This application claims the benefit of priority to European Patent Application 14290094.3, filed on Apr. 3, 2014, the entire content of which is incorporated herein by reference.
A pump utilized in a downhole tool may be driven by an electrical motor that is either (1) directly coupled to a piston via a linear transmission system such that rotation results in linear motion, or (2) coupled to a hydraulic pump, thus creating a high pressure line, such that routing the high pressure line and the hydraulic reservoir line in the proper chambers of a secondary piston system results in the linear motion. The result is either a pump mechanism or, more generally, a mechanical stroking device. However, such systems may be limited with regard to electrical power supply and/or other factors, some of which may be related to their implementation in small diameter tools and their operation at high temperature. There are also hydrostatic powered mechanisms, but they are generally designed for a single actuation. As a result, such as in water or air cushion sampling, an air chamber is utilized instead of the formation pressure to activate a piston and withdraw fluid from the formation. Once the sample chamber is full, however, further movement of the piston may be limited, if not impossible.
The present disclosure introduces an apparatus comprising a downhole tool for conveyance within a wellbore extending into a subterranean formation. The downhole tool comprises a moveable member comprising a first surface, defining a moveable boundary of a first chamber, and a second surface, defining a moveable boundary of a second chamber. The downhole tool further comprises hydraulic circuitry selectively operable to establish reciprocating motion of the moveable member by exposing the first chamber to an alternating one of a first pressure and a second pressure that is substantially less than the first pressure.
The present disclosure also introduces a method comprising conveying a downhole tool within a wellbore extending into a subterranean formation, wherein the downhole tool comprises a moveable member, a first chamber comprising fluid at a first pressure, and a second chamber comprising fluid at a second pressure that is substantially less than the first pressure. The method further comprises reciprocating the moveable member by selectively exposing the moveable member to an alternating one of the first and second pressures.
The present disclosure also introduces a method comprising conveying a downhole tool within a wellbore extending into a subterranean formation, wherein the downhole tool comprises a high-pressure chamber, a low-pressure chamber, a first working chamber, and a second working chamber. The method further comprises pumping fluid from the subterranean formation by operating the downhole tool to alternatingly: expose the first working chamber to the high-pressure chamber while exposing the second working chamber to the low-pressure chamber; and expose the first working chamber to the low-pressure chamber while exposing the second working chamber to the high-pressure chamber.
The present disclosure also introduces a method comprising conveying a downhole tool within a wellbore extending into a subterranean formation, wherein the downhole tool comprises a high-pressure chamber, a low-pressure chamber, a working chamber, a pumping chamber, an intake conduit, and an exhaust conduit. The method further comprises pumping subterranean formation fluid from the intake conduit to the exhaust conduit via the pumping chamber by operating the downhole tool to alternatingly: expose the pumping chamber to the intake conduit while exposing the working chamber to the low-pressure chamber; and expose the pumping chamber to the exhaust conduit while exposing the working chamber to the high-pressure chamber.
The present disclosure also introduces an apparatus comprising a downhole tool for conveyance within a wellbore extending into a subterranean formation. The downhole tool comprises at least one working chamber, at least one pumping chamber, intake and exhaust conduits each in selective fluid communication with the at least one pumping chamber, and hydraulic circuitry operable to pump subterranean formation fluid from the intake conduit to the exhaust conduit via the at least one pumping chamber by alternatingly exposing the at least one working chamber to different first and second pressures.
The present disclosure also introduces an apparatus comprising a downhole tool for conveyance within a wellbore extending into a subterranean formation. The downhole tool comprises a moveable member comprising: a first surface defining a moveable boundary of a first chamber; and a second surface defining a moveable boundary of a second chamber. The downhole tool further comprises a motion member driven by the moveable member and having at least a portion positioned outside the first and second chambers, as well as hydraulic circuitry operable to establish reciprocation of the motion member by alternatingly exposing the first chamber to different first and second pressures.
The present disclosure also introduces a method comprising conveying a downhole tool within a wellbore extending into a subterranean formation, wherein the downhole tool comprises a first chamber, a second chamber, a moveable member, and a motion member, wherein: a first surface of the moveable member defines a moveable boundary of the first chamber; a second surface of the moveable member defines a moveable boundary of the second chamber; and at least a portion of the motion member is positioned outside the first and second chambers. The method further comprises reciprocating the motion member by alternatingly exposing the first chamber to different first and second pressures.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact.
The downhole tool 100 may be suspended in the borehole 102 from a lower end of a multi-conductor cable 104 that may be spooled on a winch (not shown) at the Earth's surface. At the surface, the cable 104 may be communicatively coupled to an electronics and processing system 106. The electronics and processing system 106 may include a controller having an interface configured to receive commands from a surface operator. In some cases, the electronics and processing system 106 may further comprise a processor configured to implement one or more aspects of the methods described herein.
The downhole tool 100 may comprise a telemetry module 110, a formation test module 114, and a sample module 126. Although the telemetry module 110 is shown as being implemented separate from the formation test module 114, the telemetry module 110 may be implemented in the formation test module 114. The downhole tool 100 may also comprise additional components at various locations, such as a module 108 above the telemetry module 110 and/or a module 128 below the sample module 126, which may have varying functionality within the scope of the present disclosure.
The formation test module 114 may comprise a selectively extendable probe assembly 116 and a selectively extendable anchoring member 118 that are respectively arranged on opposing sides. The probe assembly 116 may be configured to selectively seal off or isolate selected portions of the sidewall of the borehole 102. For example, the probe assembly 116 may comprise a sealing pad that may be urged against the sidewall of the borehole 102 in a sealing manner to prevent movement of fluid into or out of the formation 130 other than through the probe assembly 116. The probe assembly 116 may thus be configured to fluidly couple a pump 121 and/or other components of the formation tester 114 to the adjacent formation 130. Accordingly, the formation tester 114 may be utilized to obtain fluid samples from the formation 130 by extracting fluid from the formation 130 using the pump 121. A fluid sample may thereafter be expelled through a port (not shown) into the borehole 102, or the sample may be directed to one or more detachable chambers 127 disposed in the sample module 126. In turn, the detachable fluid collecting chambers 127 may receive and retain the formation fluid for subsequent testing at surface or a testing facility. The detachable sample chambers 127 may be certified for highway and/or other transportation. The module 108 and/or the module 128 may comprise additional sample chambers 127, which may also be detachable and/or certified for highway and/or other transportation.
The formation tester 114 may also be utilized to inject fluid into the formation 130 by, for example, pumping the fluid from one or more fluid collecting chambers disposed in the sample module 126 via the pump 121. Moreover, while the downhole tool 100 is depicted as comprising one pump 121, it may also comprise multiple pumps. The pump 121 and/or other pumps of the downhole tool 100 may also comprise a reversible pump configured to pump in two directions (e.g., into and out of the formation 130, into and out of the collecting chamber(s) of the sample module 126, etc.). Example implementations of the pump 121 are described below.
The probe assembly 116 may comprise one or more sensors 122 adjacent a port of the probe assembly 116, among other possible locations. The sensors 122 may be configured to determine petrophysical parameters of a portion of the formation 130 proximate the probe assembly 116. For example, the sensors 122 may be configured to measure or detect one or more of pressure, temperature, composition, electric resistivity, dielectric constant, magnetic resonance relaxation time, nuclear radiation, and/or combinations thereof, although other types of sensors are also within the scope of the present disclosure.
The formation tester 114 may also comprise a fluid sensing unit 120 through which obtained fluid samples may flow, such as to measure properties and/or composition data of the sampled fluid. For example, the fluid sensing unit 120 may comprise one or more of a spectrometer, a fluorescence sensor, an optical fluid analyzer, a density and/or viscosity sensor, and/or a pressure and/or temperature sensor, among others.
The telemetry module 110 may comprise a downhole control system 112 communicatively coupled to the electronics and processing system 106. The electronics and processing system 106 and/or the downhole control system 112 may be configured to control the probe assembly 116 and/or the extraction of fluid samples from the formation 130, such as via the pumping rate of pump 121. The electronics and processing system 106 and/or the downhole control system 112 may be further configured to analyze and/or process data obtained from sensors disposed in the fluid sensing unit 120 and/or the sensors 122, store measurements or processed data, and/or communicate measurements or processed data to surface or another component for subsequent analysis.
One or more of the modules of the downhole tool 100 depicted in
The rig 210 is depicted as a land-based platform and derrick assembly utilized to form the wellbore 211 by rotary drilling in a manner that is well known. A person having ordinary skill in the art will appreciate, however, that one or more aspects of the present disclosure may also find application in other downhole applications, such as rotary drilling, and is not limited to land-based rigs.
Drilling fluid or mud 226 is stored in a pit 227 formed at the well site. A pump 229 delivers drilling fluid 226 to the interior of the drillstring 212 via a port in the swivel 219, inducing the drilling fluid to flow downward through the drillstring 212, as indicated in
The downhole tool 200, which may be part of or otherwise referred to as a BHA, may be positioned near the drill bit 215 (e.g., within several drill collar lengths from the drill bit 215). The downhole tool 200 comprises various components with various capabilities, such as measuring, processing, and storing information. A telemetry device (not shown) is also provided for communicating with a surface unit (not shown).
The downhole tool 200 also comprises a sampling while drilling (“SWD”) system 230 comprising the fluid communication module 234 and sample module 236 described above, which may be individually or collectively housed in one or more drill collars for performing various formation evaluation and/or sampling functions. The fluid communication module 234 may be positioned adjacent the sample module 236, and may comprise one or more pumps 235, gauges, sensor, monitors and/or other devices that may also be utilized for downhole sampling and/or testing. The downhole tool 200 shown in
The fluid communication module 234 comprises a fluid communication device 238 that may be positioned in a stabilizer blade or rib 239. The fluid communication device 238 may be or comprise one or more probes, inlets, and/or other means for receiving sampled fluid from the formation 130 and/or the wellbore 211. The fluid communication device 238 also comprises a flowline (not shown) extending into the downhole tool 200 for passing fluids therethrough. The fluid communication device 238 may be movable between extended and retracted positions for selectively engaging a wall of the wellbore 211 and acquiring one or more fluid samples from the formation 130. The fluid communication module 210 may also comprise a back-up piston 250 operable to assist in positioning the fluid communication device 227 against the wall of the wellbore 211.
