical protection of the waveguide, for example against mechanical damage from a lateral impact, and/or against pressure, for example from a process into which an antenna system connected to the waveguide may extend.
In some embodiments, the housing is made of plastic, in particular PEEK, or metal, in particular aluminum, brass, or stainless steel. These materials may in particular support the mechanical protection of the waveguide, e.g., against impact and/or pressure, which may for example originate from a process.
In some embodiments, the housing is constructed from a first half shell and a second half shell. Advantageously, this may significantly facilitate both the fabrication of the housing and an arrangement of the waveguide within the housing.
An aspect relates to a use of a dielectric waveguide as described above and/or below or a dielectric waveguide arrangement as described above and/or below for propagating radar waves, in particular for frequencies between 70 GHz and 500 GHz, for example between 100 GHz and 300 GHz.
An aspect relates to a use of a dielectric waveguide as described above and/or below or a dielectric waveguide assembly as described above and/or below for level measurement, topology determination, and/or level limit determination.
It should also be noted that the various embodiments described above and/or below may be combined.
For further clarification, the embodiments of the present disclosure are described with reference to embodiments illustrated in the figures. These embodiments are to be understood only as examples and not as limitations.
The dielectric waveguide 20 may have one or more first sections 21 having a substantially uniform cross-section. Further, the dielectric waveguide 20 may have one or more second sections 22. The one or more second sections 22 have a larger cross-section (or flare) than the first section 21. A transition 23 is arranged between the first section 21 and the second section 22, which transition 23 may be, for example, step-shaped, sloped and/or rounded. The one or more holders 25 are preferably arranged at the second section 22. This may be advantageous because an optimized electric field distribution in and/or on the dielectric waveguide 20 may thus be achieved. In particular, interfering reflections in the RF signal may be reduced during a transmission of the RF waves by means of the dielectric waveguide 20. Advantageously, a compromise may thus be achieved between low signal attenuation, which characterizes the first section or sections 21 in particular, and low susceptibility to interference, which is typical of the second section 22.
In the illustration of
The illustration of
It is thus particularly advantageous to provide a waveguide 20 having longer sections with a relatively smaller cross-section (first sections 21), for transmission with low signal attenuation, and dedicated sections with a relatively larger cross-section (second sections 22), particularly suitable for having fixtures placed thereon, for example, with relatively lower signal interference from these objects. Thus, advantageously, a compromise may be achieved between low signal attenuation, which characterizes in particular the first section(s) 21, and low interference sensitivity, which is typical for the second section 22. The further figures show realization examples for such a waveguide 20 and/or a waveguide arrangement 28.
The examples of
In one embodiment, the mounting of the waveguide may be realized by means of (rigid) foam, e.g., ROHACELL®. This may be advantageous for applications with lower requirements for temperature resistance and/or mechanical stability.
The first half shell 27a has a first partial holder 25a. It is clearly visible that the first partial holder 25a is designed to protrude (“project”) from the first half-shell 27a. Advantageously, this allows a good fit (“key”) with the second partial holder 25b (“keyway”), which is arranged recessed (“recessed”) in the second half-shell 27b (see
Number | Date | Country | Kind |
---|---|---|---|
22 179 967.9 | Jun 2022 | EP | regional |