This application relates to MEMS devices and, more specifically to MEMS devices that utilize differential amplifiers.
Microelectromechanical System (MEMS) microphones have been used throughout the years. These devices include a back plate (or charge plate), a diaphragm, and other components. In operation, sound energy moves the diaphragm, which causes an electrical signal to be created at the output of the device and this signal represents the sound energy that has been received.
These microphones typically use amplifiers or other circuitry that further processes the signal obtained from the MEMS component. In some examples, a differential amplifier is used that obtains a difference signal from the MEMS device.
In these applications, the Signal-To-Noise ratio (SNR) is desired to be high since a high SNR signifies that less noise is present in the system. However, achieving a high SNR ratio is difficult to achieve. For example, different sources of noise are often present (e.g., power supply noise, RF noise, to mention two examples). In systems that use differential amplifiers, it is possible to reduce correlated (common mode) noise as well as increasing signal to noise ratio via the subtraction of the signals from the differential pair.
In previous systems, various attempts to negate noise in have generally been unsuccessful. As a result, user dissatisfaction with these previous systems has resulted.
For a more complete understanding of the disclosure, reference should be made to the following detailed description and accompanying drawings wherein:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity. It will further be appreciated that certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. It will also be understood that the terms and expressions used herein have the ordinary meaning as is accorded to such terms and expressions with respect to their corresponding respective areas of inquiry and study except where specific meanings have otherwise been set forth herein.
The present approaches provide MEMS microphone arrangements that eliminate or substantially reduce common mode noise and/or other types of noise. By “common mode noise,” it is meant noise that is common to both devices feeding the inputs of the differential stage. Common mode noise is unlike the intended signal generated by the devices because it is in phase between devices. The presented approaches may be provided on single or multiple substrates (e.g., integrated circuits) to suit a particular user or particular system requirements.
When these approaches are provided on a single substrate or integrated circuit, less elimination of common mode noise is typically provided, but this allows that the provision of an integrated amplifier and microphone assembly that it is more economical and user friendly than approaches are not provided on the single substrate or integrated circuit.
In some aspects, two MEMS devices are used together to provide differential signals. The charge plate of the one MEMS device may be disposed or situated on the top, the diaphragm on the bottom, and the charge plate supplied with a positive bias. Alternatively, the charge plate of the same MEMS device may be disposed on the bottom, the diaphragm disposed on the top, and the diaphragm supplied with a negative bias. These two arrangements will supply the same signal that is 180 degrees out of phase with a second MEMS device that has a diaphragm on the top, a charge plate on the bottom, and the diaphragm being positively biased.
As has been mentioned, the MEMS motors could be disposed on one substrate (e.g., an integrated circuit or chip) or on multiple substrates. “Bias” as used herein is defined as the electrical bias (positive or negative) of diaphragm with respect to the back plate. By “MEMS motor,” it is meant a compliant diaphragm/backplate assembly operating under a fixed DC bias/charge.
Referring now to
The output of the MEMS devices 102 and 104 is supplied to a first integrated circuit 114 and a second integrated circuit 116. The integrated circuits, can in one example be application specific integrated circuits (ASICS). These circuits perform various processing functions such as amplification of the received signals.
The integrated circuits 114 and 116 include a first preamp circuit 118 and a second preamp circuit 120. The purpose of the preamp circuits 114 and 116 is to provide an extremely high impedance interface for a capacitive transducer which is generally high impedance source in the bandwidth of interest.
The outputs of the circuits 114 and 116 are transmitted to an external differential stage 122 (that includes a difference summer 124 that takes the difference of two signals from the circuits 114 and 116). In one example, the external differential stage 122 is either an integrated circuit on a microphone base PCB, or external hardware provided by the user.
A positive potential is supplied to first diaphragm 106 and a negative potential is applied to the second diaphragm 110. This creates a differential signal at leads 126 and 128 as illustrated in graphs 150 and 152. The differential signals in these graphs and as described elsewhere herein are out of phase by approximately 180 degrees with respect to each other. An output 130 of stage 122 is the difference between signals 127 and 129 and is shown in graph 154.
Common mode noise of the whole system is rejected by the stage 122. Common mode noise occurs between both of the MEMS motors and both ASICs in the example of
Referring now to
The integrated circuits 214 and 216 include a first preamp circuit 218 and a second preamp circuit 220. The purpose of the preamp circuits 214 and 216 is to provide an extremely high impedance interface for a capacitive transducer which is generally high impedance in the bandwidth of interest. A difference between the circuits 214 and 216 is in regard to the diaphragm/back plate orientation (i.e., one circuit 214 or 216 is “upside down,” thus causing 180 degree phase shift without negative bias).
The outputs of the circuits 214 and 216 are transmitted to an external differential stage 222 (that includes a difference summer 224 that takes the difference of two signals from the circuits 214 and 216).
A positive potential is supplied to the first diaphragm 206. A positive potential is applied to the second back plate 212. This creates a differential signal at leads 226 and 228 as illustrated in graphs 250 and 252. Here, the second diaphragm and second back plate are flipped mechanically as compared to the example shown in
Common mode noise of the whole system is rejected by the stage 222. Common mode noise occurs between both of the MEMS motors and both ASICs in the example of
Referring now to
The integrated circuit 314 includes a first preamp circuit 318 and a second preamp circuit 320. The purpose of the preamp circuits 318 and 320 is to provide an extremely high impedance interface for a capacitive transducer which is generally high impedance in the bandwidth of interest.
The outputs of the preamps 318 and 320 are transmitted to a difference summer 324 that takes the difference of two signals from the preamps.
A positive potential is supplied to first diaphragm 306. A negative potential is applied to the second diaphragm 310. This creates a differential signal at leads 326 and 328 as illustrated in graphs 350 and 352. An output 330 of ASIC 314 is the difference between signals 327 and 329 and is shown in graph 354.
Common mode noise of the system in
Referring now to
The integrated circuits 414 include a first preamp circuit 418 and a second preamp circuit 420. The purpose of the preamp circuits is to provide an extremely high impedance interface for a capacitive transducer which is generally high impedance in the bandwidth of interest. The outputs of the circuits 414 that takes the difference of two signals from the preamps 414 and 418.
A positive potential is supplied to first diaphragm 406. A positive potential is applied to the second back plate 412. This creates a differential signal at leads 426 and 428 as illustrated in graphs 450 and 452. An output 430 of ASIC 414 is the difference between signals 427 and 429 and is shown in graph 454.
Common mode noise of system of
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. It should be understood that the illustrated embodiments are exemplary only, and should not be taken as limiting the scope of the invention.
This patent claims benefit under 35 U.S.C. §119 (e) to U.S. Provisional Application No. 61810387 entitled “Differential Outputs in Multiple Motor MEMS Devices” filed Apr. 10, 2013, the content of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61810387 | Apr 2013 | US |