The sample module 236 comprises one or more sample chambers 240. The sample chambers 240 may be detachable from the sample module 236 at surface, and may be certified for subsequent highway and/or other transportation.
The downhole tool 300 comprises a piston 310, which may also be referred to herein as a moveable member. The piston 310 comprises a first surface 312 defining a moveable boundary that partially defines a first chamber 320. A second surface 314 of the piston 310 defines a moveable boundary that partially defines a second chamber 330. The second chamber 330 is in fluid communication with a selective one of a high-pressure chamber 340 and a low-pressure chamber 350.
For example, when in a first position (shown in
One or more of the first chamber 320, the high-pressure chamber 340, and the low-pressure chamber 350 may comprise nitrogen, argon, air, hydraulic fluid (e.g., hydraulic oil), and/or another gaseous or liquid fluid. The first chamber 320 may initially have an internal pressure that is substantially atmospheric and/or otherwise less than the initial pressure of the high-pressure chamber 340, and that may be greater than the initial pressure of the low-pressure chamber 350. The low-pressure chamber 350 may initially be substantially void of fluid, or may otherwise have an initial pressure that is substantially less than atmospheric pressure.
In operation, the second chamber 330 may initially be in fluid communication with the low-pressure chamber 350, and the piston 310 may be initially positioned such that the first chamber 320 is substantially larger than the second chamber 330, as shown in
Thereafter, the valve 360 and/or other hydraulic circuitry may be operated to once again place the second chamber 330 in fluid communication with the low-pressure chamber 350, as shown in
This alternating process may be repeated as desired, with each iteration transferring a portion of the contents of the high-pressure chamber 340 to the low-pressure chamber 350. Thus, after a finite number of strokes of the piston 310, the pressures in the high- and low-pressure chambers 340 and 350 and the second chamber 330 (and perhaps the first chamber 320) will equalize. Consequently, the downhole tool 300 may not be able to operate for a prolonged period of time without recharging the high-pressure chamber 340 and at least partially evacuating the low-pressure chamber 350, which may be performed downhole or at surface.
Recharging the high-pressure chamber 340 may comprise injecting or causing the injection of a pressurized fluid, such as nitrogen, argon, air, hydraulic fluid (e.g., hydraulic oil), and/or another gaseous or liquid fluid. If performed at surface, such injection may be via an externally accessible port 390 that may be in selective fluid communication with the high-pressure chamber 340, and/or a similar port 392 that may be in selective fluid communication with the low-pressure chamber 350 (e.g., in conjunction with operation of the valve 360 and the second chamber 330. Evacuating or otherwise resetting the low-pressure chamber 350 may similarly be performed via the port 392. However, other or additional means for resetting the downhole tool 300 at surface and/or downhole are also within the scope of the present disclosure. Thus, while the downhole tools depicted in
The downhole tool 301 may also have one or more aspects in common with, or be substantially similar or identical to, the downhole tool 300 shown in
In operation, the first chamber 320 may initially be in fluid communication with the high-pressure chamber 340 (via the flowline 370 and the valve 360), the second chamber 330 may initially be in fluid communication with the low-pressure chamber 350 (via the valve 360), and the piston 310 may be initially positioned such that the first chamber 320 is substantially larger than the second chamber 330, as shown in
Thereafter, the valve 360 and/or other hydraulic circuitry may be operated to once again place the second chamber 330 in fluid communication with the low-pressure chamber 350, as shown in
This alternating process may be repeated as desired. As described above, a portion of the contents of the high-pressure chamber 340 is transferred to the low-pressure chamber 350 with each iteration. Thus, after a finite number of strokes of the piston 310, the pressures in the high- and low-pressure chambers 340 and 350 and the first and second chambers 320 and 330 will equalize. Consequently, the downhole tool 301 may not be operable for a prolonged period of time without recharging the high-pressure chamber 340 and/or at least partially evacuating the low-pressure chamber 350, such as via the externally accessible ports 390 and/or 392 if this is performed at surface.
The downhole tool 302 may also have one or more aspects in common with, or substantially similar or identical to, the downhole tool 300 shown in
Operation of the downhole tool 302 is substantially similar to operation of the downhole tool 301 described above. However, the pressure within the high-pressure chamber 340 remains substantially similar to the wellbore pressure. As a result, sufficient fluid is ultimately transferred from the high-pressure chamber 340 to the low-pressure chamber 350 such that the pressure in the second chamber 330 can no longer overcome the wellbore pressure, the piston 380 can no longer be moved to enlarge (or perhaps even create) the high-pressure chamber 340, and the piston 310 can no longer reciprocate. The downhole tool 302 may then be operated downhole and/or removed from the wellbore 11, whereby the high-pressure chamber 340 may be recharged, and the first chamber 320 and/or the low-pressure chamber 350 may be at least partially evacuated, such as via the externally accessible ports 390 and/or 392 if performed at surface.
The differential pressure mover embodied by the downhole tools 300, 301, and 302 described above and shown in
The downhole tool 303 may also have one or more aspects in common with, or be substantially similar or identical to, one or more of the downhole tool 300 shown in
The motion member 410 may be a discrete member coupled to the piston 310 by threads, welding, and/or other fastening means, or the motion member 410 may be integrally formed with the piston 310. The motion member 410 may extend through various components/features of the downhole tool 303 or otherwise to a location outside the perimeter of the first chamber 320. The motion member 410 may extend upward or downward (relative to the orientation shown in
The downhole tool 304 may also have one or more aspects in common with, or be substantially similar or identical to, one or more of the downhole tool 300 shown in
The magnetic members 316 and 424 may be discrete members coupled to the piston 310 and the motion member 420, respectively, via threads, welding, interference fit, and/or other fastening means. The motion member 420 may extend through various components/features of the downhole tool 304, and may extend upward or downward (relative to the orientation shown in
The downhole tool 305 may also have one or more aspects in common with, or be substantially similar or identical to, one or more of the downhole tool 300 shown in
As mentioned above, one or more aspects of the present disclosure may be applicable to pumping implementations. For example, the shape of the piston 310 may at least partially define at least one pumping chamber that may be utilized to pump or otherwise displace formation fluid, hydraulic fluid (e.g., hydraulic oil), drilling fluid (e.g., mud), and/or other fluids. The piston 310 may at least partially define two pumping chambers, which may be considered and/or operated as a double-acting or duplex pump, such as where one pumping chamber draws from an intake while the other pumping chamber simultaneously expels to an exhaust.
The downhole tool 500 may also have one or more aspects in common with, or be substantially similar to, one or more of the downhole tool 300 shown in
The first surface 511 of the first piston head 510 defines a moveable boundary that partially defines the first chamber 320, which is in fluid communication with a selective one of the high- and low-pressure chambers 340 and 350 via, for example, the flowline(s) 370, the valve 360, and/or other hydraulic circuitry. The second surface 512 of the first piston head 510 defines a moveable boundary that partially defines a first pumping chamber 530. The first pumping chamber 530 may be further defined by the outer surface of the member 520 of the piston 310, as well as other internal surfaces of the downhole tool 400.
The first surface 516 of the second piston head 515 defines a moveable boundary that partially defines the second chamber 330, which is in fluid communication with a selective one of the high- and low-pressure chambers 340 and 350 via, for example, the valve 360 and/or other hydraulic circuitry. The second surface 517 of the second piston head 515 defines a moveable boundary that partially defines a second pumping chamber 535. The second pumping chamber 535 may be further defined by the outer surface of the member 520 of the piston 310, as well as other internal surfaces of the downhole tool 400.
The downhole tool 500 further comprises one or more flowlines providing an intake conduit 540 for receiving formation fluid from the formation 130. For example, a portion of the downhole tool 500 and/or associated apparatus not shown in
The downhole tool 500 further comprises one or more flowlines providing an exhaust conduit 550 for expelling formation fluid into the wellbore 11 and/or another portion of the downhole tool 500. For example a portion of the downhole tool 500 and/or associated apparatus not shown in
The surface areas A11, A12, A21, and A22 of the surfaces 511, 512, 517, and 516, respectively, are sized to exert a translational force on the piston 310 in response to the pressure PI of fluid in the intake conduit 540, the pressure PE of fluid in the exhaust conduit 550, the pressure PH of fluid in the high-pressure chamber 340, and the pressure PL of fluid in the low-pressure chamber 350. Accordingly, the differences between these pressures PI, PE, PH, and PL may be utilized to reciprocate the piston 310 and, in turn, pump fluid from the intake conduit 540 to the exhaust conduit 550. For example, to sample representative fluid from the formation 130, the piston 310 may be axially reciprocated to first perform a clean up operation while the obtained formation fluid partially comprises drilling fluid (mud) and/or other contaminants, and then further reciprocated to capture a representative sample of fluid from the formation 130. The surface areas A11, A12, A21, and A22 of the surfaces 511, 512, 517, and 516, respectively, may be designed for a specific environment, such as may have a known wellbore (hydrostatic) pressure PW and a given maximum drawdown pressure PD defined by the difference between the wellbore pressure PW and the minimum formation fluid pressure PF. Once the downhole tool 500 is fluidly coupled to the formation 130, such as by one or more instances of the probe assembly 116 shown in
An intake stroke is initiated by exposing the first chamber 320 to the high-pressure chamber 340 while simultaneously exposing the second chamber 330 to the low-pressure chamber 350, such as by establishing fluid communication between the chambers via operation of the valve 360 and/or other hydraulic circuitry. The resulting net force ((A11×PH)−(A12×PI)+(A21×PI)−(A22×PL)) operates to move the piston 310 downward (relative to the orientation depicted in
After the intake stroke, and if fluid analysis (e.g., performed along the intake conduit 540, the exhaust conduit 550, and/or elsewhere in the downhole tool 500 and/or associated apparatus) indicates that the sampled formation fluid is not representative (e.g., contains excessive infiltrate and/or other contaminants), an exhaust stroke may be initiated. For example, the first chamber 320 may be exposed to the low-pressure chamber 350 while the second chamber 330 is simultaneously exposed to the high-pressure chamber 340, such as by operation of the valve 360 and/or other hydraulic circuitry. The resulting net force ((A11×PL)−(A12×PI)+(A21×PI)−(A22×PH)) operates to move the piston 310 upward (relative to the orientation depicted in
Thus, the first and second chambers 320 and 330 may be employed as working chambers, alternatingly exposed to the different pressures of the high- and low-pressure chambers 340 and 350 to impart reciprocating motion to the moveable member 310. The valve 360 and/or equivalent or related hydraulic circuitry between the first and second working chambers 320 and 330 and the high- and low-pressure chambers 340 and 350 may also comprise and/or be operated as a choke or choking system, such as may be utilized to control the resulting pumping rate of the downhole tool 500.
