Claims
- 1. A diesel engine exhaust oxidizing device comprising an enclosure having an inlet for receiving diesel engine exhaust, a main flow path through said enclosure to an outlet of the enclosure, said main flow path containing a medium for trapping particulate material such as soot and removing significant amounts thereof from the exhaust flow through said main flow path, a by-pass through said enclosure for diverting flow from said main flow path, and a microprocessor control means for selectively controlling the flow through said main flow path and said by-pass in accordance with certain sensed conditions relating to the status of engine operation, in which the medium is annular in shape and including a series of nested annular vanes along the length of the interior of the annular medium for taking axial flow and directing it radially outwardly through the medium.
- 2. A diesel engine exhaust oxidizing device as set forth in claim 1 in which the medium comprises superimposed layers of wire mesh and wire felt rolled into an annular form.
- 3. A device as set forth in claim 1 including a converter in line with said device for oxidizing gaseous constituents of the exhaust.
- 4. A device as set forth in claim 1 including an electrostatic precipitator through which radial flow from the vanes is passed before reaching said medium.
- 5. A device as set forth in claim 4 in which said electrostatic precipitator comprises coaxial cylindrical screens which are separated by insulators which comprise air gaps forming stagnant spaces.
- 6. A diesel engine exhaust oxidizing device comprising an enclosure having an inlet for receiving diesel engine exhaust, a main flow path through said enclosure to an outlet of the enclosure, said main flow path containing a medium for trapping particulate material such as soot and removing significant amounts thereof from the exhaust flow through said main flow path, a by-pass through said enclosure for diverting flow from said main flow path, and a microprocessor control means for selectively controlling the flow through said main flow path and said by-pass in accordance with certain sensed conditions relating to the status of engine operation, said control means comprises a microprocessor for determining whether engine conditions are conducive to initiating regeneration of said trapping medium and a valve means for selectively opening and closing said main flow path and said by-pass to exhaust flow which enters the enclosure at said inlet, said enclosure comprises a double-walled cylinder, said main flow path being through an interior portion and the by-pass being through a surrounding portion surrounding said interior portion, means for regenerating the medium after a certain amount of particulate collection by the medium, means for opening said by-pass to flow during regeneration of the medium, and means to entrain the regeneration product with the flow through the by-pass prior to discharge of the flow through said outlet of said enclosure.
- 7. A diesel engine exhaust oxidizing device as set forth in claim 6 in which the medium comprises superimposed layers of wire mesh and wire felt rolled into an annular form.
- 8. A diesel engine exhaust oxidizing device as set forth in claim 7 including heating elements passing axially through said medium.
- 9. A diesel engine exhaust oxidizing device as set forth in claim 8 in which said heating elements are activated below a certain sensed temperature when said mechanism is open.
- 10. A diesel engine exhaust oxidizing device as set forth in claim 8 in which said heating elements comprise ceramic coated wire.
- 11. A diesel engine exhaust oxidizing device as set forth in claim 6 in which said microprocessor control means includes a thermocouple for sensing temperature of exhaust products and an ECU connected to the thermocouple for maintaining the regeneration temperature within a substantially constant range which combusts the trapped particulates and soot without damaging said medium.
- 12. A diesel engine exhaust oxidizing device as set forth in claim 6 including means for causing regeneration action to be taken by means for adding a certain heat input to the medium by an electric operated heater and then cycling the butterfly valve open and closed after the electric operated heater has been shut off.
- 13. A device as set forth in claim 6 wherein said trapping medium is annular in shape, and said flow path includes a means for directing the exhaust flow radially through the medium, and an annular shaped electrostatic precipitator through which the radial exhaust flow is caused to pass before reaching said medium.
- 14. A device as set forth in claim 13 in which said electrostatic precipitator comprises coaxial cylindrical screens which are separated by insulators which comprise air gaps forming stagnant spaces.
- 15. A device as set forth in claim 6 further comprising a thermal stabilizer disposed in said outlet for attenuating the peak temperature of gases discharged from the device by acting as a heat sink to the relatively hotter segments of gases and acting as a heat source to the relatively cooler segments of gases.
- 16. A device as set forth in claim 6 further comprising an electric heating element that is embedded in said trapping medium, said electric heating element comprising a ceramic coating and said medium comprising wire mesh strands that come in direct contact with the ceramic coated heating element, said wire mesh strands being selected to have a mean hydraulic diameter that will cause them to burn out in a relatively short period of time in the event of failure of the ceramic coating at any point where any of the wire mesh strands are in contact with the heating element whereby a short circuiting of the heating element due to degradation in the ceramic coating on the heating element that gives rise to short circuiting of the heating element through wire strands that are in contact with the heating element at the point of ceramic degradation will be self-correcting because the strands that are in contact with the heating element at the point of ceramic degradation will burn out thereby rendering the short circuit an open circuit.
- 17. A device as set forth in claim 14 further comprising an air injection means for injecting air into the enclosure and directing the air over the insulators to keep them clean and also improving combustion of the collected soot in said medium during regeneration of said medium.
REFERENCE TO A RELATED APPLICATION
This application is a division of copending application Ser. No. 265,547, filed Nov. 1, 1988, now U.S. Pat. No. 4,969,328, granted Nov. 13, 1990; which was a continuation-in-part of my prior applications Ser. No. 921,330, filed Oct. 21, 1986 and now abandoned and Ser. No. 095,042, filed Sep. 9, 1987 and now abandoned.
US Referenced Citations (5)
Divisions (1)
|
Number |
Date |
Country |
Parent |
265547 |
Nov 1988 |
|