The downhole tool 501 may also have one or more aspects in common with, or be substantially similar to, the downhole tool 500 shown in
The downhole tool 501 comprises one or more flowlines 560 fluidly coupling the first working chamber 530 to a selective one of the high- and low-pressure chambers 340 and 350 via the valve 360 and/or other hydraulic circuitry. Similarly, one or more flowlines 570 fluidly couple the second working chamber 535 to a selective one of the high- and low-pressure chambers 340 and 350 via the valve 360 and/or other hydraulic circuitry.
In operation, the reciprocating motion of the piston 310 is generated as described above with respect to
The first working chamber 530 is then exposed to the high-pressure chamber 340 while the second working chamber 535 is simultaneously exposed to the low-pressure chamber 350. As the piston 310 subsequently translates upward (relative to the orientation depicted in
The downhole tool 502 may also have one or more aspects in common with, or be substantially similar to, the downhole tool 501 shown in
In operation, the reciprocating motion of the piston 310 is generated as described above, with the first and second working chambers 530 and 535 operating to drive the reciprocating motion of the piston 310. As the piston 310 translates downward (relative to the orientation depicted in
As the piston 310 subsequently translates upward (relative to the orientation depicted in
The downhole tool 503 may also have one or more aspects in common with, or be substantially similar to, the downhole tool 500 shown in
In operation, the reciprocating motion of the piston 310 is generated as described above. As the piston 310 translates downward (relative to the orientation depicted in
As the piston 310 subsequently translates upward (relative to the orientation depicted in
Aspects of the present disclosure may also be applicable or adaptable to implementations in which a reciprocating engine is driven by means other than alternatingly drawing and expelling fluid into/from two opposing chambers. For example, fluid removal may be utilized to drive the piston 310 in one direction, and the return stroke may be accomplished utilizing another source of energy, such as a spring, a high-pressure gas, and/or a low-pressure chamber, among other examples. Such implementations may reduce the number of control valves and/or other hydraulic circuitry.
The downhole tool 600 comprises a biasing member 610 contained within a chamber 620. The biasing member 610 may provide or contribute to the force that moves the piston 310 upward (relative to the orientation shown in
In operation, exposing the working chamber 660 to the low-pressure chamber 350 (via operation of the valve 360 and/or other hydraulic circuitry) may generate a downward force on the piston 310 sufficient to overcome the biasing force of the biasing member 610, thus moving the piston 310 downward (relative to the orientation shown in
The chamber 620 housing the biasing member 610 may be defined by surfaces of the piston head 510, other surfaces of the piston 310, and/or internal surfaces of the downhole tool 600. The biasing member 610 may comprise one or more compression springs, Belleville springs, and/or other biasing elements. In related implementations, the biasing member 610 may be operable to cause or contribute to the intake stroke of the piston 310, instead of the exhaust stroke, such as implementations in which the biasing member 610 may comprise one or more tension springs, or implementations in which the biasing member 610 may comprise one or more compression springs positioned other than as depicted in
The downhole tool 601 may also have one or more aspects in common with, or be substantially similar to, the downhole tool 600 shown in
In operation, exposing the working chamber 670 to the low-pressure chamber 350 (via operation of the valve 360 and/or other hydraulic circuitry) may generate a downward force on the piston 310 sufficient to overcome the biasing force of the biasing member 630, thus moving the piston 310 downward (relative to the orientation shown in
The biasing member 630 may comprise one or more compression springs, Belleville springs, and/or other biasing elements. In related implementations, the biasing member 630 may be operable to cause or contribute to the intake stroke of the piston 310, instead of the exhaust stroke, such as implementations in which the biasing member 630 may comprise one or more tension springs, or implementations in which the biasing member 630 may comprise one or more compression springs positioned other than as depicted in
In operation, the reciprocating motion of the piston 310 is generated as described above, with a working chamber 660 being alternatingly exposed to the high- and low-pressure chambers 340 and 350. The high-pressure chamber 340 may have a substantially constant internal pressure due to movement of a piston 380 in relation to the pressure differential between the high-pressure chamber 340 and the wellbore 11.
As the piston 310 translates downward (relative to the orientation depicted in
The downhole tool 800 comprises a piston 310 having a first piston head 510, a second piston head 515, and a link or other member 520 extending between the first and second piston heads 510 and 515. The member 520 may be a discrete member coupled to the first and second piston heads 510 and 515 by threads, welding, and/or other fastening means, or the member 520 may be integrally formed with the first piston head 510 and/or the second piston head 515. The first piston head 510 comprises a first surface 511, having an area B11, and a second surface 512, having an area B12. The second piston head 515 comprises a first surface 516, having an area B22, and a second surface 517, having an area B21.
The first surface 511 of the first piston head 510 defines a moveable boundary that partially defines a pumping chamber 650 in fluid communication with a selective one of an exhaust conduit 550 (which may be in constant or selective fluid communication with the wellbore 11) and an intake conduit 540. For example, a valve 810 and/or other hydraulic circuitry may selectively fluidly couple the pumping chamber 650 to the intake conduit 540, while another valve 815 and/or other hydraulic circuitry may selectively fluidly couple the pumping chamber 650 to the exhaust conduit 550. However, the valves 810 and 815 may instead collectively comprise a single valve, more than two valves, and/or other hydraulic circuitry. The valves 810 and 815 and/or the equivalent hydraulic circuitry may comprise check valves permitting fluid flow in a single direction, although piloted and/or other types of valves are also within the scope of the present disclosure.
The one or more flowlines of the intake conduit 540 provide for communicating formation fluid to and/or from the formation 130. For example, a portion of the downhole tool 800 and/or associated apparatus not shown in
The second surface 512 of the first piston head 510 defines a moveable boundary that partially defines a first working chamber 530 in fluid communication with a selective one of the wellbore 11 and a low-pressure chamber 350. For example, a valve 820 comprising a two-position valve, additional valves, and/or other hydraulic circuitry may fluidly couple the first working chamber 530 to a selective one of the wellbore 11 (or the exhaust conduit 50) and the low-pressure chamber 350.
The low-pressure chamber 350 may comprise hydraulic fluid and/or another gaseous or liquid fluid at atmospheric pressure or another pressure that is substantially less than hydrostatic pressure within the wellbore 11 (PW). That is, as with other implementations described above, the low-pressure chamber 350 may be filled (or evacuated) before the downhole tool 800 is inserted into the wellbore 11 and subsequently conveyed toward the formation 130. The downhole tool 800 may comprise one or more valves 825 and/or other hydraulic circuitry operable to isolate the low-pressure chamber 350 during such filling and/or otherwise during pumping operations. The valves 820 and 825 and/or the equivalent hydraulic circuitry may comprise check valves permitting fluid flow in a single direction, although other piloted and/or other types of valves are also within the scope of the present disclosure.
The second surface 517 of the second piston head 515 defines a moveable boundary that partially defines a second working chamber 535 in fluid communication with the low-pressure chamber 350. The second working chamber 535 may be in constant fluid communication with the low-pressure chamber 350, as depicted in
The high-pressure chamber is partially defined by the surface 516 of the piston head 515. The high-pressure chamber 340 may be in constant fluid communication with the wellbore 11, as depicted in
The central member 520 of the piston 310 may also define partial boundaries of the one or more of the chambers described above. For example, in the implementation depicted in
The surface areas B11, B12, B21, and B22 of the surfaces 511, 512, 517, and 516, respectively, are sized to exert a desired translational force on the piston 310 in response to the pressure PF of fluid in the formation 130, the pressure PW of fluid in the wellbore 11, and the pressure PL of fluid in the low-pressure chamber 350. Accordingly, the differences between these three pressures PF, PW, and PL may be utilized to reciprocate the piston 310 as described above. For example, to sample representative fluid from the formation 130, the piston 310 may be axially reciprocated to first perform a clean up operation while the obtained formation fluid partially comprises drilling fluid (mud) and/or other contaminants, and then further reciprocated to capture a representative sample of fluid from the formation 130. The surface areas B11, B12, B21, and B22 of the surfaces 511, 512, 517, and 516, respectively, may be designed for a specific environment, with a known wellbore (hydrostatic) pressure PW and a given maximum drawdown pressure PD defined by the difference between the wellbore pressure PW and the minimum formation fluid pressure PF. Once the downhole tool 800 is fluidly coupled to the formation 130, such as by one or more instances of the probe assembly 116 shown in
An intake stroke is initiated by exposing the pumping chamber 650 to the formation 130, such as by operation of the valve 810, the valve 815, and/or other hydraulic circuitry, and exposing the first working chamber 530 to the low-pressure chamber 350, such as by operation of the valve 820, the valve 825, and/or other hydraulic circuitry, as depicted in
After the intake stroke, and if fluid analysis (e.g., performed in or along the intake conduit 540 and/or elsewhere in the downhole tool 800 and/or associated apparatus) indicates that the sampled formation fluid is not representative (e.g., contains excessive infiltrate and/or other contaminants), an exhaust stroke may be initiated. For example, the pumping chamber 650 and the first working chamber 530 may once again be exposed to exhaust conduit 550 and/or the wellbore 11, such as by operation of the valves 810, 815, 820, 825, and/or other hydraulic circuitry, as depicted in
The intake and exhaust strokes may then be repeated a number of times until the sampled fluid from the formation 130 is considered representative, at which time the sampled fluid may be stored in the pumping chamber 650, perhaps sealed by a sealing mechanism (not shown), and retrieved to surface. The sampled formation fluid may also or alternatively be exhausted from the pumping chamber 650 into a sample chamber located elsewhere in the downhole tool 800 and/or associated apparatus, such as into one or more instances of the sample chamber 127 shown in
As with other implementations described above, the piston 310, the chambers 320, 340, 350, 530, and 535, and the associated hydraulic circuitry, may collectively form a pump that may be utilized for various pumping operations downhole. For example, the pump 121 shown in
In the implementation depicted in
The high-pressure chamber 340 may comprise a moveable boundary defined by a floating piston 380, and contains hydraulic fluid and/or another gaseous or liquid fluid. A first surface 381 of the floating piston 380 defines the moveable boundary. A second surface 382 of the piston 380 is exposed to the wellbore 11, such that the fluid within the high-pressure chamber 340 substantially remains at the wellbore pressure PW.
Similar to the operation of the downhole tool 800 shown in
After the intake stroke, and if fluid analysis (e.g., performed in or along the intake conduit 540 and/or elsewhere in the downhole tool 801 and/or associated apparatus) indicates that the sampled formation fluid is not representative (e.g., contains excessive infiltrate and/or other contaminants), an exhaust stroke may be initiated. That is, the pumping chamber 650 may once again be exposed to the exhaust conduit 550 (and perhaps to the wellbore 11), such as by operation of the valves 810, 815, and/or other hydraulic circuitry, and the first working chamber 530 may be exposed to the wellbore pressure PW within the high-pressure chamber 340, such as by operation of the valve 830 and/or other hydraulic circuitry. The resulting net force ((B11×PW)−(B12×PW)+(B21×PL)−(B22×PW)) operates to move the piston 310 upward (relative to the orientation depicted in
The intake and exhaust strokes may then be repeated a number of times until the fluid sampled from the formation 130 is considered representative, at which time the sampled fluid may be stored in the pumping chamber 650, perhaps sealed by a sealing mechanism (not shown), and retrieved to surface. The sampled formation fluid may also or alternatively be exhausted from the pumping chamber 650 into a sample chamber located elsewhere in the downhole tool 801 and/or associated apparatus, such as into one or more instances of the sample chambers 127 shown in
As with the implementations described above, the first surface 516 of the second piston head 515 defines a moveable boundary that partially defines the high-pressure chamber 340. However, in the implementation shown in
The surface areas B11, B12, B21, and B22 of the surfaces 511, 512, 517, and 516, respectively, are sized to exert a desired translational force on the piston 310 in response to the pressure PF of fluid in the formation 130, the pressure PW of fluid in the wellbore 11, the pressure PH of fluid in the high-pressure chamber 340, and the pressure PL of fluid in the low-pressure chamber 350. Accordingly, the differences between these four pressures PF, PW, PH, and PL may be utilized to reciprocate the piston 310 and, in turn, draw fluid from the formation 130 during a formation fluid sampling operation. For example, to sample representative fluid from the formation 130, the piston 310 may be axially reciprocated to first perform a clean up operation while the obtained formation fluid partially comprises drilling fluid (mud), other wellbore fluids, and/or contaminants, and may then be further reciprocated to capture a representative sample of fluid from the formation 130. The surface areas B11, B12, B21, and B22 of the surfaces 511, 512, 517, and 516, respectively, may be designed for a specific environment, with a known wellbore (hydrostatic) pressure PW and a given maximum drawdown pressure PD. Once the downhole tool 802 is fluidly coupled to the formation 130, such as by one or more instances of the probe assembly 116 shown in
An intake stroke is initiated by exposing the pumping chamber 650 to the formation 130, such as by operation of the valve 810, the valve 815, and/or other hydraulic circuitry, and exposing the first working chamber 530 to the low-pressure chamber 350, such as by operation of the valve 820, the valve 825, and/or other hydraulic circuitry. The resulting net force ((B11×PF)−(B12×PL)+(B21×PL)−(B22×PH)) operates to move the piston 310 downward (relative to the orientation depicted in
After the intake stroke, and if fluid analysis (e.g., performed in the intake conduit 540 and/or elsewhere in the downhole tool 802 and/or associated apparatus) indicates that the sampled formation fluid is not representative (e.g., contains excessive infiltrate and/or other contaminants), an exhaust stroke may be initiated. For example, the pumping chamber 650 and the first working chamber 530 may once again be exposed to the exhaust conduit 550 (and perhaps the wellbore 11), such as by operation of the valves 810, 815, 820, 825, and/or other hydraulic circuitry. The resulting net force ((B11×PW)−(B12×PW)+(B21×PL)−(B22×PH)) operates to move the piston 310 upward (relative to the orientation depicted in
The intake and exhaust strokes may then be repeated a number of times until the sampled fluid from the formation 130 is considered representative, at which time the sampled fluid may be stored in the pumping chamber 650, perhaps sealed by a sealing mechanism (not shown), and retrieved to surface. The sampled formation fluid may also or alternatively be exhausted from the pumping chamber 650 into a sample chamber located elsewhere in the downhole tool 802 and/or associated apparatus, such as into one or more instances of the sample chambers 127 shown in
The downhole tool 803 comprises a motion member 710 extending from the second piston head 515. The motion member 710 may be a discrete member coupled to the second piston head 515 by threads, welding, and/or other fastening means, or the motion member 710 may be integrally formed with the second piston head 515 and/or the rest of the piston 310. The motion member 710 may extend through the low-pressure chamber 350 and/or other components/features of the downhole tool 803. Operation of the downhole tool 803 is identical or substantially similar to operation of the downhole tool 800, 801, and/or 802 described above, among others within the scope of the present disclosure. However, the reciprocating motion of the piston 310 may be utilized for mechanical and/or other purposes by coupling and/or other engagement of the protruding end (not shown) of the motion member 710 with another component and/or feature of the downhole tool 803 and/or associated apparatus. In this manner, the reciprocating action of the piston 310 (and, thus, the protruding motion member 710) may be utilized for purposes other than, or in addition to, sampling fluid from the formation 130.
The motion member 710 may alternatively extend upward (relative to the orientation shown in
The downhole tool 1000 comprises the piston 310 shown in
The first surface 511 of the first piston head 510 defines a moveable boundary that partially defines the pumping chamber 650, which may be further defined by other internal surfaces of the downhole tool 1000. The second surface 512 of the first piston head 510 defines a moveable boundary that partially defines a first working chamber 530, which may be further defined by the outer surface of the member 520 of the piston 310 and other internal surfaces of the downhole tool 1000. The second surface 517 of the second piston head 515 defines a moveable boundary that partially defines the second working chamber 535, which may be further defined by the outer surface of the member 520 of the piston 310 and other internal surfaces of the downhole tool 1000. The first surface 516 of the second piston head 515 defines a moveable boundary that partially defines a third working chamber 1030, which may be further defined by other internal surfaces of the downhole tool 1000.
The downhole tool 1000 further comprises one or more flowlines providing an intake conduit 540 for receiving formation fluid from the formation 130. For example, a portion of the downhole tool 1000 and/or associated apparatus not shown in
The downhole tool 1000 further comprises one or more flowlines providing an exhaust conduit 550 for expelling formation fluid into the wellbore 11 and/or another portion of the downhole tool 1000. For example a portion of the downhole tool 1000 and/or associated apparatus not shown in
The pumping chamber 650 is in fluid communication with a selective one of the intake conduit 540 and an exhaust conduit 550. For example, a valve 810 and/or other hydraulic circuitry may selectively fluidly couple the pumping chamber 650 to the intake conduit 540, while another valve 815 and/or other hydraulic circuitry may selectively fluidly couple the pumping chamber 650 to the exhaust conduit 550. However, the valves 810 and 815 may instead collectively comprise a single valve, more than two valves, and/or other hydraulic circuitry. The valves 810 and 815 and/or the equivalent hydraulic circuitry may comprise check valves permitting fluid flow in a single direction, although piloted and/or other types of valves are also within the scope of the present disclosure.
The downhole tool 1000 also comprises valves 1060 and 1065. The valve 1060 is configurable between a first position (shown in
The downhole tool 1000 may also comprise one or more flowlines 1070 fluidly coupling the first working chamber 530 to a selective one of the high- and low-pressure chambers 340 and 350 via the valve 1060 and/or other hydraulic circuitry. Similarly, one or more flowlines 1075 may fluidly couple the third working chamber 1030 to a selective one of the high- and low-pressure chambers 340 and 350 via the valve 1065 and/or other hydraulic circuitry. One or more flowlines 1080 may also fluidly couple the second working chamber 535 to the low-pressure chamber 350. The downhole tool 1000 may comprise additional flowlines, including those shown but not numbered in
The downhole tool 1000 may also comprise the piston 380 shown in
One or more of the first working chamber 530, the second working chamber 535, the third working chamber 1030, the high-pressure chamber 340, and the low-pressure chamber 350 may comprise nitrogen, argon, air, hydraulic fluid (e.g., hydraulic oil), and/or another gaseous or liquid fluid, collectively referred to below as working fluid 1090. The first working chamber 530 may initially have an internal pressure that is substantially atmospheric and/or otherwise less than the initial (e.g., wellbore) pressure of the high-pressure chamber 340.
As with other implementations described above, the piston 310, the chambers 340, 350, 530, 535, 650, and 1030, and the associated hydraulic circuitry, may collectively form a pump that may be utilized for various pumping operations downhole. For example, the pump 121 shown in
For example, as with the example implementations described above, the piston 310 may be reciprocated by alternately exposing its surfaces to the high and low pressures of the high-pressure chamber 340 and the low-pressure chamber 350, respectively, via operation of the valves 1060 and 1065. The pressure within the high-pressure chamber 340 may substantially remain at or near hydrostatic pressure due to the piston 380 being in fluid communication with the wellbore 11. The pressure within the low-pressure chamber 350 may initially be at or near atmospheric pressure.
However, unlike the example implementations described above, the downhole tool 1000 comprises two “power” chambers, the first working chamber 530 and the third working chamber 1030, which may be utilized individually or together to impart a pumping motion to the piston 310. The pressure differential (e.g., overbalance+drawdown) that can be generated in the pumping chamber 650 with respect to the hydrostatic pressure of the wellbore 11 during an inlet stroke depends on the amount of the area of the piston 310 that is exposed to the low-pressure chamber 350. By sizing the piston heads 510 and 515 differently, three differential pressure ratios may be possible: the pressure applied to the second surface 512 of the first piston head 510 (“P1”), the pressure applied to the first surface 516 of the second piston head 515 (“P2”), and the combined application of these two pressures (“P1+P2”). For example, the difference between the two pressure differentials P1 and P2 may be at least partially attributable to the area C12 of the second surface 512 of the first piston head 510 being smaller than the area C21 of the first surface 516 of the second piston head 515.
Accordingly, a surface operator, surface controller, and/or controller of the downhole tool 1000 may utilize the smallest pressure differential that would be sufficient to extract fluid from the formation 130. The choice of which power chamber(s) to utilize may be made at any time during the job based on observation of pressures and flow rates. Such operation may reduce the risk of formation collapse and consequent plugging due to excessive differential pressure. Utilizing the smallest pressure differential that is sufficient to extract fluid from the formation 130 may also reduce the risk of capturing a non-representative sample due to phase changes induced by excessive differential pressure. Such operation may also reduce consumption of the on-board working fluid 1090, which may increase the total volume of formation fluid that can be pumped in a single trip downhole.
In each of the power modes depicted in
With respect to the example implementation depicted in
A person having ordinary skill in the art should also recognize that the example implementation depicted in
A person having ordinary skill in the art will also readily recognize that, in the implementations explicitly described herein and others within the scope of the present disclosure, various isolation features, sealing members, and/or other means 990 may be utilized for isolation of various chambers (e.g., chambers 320, 330, 340, 350, 530, and 535). Such means 990 may be utilized to, for example, prevent inadvertent leakage as a first component (e.g., the piston 310) axially reciprocates relative to an adjacent second component within the downhole tool. Such means 990 may include, for example, O-rings, wipers, gaskets, and/or other seals within the scope of the present disclosure, and may be manufactured from one or more rubber, silicon, elastomer, copolymer, metal, and/or other materials. Examples of such means 990 are depicted in
In view of the entirety of the present disclosure, including the figures, a person having ordinary skill in the art will readily recognize that the present disclosure introduces an apparatus comprising: a downhole tool for conveyance within a wellbore extending into a subterranean formation, wherein the downhole tool comprises: a moveable member comprising: a first surface defining a moveable boundary of a first chamber; and a second surface defining a moveable boundary of a second chamber; and hydraulic circuitry selectively operable to establish reciprocating motion of the moveable member by exposing the first chamber to an alternating one of a first pressure and a second pressure that may be substantially less than the first pressure. The hydraulic circuitry may be operable to prevent exposure of the first chamber to the first and second pressures simultaneously.
The hydraulic circuitry may comprise a two-position valve. The two-position valve may be selectively operable between: a first position exposing the first chamber to the first pressure; and a second position exposing the first chamber to the second pressure. The two-position valve may be selectively operable between: a first position exposing the first chamber to the first pressure and preventing exposure of the first chamber to the second pressure; and a second position exposing the first chamber to the second pressure and preventing exposure of the first chamber to the first pressure.
The moveable member may comprise a piston having the opposing first and second surfaces. The moveable member may comprise a sealing member preventing fluid communication between the first and second chambers. The sealing member may comprise an O-ring.
The downhole tool may further comprise: a third chamber containing fluid at the first pressure; and a fourth chamber containing fluid at the second pressure. Exposing the first chamber to an alternating one of the first pressure and the second pressure may comprise exposing the first chamber to an alternating one of the third chamber and the fourth chamber. The hydraulic circuitry may be operable to: establish fluid communication between the second and fourth chambers when the first and third chambers are in fluid communication; and establish fluid communication between the second and third chambers when the first and fourth chambers are in fluid communication. The hydraulic circuitry may be operable to prevent the first chamber from being in simultaneous fluid communication with the third and fourth chambers. The hydraulic circuitry may comprise a valve, and fluid communication established between the second chamber and one of the third and fourth chambers may include fluid communication via one or more flowlines collectively extending between ones of the second chamber, the third chamber, the fourth chamber, and the valve. The fluid in the third and fourth chambers may substantially comprise hydraulic oil, nitrogen, and/or argon.
The second pressure may be substantially atmospheric pressure. The second pressure may be substantially less than atmospheric pressure.
The first pressure may be a hydrostatic pressure of fluid within the wellbore. The moveable member may be a first moveable member, and the downhole tool may further comprise a second moveable member having opposing first and second surfaces. The first surface of the second moveable member may define a moveable boundary of a third chamber containing fluid at the first pressure. The second surface of the second moveable member may be in fluid contact with the fluid in the wellbore.
The downhole tool may comprise a biasing member urging the moveable member in a direction substantially parallel to a longitudinal axis of the moveable member. The moveable member may be a piston. The piston may comprise a piston head having opposing first and second surfaces. The second surface of the piston head may be smaller in area than the first surface of the piston head. The downhole tool may further comprise a biasing member chamber having a moveable boundary defined by the second surface of the piston head. The biasing member may be contained within the biasing member chamber and exert a force on the second surface of the piston head. The biasing member may be contained within the biasing member chamber and exert a force on the end of the piston.
The moveable member may translate in a first direction in response to exposure of the first chamber to the first pressure, and may translate in a second direction in response to exposure of the first chamber to the second pressure. The first and second directions may be substantially opposites. Translation of the moveable member in the first direction may volumetrically increase the first chamber and volumetrically decrease the second chamber. Translation of the moveable member in the second direction may volumetrically increase the second chamber and volumetrically decrease the first chamber.
The downhole tool may be coupled to a conveyance operable to convey the downhole tool within the wellbore. The conveyance may comprise a wireline and/or a drill string. The downhole tool may further comprise a fluid communication device operable to establish fluid communication between the downhole tool and the subterranean formation.
The present disclosure also introduces a method comprising: conveying a downhole tool within a wellbore extending into a subterranean formation, wherein the downhole tool comprises a moveable member, a first chamber comprising fluid at a first pressure, and a second chamber comprising fluid at a second pressure that may be substantially less than the first pressure; and reciprocating the moveable member by selectively exposing the moveable member to an alternating one of the first and second pressures.
The moveable member may comprise opposing first and second surfaces, and selectively exposing the moveable member to an alternating one of the first and second chambers may comprise alternatingly: exposing the first surface to the first pressure while exposing the second surface to the second pressure; and exposing the first surface to the second pressure while exposing the second surface to the first pressure.
The moveable member may comprise opposing first and second surfaces, and selectively exposing the moveable member to an alternating one of the first and second chambers may comprise alternatingly: exposing the first surface to the first pressure, but not the second pressure, while exposing the second surface to the second pressure, but not the first pressure; and exposing the first surface to the second pressure, but not the first pressure, while exposing the second surface to the first pressure, but not the second pressure.
The second pressure may be substantially atmospheric pressure. The second pressure may be substantially less than atmospheric pressure.
The first pressure may be a hydrostatic pressure of fluid within the wellbore. The moveable member may be a first moveable member, and the downhole tool may further comprise a second moveable member having opposing first and second surfaces. The first surface of the second moveable member may define a moveable boundary of the first chamber, and the second surface of the second moveable member may be in fluid contact with fluid in the wellbore.
The moveable member may translate in a first direction in response to exposure to the first pressure, and may translate in a second direction in response to exposure to the second pressure. The first and second directions may be substantially opposites. The downhole tool may further comprise: a third chamber having a moving boundary defined by a first surface of the moveable member; and a fourth chamber having a moving boundary defined by a second surface of the moveable member. Translation of the moveable member in the first direction may volumetrically increase the third chamber and volumetrically decrease the fourth chamber. Translation of the moveable member in the second direction may volumetrically increase the fourth chamber and volumetrically decrease the third chamber.
Conveying the downhole tool within the wellbore may comprise conveying the downhole tool via at least one of a wireline and a drill string.
The hydraulic circuitry may comprise a two-position valve, and selectively exposing the moveable member to an alternating one of the first and second pressures may comprise selectively operating the two-position valve between: a first position exposing the moveable member to the first pressure; and a second position exposing the moveable member to the second pressure.
The hydraulic circuitry may comprise a two-position valve, and selectively exposing the moveable member to an alternating one of the first and second pressures may comprise selectively operating the two-position valve between: a first position exposing the moveable member to the first pressure and preventing exposure of the moveable member to the second pressure; and a second position exposing the moveable member to the second pressure and preventing exposure of the moveable member to the first pressure.
The present disclosure also introduces a method comprising: conveying a downhole tool within a wellbore extending into a subterranean formation, wherein the downhole tool comprises a high-pressure chamber, a low-pressure chamber, a first working chamber, and a second working chamber; and pumping fluid from the subterranean formation by operating the downhole tool to alternatingly: expose the first working chamber to the high-pressure chamber while exposing the second working chamber to the low-pressure chamber; and expose the first working chamber to the low-pressure chamber while exposing the second working chamber to the high-pressure chamber.
The downhole tool may further comprise an intake conduit and an exhaust conduit, and pumping fluid may comprise pumping fluid from the intake conduit to the exhaust conduit. The method may further comprise establishing fluid communication between the intake conduit and the subterranean formation prior to initiating the pumping. The downhole tool may further comprise a first pumping chamber and a second pumping chamber, and pumping fluid from the intake conduit to the exhaust conduit ay comprises: while exposing the first working chamber to the high-pressure chamber and exposing the second working chamber to the low-pressure chamber, drawing fluid from the intake conduit into the first pumping chamber while expelling fluid from the second pumping chamber into the exhaust conduit; and while exposing the first working chamber to the low-pressure chamber and exposing the second working chamber to the high-pressure chamber, drawing fluid from the intake conduit into the second pumping chamber while expelling fluid from the first pumping chamber into the exhaust conduit. The downhole tool may further comprise a moveable member comprising: a first piston head having a first surface and a second surface that may be substantially smaller than the first surface, wherein the first surface may define a moving boundary of the first working chamber, and wherein the second surface may define a moving boundary of the second pumping chamber; and a second piston head having a third surface and a fourth surface that may be substantially smaller than the third surface, wherein the third surface may define a moving boundary of the second working chamber, and wherein the fourth surface may define a moving boundary of the first pumping chamber. Exposing the first working chamber to the high-pressure chamber and exposing the second working chamber to the low-pressure chamber may translate the moveable member in a first direction, and translation of the moveable member in the first direction may draw fluid from the intake conduit into the first pumping chamber while expelling fluid from the second pumping chamber into the exhaust conduit. Exposing the first working chamber to the low-pressure chamber and exposing the second working chamber to the high-pressure chamber may translate the moveable member in a second direction substantially opposite the first direction, and translation of the moveable member in the second direction may expel fluid from the first pumping chamber into the exhaust conduit while drawing fluid from the intake conduit into the second pumping chamber.
The moveable member may further comprise a central member linking the first and second piston heads, and the central member may comprise a surface defining boundaries of the first and second pumping chambers.
The downhole tool may further comprise a moveable member comprising: a first piston head having a first surface and a second surface that may be substantially smaller than the first surface, wherein the first surface may define a moving boundary of the second pumping chamber, and wherein the second surface may define a moving boundary of the first working chamber; and a second piston head having a third surface and a fourth surface that may be substantially smaller than the third surface, wherein the third surface may define a moving boundary of the first pumping chamber, and wherein the fourth surface may define a moving boundary of the second working chamber. The moveable member may further comprise a central member linking the first and second piston heads, and the central member may comprise a surface defining boundaries of the first and second working chambers.
The downhole tool may further comprise a moveable member comprising: a first end having a first surface defining a moving boundary of the first pumping chamber; a second end having a second surface defining a moving boundary of the second pumping chamber; and a flange member extending radially outward from a central portion of the moveable member and having: a third surface defining a moving boundary of the first working chamber; and a fourth surface defining a moving boundary of the second working chamber. The moveable member may further comprise: a fifth surface extending at least partially between the first and third surfaces and defining a boundary of the first working chamber; and a sixth surface extending at least partially between the second and fourth surfaces and defining a boundary of the second working chamber.
The downhole tool may further comprise a moveable member comprising: a first end having a first surface defining a moving boundary of the second working chamber; a second end having a second surface defining a moving boundary of the first working chamber; and a flange member extending radially outward from a central portion of the moveable member and having: a third surface defining a moving boundary of the second pumping chamber; and a fourth surface defining a moving boundary of the first pumping chamber. The moveable member may further comprise: a fifth surface extending at least partially between the first and third surfaces and defining a boundary of the second pumping chamber; and a sixth surface extending at least partially between the second and fourth surfaces and defining a boundary of the first pumping chamber.
The present disclosure also introduces a method comprising: conveying a downhole tool within a wellbore extending into a subterranean formation, wherein the downhole tool comprises a high-pressure chamber, a low-pressure chamber, a working chamber, a pumping chamber, an intake conduit, and an exhaust conduit; and pumping subterranean formation fluid from the intake conduit to the exhaust conduit via the pumping chamber by operating the downhole tool to alternatingly: expose the pumping chamber to the intake conduit while exposing the working chamber to the low-pressure chamber; and expose the pumping chamber to the exhaust conduit while exposing the working chamber to the high-pressure chamber.
The method may further comprise establishing fluid communication between the intake conduit and the subterranean formation prior to initiating the pumping.
Exposing the pumping chamber to the intake conduit while exposing the working chamber to the low-pressure chamber may draw subterranean formation fluid from the intake conduit into the pumping chamber. Exposing the pumping chamber to the exhaust conduit while exposing the working chamber to the high-pressure chamber may expel fluid from the pumping chamber into the exhaust conduit.
The exhaust conduit may be in fluid communication with the wellbore.
The high-pressure chamber may be in fluid communication with the wellbore.
The working chamber may be a first working chamber, and the downhole tool may further comprise a second working chamber in substantially constant fluid communication with the low-pressure chamber. The downhole tool may further comprise a moveable member comprising: a first piston head having a first surface and a second surface that may be substantially smaller than the first surface, wherein the first surface may define a moving boundary of the pumping chamber, and wherein the second surface may define a moving boundary of the first working chamber; and a second piston head having a third surface and a fourth surface that may be substantially smaller than the third surface, wherein the third surface may define a moving boundary of the high-pressure chamber, and wherein the fourth surface may define a moving boundary of the second working chamber. The moveable member may further comprise a central member linking the first and second piston heads, and the central member may comprise a surface defining boundaries of the first and second working chambers.
The downhole tool may further comprise a floating piston having first and second opposing surfaces, wherein the first surface of the floating piston may define a moving boundary of the high-pressure chamber, and wherein the second surface of the floating piston may be in substantially constant fluid communication with the wellbore.
The downhole tool may further comprise a fill port in selective fluid communication with the high-pressure chamber, and the method may further comprise pressurizing the high-pressure chamber via injection of a fluid through the fill port.
The downhole tool may further comprise a moveable member and a biasing member. The moveable member may define moveable boundaries of the working chamber and the pumping chamber. The biasing member may urge movement of the moveable member to volumetrically enlarge the working chamber and volumetrically contract the pumping chamber. Exposing the working chamber to the low-pressure chamber may overcome the biasing member to reverse movement of the moveable member, thereby volumetrically contracting the working chamber and volumetrically enlarging the pumping chamber. The method may further comprise establishing fluid communication between the intake conduit and the subterranean formation prior to initiating the pumping. The moveable member may comprise a piston head having a first surface and a second surface that may be substantially smaller than the first surface, wherein the first surface may define a moving boundary of the pumping chamber, and wherein the second surface may be directly acted upon by the biasing member. An end of the moveable member opposite the piston head may define a moving boundary of the working chamber. The moveable member may comprise a piston head having a first surface and a second surface that may be substantially smaller than the first surface. The first surface of the moveable member may define a moving boundary of the pumping chamber. The second surface of the moveable member may define a moving boundary of the working chamber. An end of the moveable member opposite the piston head may be directly acted upon by the biasing member.
The present disclosure also introduces an apparatus comprising: a downhole tool for conveyance within a wellbore extending into a subterranean formation, wherein the downhole tool comprises: at least one working chamber; at least one pumping chamber; intake and exhaust conduits each in selective fluid communication with the at least one pumping chamber; and hydraulic circuitry operable to pump subterranean formation fluid from the intake conduit to the exhaust conduit via the at least one pumping chamber by alternatingly exposing the at least one working chamber to different first and second pressures.
The downhole tool may further comprise a moveable member having at least one surface defining a moveable boundary of the at least one working chamber. Alternatingly exposing the at least one working chamber to the first and second pressures may comprise alternatingly exposing the first and second pressures to the at least one surface of the moveable member. Alternatingly exposing the first and second pressures to the at least one surface of the moveable member may translate the moveable member in corresponding first and second directions that volumetrically change the at least one pumping chamber to alternatingly: draw subterranean formation fluid from the intake conduit into the at least one pumping chamber; and expel subterranean formation fluid from the at least one pumping chamber into the exhaust conduit.
The exhaust conduit may be in fluid communication with the wellbore.
The hydraulic circuitry may comprise a two-position valve. The two-position valve may be selectively operable between first and second positions exposing the at least one working chamber to the first and second pressures, respectively. The two-position valve may be selectively operable between first and second positions each exposing the at least one working chamber to an exclusive one of the first and second pressures, respectively.
The downhole tool may further comprise: a high-pressure chamber comprising fluid at the first pressure; and a low-pressure chamber comprising fluid at the second pressure, wherein the second pressure may be substantially less than the first pressure. Alternatingly exposing the at least one working chamber to the first and second pressures may comprise establishing fluid communication between the at least one working chamber and an alternating one of the high- and low-pressure chambers. The high-pressure chamber may be in fluid communication with the wellbore. The downhole tool may further comprise a floating piston having opposing first and second surfaces, wherein: the first surface may define a moveable boundary of the high-pressure chamber; and the second surface may be exposed to the wellbore. The downhole tool may further comprise a port operable for fluid communication with one of the high- and low-pressure chambers.
The downhole tool may further comprise a fluid communication device operable to establish fluid communication between the intake conduit and the subterranean formation.
The at least one working chamber may comprise first and second working chambers. The at least one pumping chamber may comprise first and second pumping chambers. The downhole tool may further comprise a moveable member having: a first surface defining a moveable boundary of the second working chamber; a second surface defining a moveable boundary of the first pumping chamber; a third surface defining a moveable boundary of the first working chamber; and a fourth surface defining a moveable boundary of the second pumping chamber. The second pressure may be substantially less than the first pressure. Alternatingly exposing the at least one working chamber to different first and second pressures may comprise alternatingly: exposing the first working chamber to the first pressure while exposing the second working chamber to the second pressure; and exposing the first working chamber to the second pressure while exposing the second working chamber to the first pressure. Exposing the first working chamber to the first pressure while exposing the second working chamber to the second pressure may move the moveable member in a first direction and simultaneously: draw subterranean formation fluid from the intake conduit into the first pumping chamber; and expel subterranean formation fluid from the second pumping chamber into the exhaust conduit. Exposing the first working chamber to the second pressure while exposing the second working chamber to the first pressure may move the moveable member in a second direction and simultaneously: draw subterranean formation fluid from the intake conduit into the second pumping chamber; and expel subterranean formation fluid from the first pumping chamber into the exhaust conduit.
The moveable member may comprise: a first piston head comprising the first surface and the second surface opposing the first surface; a second piston head comprising the third surface and the fourth surface opposing the third surface; and a member extending between the first and second piston heads and having at least one surface defining moveable boundaries of the first and second pumping chambers.
The at least one working chamber may comprise first and second working chambers, and the at least one pumping chamber may comprise first and second pumping chambers. The downhole tool may further comprise a moveable member having: a first surface defining a moveable boundary of the first pumping chamber; a second surface defining a moveable boundary of the first working chamber; a third surface defining a moveable boundary of the second pumping chamber; and a fourth surface defining a moveable boundary of the second working chamber. The second pressure may be substantially less than the first pressure. Alternatingly exposing the at least one working chamber to different first and second pressures may comprise alternatingly: exposing the first working chamber to the first pressure while exposing the second working chamber to the second pressure; and exposing the first working chamber to the second pressure while exposing the second working chamber to the first pressure. Exposing the first working chamber to the first pressure while exposing the second working chamber to the second pressure may move the moveable member in a first direction and simultaneously: draw subterranean formation fluid from the intake conduit into the second pumping chamber; and expel subterranean formation fluid from the first pumping chamber into the exhaust conduit. Exposing the first working chamber to the second pressure while exposing the second working chamber to the first pressure may move the moveable member in a second direction and simultaneously: draw subterranean formation fluid from the intake conduit into the first pumping chamber; and expel subterranean formation fluid from the second pumping chamber into the exhaust conduit. The moveable member may comprise: a first piston head comprising the first surface and the second surface opposing the first surface; a second piston head comprising the third surface and the fourth surface opposing the third surface; and a member extending between the first and second piston heads and having at least one surface defining moveable boundaries of the first and second working chambers.
The at least one working chamber may comprise first and second working chambers, and the at least one pumping chamber may comprise first and second pumping chambers. The downhole tool may further comprise a moveable member comprising: a first end comprising a moveable boundary of the first pumping chamber; a second end comprising a moveable boundary of the second pumping chamber; and a flange portion comprising: a first surface defining a moveable boundary of the first working chamber; and a second surface defining a moveable boundary of the second working chamber. The second pressure may be substantially less than the first pressure. Alternatingly exposing the at least one working chamber to different first and second pressures may comprise alternatingly: exposing the first working chamber to the first pressure while exposing the second working chamber to the second pressure; and exposing the first working chamber to the second pressure while exposing the second working chamber to the first pressure. Exposing the first working chamber to the first pressure while exposing the second working chamber to the second pressure may move the moveable member in a first direction and simultaneously: draw subterranean formation fluid from the intake conduit into the first pumping chamber; and expel subterranean formation fluid from the second pumping chamber into the exhaust conduit. Exposing the first working chamber to the second pressure while exposing the second working chamber to the first pressure may move the moveable member in a second direction and simultaneously: draw subterranean formation fluid from the intake conduit into the second pumping chamber; and expel subterranean formation fluid from the first pumping chamber into the exhaust conduit. The moveable member may comprise at least one surface defining moveable boundaries of the first and second working chambers.
The at least one working chamber may comprise first and second working chambers, and the at least one pumping chamber may comprise first and second pumping chambers. The downhole tool may further comprise a moveable member comprising: a first end comprising a moveable boundary of the first working chamber; a second end comprising a moveable boundary of the second working chamber; and a flange portion comprising: a first surface defining a moveable boundary of the first pumping chamber; and a second surface defining a moveable boundary of the second pumping chamber. The second pressure may be substantially less than the first pressure. Alternatingly exposing the at least one working chamber to different first and second pressures may comprise alternatingly: exposing the first working chamber to the first pressure while exposing the second working chamber to the second pressure; and exposing the first working chamber to the second pressure while exposing the second working chamber to the first pressure. Exposing the first working chamber to the first pressure while exposing the second working chamber to the second pressure may move the moveable member in a first direction and simultaneously: draw subterranean formation fluid from the intake conduit into the second pumping chamber; and expel subterranean formation fluid from the first pumping chamber into the exhaust conduit. Exposing the first working chamber to the second pressure while exposing the second working chamber to the first pressure may move the moveable member in a second direction and simultaneously: draw subterranean formation fluid from the intake conduit into the first pumping chamber; and expel subterranean formation fluid from the second pumping chamber into the exhaust conduit. The moveable member may comprise at least one surface defining moveable boundaries of the first and second pumping chambers.
The downhole tool may further comprise a moveable member and a biasing member. The moveable member may define moveable boundaries of the at least one working chamber and the at least one pumping chamber. The biasing member may urge movement of the moveable member to volumetrically enlarge the at least one working chamber and volumetrically contract the at least one pumping chamber. Exposing the at least one working chamber to the first pressure may urge movement of the moveable member to volumetrically enlarge the at least one working chamber and volumetrically contract the at least one pumping chamber. Exposing the at least one working chamber to the second pressure may urge reverse movement of the moveable member to volumetrically contract the at least one working chamber and volumetrically enlarge the at least one pumping chamber.
The moveable member may comprise a piston head having first and second surfaces, wherein the second surface may be substantially smaller than the first surface, the first surface may define a moveable boundary of the at least one pumping chamber, the second surface may be directly acted upon by the biasing member, and an end of the moveable member opposite the piston head may define a moveable boundary of the at least one working chamber.
The moveable member may comprise a piston head having first and second surfaces, wherein the second surface may be substantially smaller than the first surface, the first surface may define a moveable boundary of the at least one pumping chamber, the second surface may define a moveable boundary of the at least one working chamber, and an end of the moveable member opposite the piston head may be directly acted upon by the biasing member.
The downhole tool may comprise a moveable member defining moveable boundaries of the at least one working chamber and the at least one pumping chamber, and the at least one working chamber may comprise first and second working chambers. The moveable member may comprise a piston head having first and second surfaces, wherein the second surface may be substantially smaller than the first surface, the first surface may define a moveable boundary of the first working chamber, the second surface may define a moveable boundary of the second working chamber, and alternatingly exposing the at least one working chamber to the first and second pressures may comprise alternatingly: exposing the first working chamber to the first pressure while exposing the second working chamber to the second pressure; and exposing the first working chamber to the second pressure while exposing the second working chamber to the first pressure. An end of the moveable member may comprise a moveable boundary of the at least one pumping chamber. Exposing the first working chamber to the first pressure while exposing the second working chamber to the second pressure may urge movement of the moveable member to volumetrically enlarge the at least one pumping chamber, whereas exposing the first working chamber to the second pressure while exposing the second working chamber to the first pressure may urge reverse movement of the moveable member to volumetrically contract the at least one pumping chamber.
The at least one working chamber may comprises first and second working chambers, and the downhole tool may comprise a moveable member having: a first surface defining a moveable boundary of the at least one pumping chamber; a second surface defining a moveable boundary of the first working chamber; a third surface in fluid communication with the wellbore; and a fourth surface defining a moveable boundary of the second working chamber. The second pressure may be substantially less than the first pressure, and alternatingly exposing the at least one working chamber to different first and second pressures may comprise alternatingly: exposing the first working chamber to the first pressure while exposing the second working chamber to the second pressure; and exposing the first working chamber to the second pressure while exposing the second working chamber to the second pressure. Exposing the first working chamber to the first pressure may comprise exposing the first working chamber to the wellbore. The downhole tool may further comprise a low-pressure chamber, and exposing the first and second working chambers to the second pressure may comprise establishing fluid communication between the low-pressure chamber and the first and second working chambers. The moveable member may comprise: a first piston head comprising the first surface and the second surface opposing the first surface; a second piston head comprising the third surface and the fourth surface opposing the third surface; and a member extending between the first and second piston heads and having at least one surface defining moveable boundaries of the first and second working chambers.
The at least one working chamber may comprise first and second working chambers, and the downhole tool may further comprise a high-pressure chamber and a floating piston having opposing first and second sides. The first side of the floating piston may define a moveable boundary of the high-pressure chamber, and the second side of the floating piston may be exposed to the wellbore. The downhole tool may further comprise a moveable member having: a first surface defining a moveable boundary of the at least one pumping chamber; a second surface defining a moveable boundary of the first working chamber; a third surface defining a moveable boundary of the high-pressure chamber; and a fourth surface defining a moveable boundary of the second working chamber. The second pressure may be substantially less than the first pressure, and alternatingly exposing the at least one working chamber to different first and second pressures may comprise alternatingly: establishing fluid communication between the first working chamber and the high-pressure chamber while exposing the second working chamber to the second pressure; and establishing fluid communication between the first working chamber and the second pressure while exposing the second working chamber to the second pressure. The downhole tool may further comprise a low-pressure chamber, wherein establishing fluid communication between the first working chamber and the second pressure may comprise establishing fluid communication between the first working chamber and the low-pressure chamber, and exposing the second working chamber to the second pressure may comprise establishing fluid communication between the second working chamber and the low-pressure chamber. The downhole tool may further comprise an externally accessible port in selective fluid communication with the low-pressure chamber. The second working chamber may be in constant fluid communication with the low-pressure chamber. The moveable member may comprise: a first piston head comprising the first surface and the second surface opposing the first surface; a second piston head comprising the third surface and the fourth surface opposing the third surface; and a member extending between the first and second piston heads and having at least one surface defining moveable boundaries of the first and second working chambers.
The at least one working chamber may comprise first and second working chambers, and the downhole tool may further comprise a high-pressure chamber, an externally accessible port in selective fluid communication with the high-pressure chamber, and a moveable member having: a first surface defining a moveable boundary of the at least one pumping chamber; a second surface defining a moveable boundary of the first working chamber; a third surface defining a moveable boundary of the high-pressure chamber; and a fourth surface defining a moveable boundary of the second working chamber. The second pressure may be substantially less than the first pressure, and alternatingly exposing the at least one working chamber to different first and second pressures may comprise alternatingly: establishing fluid communication between the first working chamber and the wellbore while exposing the second working chamber to the second pressure; and establishing fluid communication between the first working chamber and the second pressure while exposing the second working chamber to the second pressure. The downhole tool may further comprise a low-pressure chamber, wherein exposing the second working chamber to the second pressure may comprise establishing fluid communication between the second working chamber and the low-pressure chamber, whereas establishing fluid communication between the first working chamber and the second pressure may comprise establishing fluid communication between the first working chamber and the low-pressure chamber. The moveable member may comprise: a first piston head comprising the first surface and the second surface opposing the first surface; a second piston head comprising the third surface and the fourth surface opposing the third surface; and a member extending between the first and second piston heads and having at least one surface defining moveable boundaries of the first and second working chambers.
The present disclosure also introduces an apparatus comprising: a downhole tool for conveyance within a wellbore extending into a subterranean formation, wherein the downhole tool comprises: a moveable member comprising: a first surface defining a moveable boundary of a first chamber; and a second surface defining a moveable boundary of a second chamber; a motion member driven by the moveable member and having at least a portion positioned outside the first and second chambers; and hydraulic circuitry operable to establish reciprocation of the motion member by alternatingly exposing the first chamber to different first and second pressures.
The downhole tool may further comprise: a third chamber comprising fluid at the first pressure; and a fourth chamber comprising fluid at the second pressure. Alternatingly exposing the first chamber to different first and second pressures may comprise establishing fluid communication between the first chamber and an alternating one of the third and fourth chambers.
The reciprocation may comprise linear motion in first and second opposite directions. The reciprocation may comprise rotational motion in first and second opposite directions.
The moveable member may further comprise: a first piston head having the first surface and a third surface that is substantially smaller than the first surface; and a second piston head having the second surface and a fourth surface that is substantially smaller than the second surface.
The hydraulic circuitry may be operable to establish reciprocation of the motion member by alternatingly: exposing the first chamber to the first pressure while exposing the second chamber to the second pressure; and exposing the first chamber to the second pressure while exposing the second chamber to the first pressure.
Alternatingly exposing the first chamber to the first and second pressures may translate the moveable member in corresponding first and second directions that may volumetrically change the first and second chambers.
The hydraulic circuitry may comprise a two-position valve. The two-position valve may be selectively operable between first and second positions each exposing the first chamber to a respective one of the first and second pressures. The two-position valve may be selectively operable between first and second positions each exposing the first chamber to an exclusive one of the first and second pressures, respectively.
The downhole tool may further comprise: a high-pressure chamber comprising fluid at the first pressure; and a low-pressure chamber comprising fluid at the second pressure, wherein the second pressure is substantially less than the first pressure. Alternatingly exposing the first chamber to the first and second pressures may comprise establishing fluid communication between the first chamber and an alternating one of the high- and low-pressure chambers. The high-pressure chamber may be in fluid communication with the wellbore. The downhole tool may further comprise a floating piston having opposing first and second surfaces, wherein: the first surface defines a moveable boundary of the high-pressure chamber; and the second surface is exposed to the wellbore. The downhole tool may further comprise a port operable for fluid communication with one of the high- and low-pressure chambers.
The downhole tool may further comprise a fluid communication device operable to establish fluid communication between the downhole tool and the subterranean formation.
The motion member may extend from the second surface of the moveable member to a location outside the second chamber.
The downhole tool may further comprise an elongated passageway, wherein the motion member may extend at least partially within the elongated passageway and comprise a first magnetic member, and the moveable member may further comprise a second magnetic member positioned relative to the first magnetic member such that reciprocation of the moveable member is imparted to the motion member via magnetic interaction between the first and second magnetic members.
The downhole tool may further comprise an elongated passageway, wherein the motion member may extend at least partially within the elongated passageway and comprise a first electromagnetic member, and the moveable member may further comprise a second electromagnetic member positioned relative to the first electromagnetic member such that reciprocation of the moveable member is imparted to the motion member via interaction between the first and second electromagnetic members.
The moveable member may further comprise a linear gear extending substantially parallel to a direction of the reciprocation, and the motion member may be a rotational geared member engaged with the linear gear such that linear reciprocation of the moveable member imparts rotational reciprocation to the motion member.
The present disclosure also introduces a method comprising: conveying a downhole tool within a wellbore extending into a subterranean formation, wherein the downhole tool comprises a first chamber, a second chamber, a moveable member, and a motion member, wherein: a first surface of the moveable member defines a moveable boundary of the first chamber; a second surface of the moveable member defines a moveable boundary of the second chamber; and at least a portion of the motion member is positioned outside the first and second chambers; and reciprocating the motion member by alternatingly exposing the first chamber to different first and second pressures.
The downhole tool may further comprise a third chamber comprising fluid at the first pressure and a fourth chamber comprising fluid at the second pressure, wherein reciprocating the motion member by alternatingly exposing the first chamber to different first and second pressures may comprise establishing fluid communication between the first chamber and an alternating one of the third and fourth chambers.
Reciprocating the motion member may comprise linearly reciprocating the motion member in first and second opposite directions. Reciprocating the motion member may comprise rotationally reciprocating the motion member in first and second opposite directions.
The moveable member may further comprise a first piston head, having the first surface and a third surface that may be substantially smaller than the first surface, and a second piston head, having the second surface and a fourth surface that may be substantially smaller than the second surface, and reciprocating the motion member by alternatingly exposing the first chamber to different first and second pressures may comprise alternatingly: exposing the first chamber to the first pressure while exposing the second chamber to the second pressure; and exposing the first chamber to the second pressure while exposing the second chamber to the first pressure.
Reciprocating the motion member may comprise operating a two-position valve. Operating the two-position valve may comprise transitioning the two-position valve between first and second positions each exposing the first chamber to a respective one of the first and second pressures. Operating the two-position valve may comprise transitioning the two-position valve between first and second positions each exposing the first chamber to an exclusive one of the first and second pressures, respectively.
The downhole tool may further comprise a high-pressure chamber comprising fluid at the first pressure, and a low-pressure chamber comprising fluid at the second pressure, wherein the second pressure is substantially less than the first pressure, and wherein reciprocating the motion member by alternatingly exposing the first chamber to different first and second pressures may comprise establishing fluid communication between the first chamber and an alternating one of the high- and low-pressure chambers. The high-pressure chamber may be in fluid communication with the wellbore. The downhole tool may further comprise a floating piston having opposing first and second surfaces, wherein the first surface may define a moveable boundary of the high-pressure chamber, and wherein the second surface may be exposed to the wellbore. The downhole tool may further comprise an externally accessible port operable for fluid communication with one of the high- and low-pressure chambers, and the method may further comprise adjusting pressure within one of the high- and low-pressure chambers via the externally accessible port.
The method may further comprise establishing fluid communication between the downhole tool and the subterranean formation via a fluid communication device of the downhole tool.
The present disclosure also introduces an apparatus comprising: a downhole tool for conveyance within a wellbore extending into a subterranean formation, wherein the downhole tool comprises: a moveable member comprising: a first surface defining a moveable boundary of a first chamber; and a second surface defining a moveable boundary of a second chamber; and hydraulic circuitry selectively operable to establish reciprocating motion of the moveable member by exposing the first chamber to an alternating one of a first pressure and a second pressure that is substantially less than the first pressure. The moveable member may comprise opposing first and second piston heads of different sizes. The first surface may be a first surface of the first piston head. The first chamber may be a first working chamber. The second surface may be a first surface of the second piston head. The second chamber may be a second working chamber. A second surface of the first piston head may define a moveable boundary of a sampling chamber in selective fluid communication with the subterranean formation. A second surface of the second piston head may define a moveable boundary of a third working chamber. Exposing the first chamber to the first pressure may comprise establishing fluid communication between the first chamber and a high-pressure chamber of the downhole tool. Exposing the first chamber to the second pressure may comprise establishing fluid communication between the first chamber and a low-pressure chamber of the downhole tool. The hydraulic circuitry may include: a first valve fluidly connecting the first working chamber to a selective one of the high- and low-pressure chambers; a second valve fluidly connecting the third working chamber to a selective one of the high- and low-pressure chambers; and at least one flowline fluidly connecting the second working chamber to the low-pressure chamber.
The foregoing outlines features of several embodiments so that a person having ordinary skill in the art may better understand the aspects of the present disclosure. A person having ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. A person having ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.
The Abstract at the end of this disclosure is provided to comply with 37 C.F.R. §1.72(b) to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Number | Date | Country | Kind |
---|---|---|---|
14290094.3 | Apr 2014 | EP | regional |