Differential signal probe with integral balun

Information

  • Patent Grant
  • 7609077
  • Patent Number
    7,609,077
  • Date Filed
    Monday, June 11, 2007
    17 years ago
  • Date Issued
    Tuesday, October 27, 2009
    15 years ago
Abstract
A probe with integral balun enables connecting a device utilizing differential signals to a source or a sink of single ended signals.
Description
BACKGROUND OF THE INVENTION

The present invention relates to probe measurement systems for testing integrated circuits and other microelectronic devices and, more particularly, probe measurement systems utilizing differential signals to test circuits and devices.


Integrated circuits (ICs) and other microelectronic devices are fabricated on the surface of a wafer or substrate and commonly utilize single ended or ground referenced signals that are referenced to a ground plane at the lower surface of the substrate on which the active and passive devices of the circuit are fabricated. As a result of the physical make up of the devices of an integrated circuit, parasitic interconnections exist between many of the parts of the individual devices and between parts of the devices and the wafer on which the devices are fabricated. These interconnections are commonly capacitive and/or inductive in nature and exhibit frequency dependent impedances. For example, the terminals of transistors fabricated on semi-conductive substrates or wafers are typically capacitively interconnected, through the substrate, to the ground plane and, at higher frequencies, the ground potential and the true nature of ground referenced signals becomes uncertain. Balanced devices utilizing differential signals are more tolerant to poor radio frequency (RF) grounding than single ended devices making them increasingly attractive as ICs are operated at higher and higher frequencies.


Referring to FIG. 1, a differential gain cell 20 is a balanced device comprising two nominally identical circuit halves 20A, 20B. When biased with direct current, for example, a current sourced from a DC current source 22, and stimulated with a differential mode signal, comprising even and odd mode components of equal amplitude and opposite phase (Si+1 and Si−1), a virtual ground is established at the symmetrical axis 26 of the two circuit halves. At the virtual ground, the potential at the operating frequency does not change with time regardless of the amplitude of the stimulating signal. The quality of the virtual ground of a balanced device is independent of the physical ground path enabling balanced or differential circuits to tolerate poor RF grounding better than circuits operated with single ended signals. In addition, the two component waveforms of the differential output signal (So+1 and So−1) are mutual references enabling digital devices to operate faster, with greater certainty in transitioning from one binary value to the other and with a reduced voltage swing for the signal. Moreover, balanced or differential circuits have good immunity to noise from external sources, such as adjacent conductors, because noise tends to couple, electrically and electromagnetically, in the common mode and cancel in the differential mode. The improved immunity to noise extends to even-harmonic frequencies since signals that are of opposite phase at the fundamental frequency are in phase at the even harmonics.


Following fabrication of the ICs, the individual dies on which the ICs are fabricated are separated or singulated and encased in a package that provides for electrical connections between the exterior of the package and the circuit on the enclosed die. The separation and packaging of a die comprises a significant portion of the cost of manufacturing a device that includes an IC and to monitor and control the IC fabrication process and avoid the cost of packaging defective dies, manufacturers commonly add electrical circuits or test structures to the wafer to enable on-wafer testing or “probing” to verify characteristics of elements of the integrated circuits before the dies are singulated. A test structure typically includes a device-under-test (DUT) 30, a plurality of metallic probe or bond pads 32 that are deposited at the wafer's surface and a plurality of conductive vias 34 that connect the bond pads to the DUT which is typically fabricated beneath the surface of the wafer with the same process that is used to fabricate the corresponding components of the marketable IC. The DUT typically comprises a simple circuit that includes a copy of one or more of the basic elements of the marketable integrated circuit, such as a single line of conducting material, a chain of vias or a single transistor. Since the circuit elements of the DUT are fabricated with the same process as the corresponding elements of the marketable integrated circuits, the electrical properties of the DUT are expected to be representative of the electrical properties of the corresponding components of the marketable integrated circuit.


The DUT of the test structure 40 comprises the differential gain cell 20, a common elemental device of balanced or differential circuitry. A differential gain cell has five terminals; four signal terminals and a bias terminal through which the transistors of the differential cell are biased. The four signal terminals comprise two input terminals to receive the even and odd mode components of the differential input signal from a signal source and two output terminals to transmit the even and odd mode components of the differential output signal for the differential gain cell to a signal sink. Two probes 42, 44 are commonly utilized when probing a test structure comprising a differential or balanced device. One probe typically conducts the signals from the signal source to the probe pads of the test structure and the second probe conducts the signals from the test structure to the signal sink. Typically, one of the two probes has at least three probe tips, in a signal-ground-signal arrangement, to conduct two of the differential signal components and to bias the transistors of the differential cell.


ICs are typically characterized “on-wafer” by applying a test instrument generated signal to the test structure and measuring the response of the test structure to the signal. Referring to FIG. 2, at higher frequencies, on-wafer characterization is commonly performed with a network analyzer 100. A network analyzer comprises a source 102 of an AC signal, often a radio frequency (RF) signal, that is used to stimulate the DUT 30 of a test structure. Directional couplers or bridges pick off the forward or reverse waves traveling to or from the test structure and direct them to a signal sink 104 where they are down-converted in intermediate frequency (IF) sections, filtered, amplified and digitized. The result of the signal processing in the network analyzer is a plurality of s-parameters (scattering parameters), the ratio of a normalized power wave comprising the response of the DUT to the normalized power wave comprising the stimulus supplied by the signal source, that register the response of the DUT to the stimulating signal. A forward-reverse switch 106 enables reversing the connections between the probe(s) and the network analyzer so that the respective pairs of probe pads receiving the input signal and transmitting the output signal can be reversed.


A four-port network analyzer is desirable when testing differential devices because it can output and receive differential signals enabling mixed mode analysis of the devices. However, four-port network analyzers are relatively uncommon and expensive. Two-port network analyzers are more common and often used when testing differential devices. However, two-port network analyzers output and receive single ended signals which must be converted to or from differential signals for stimulating the balanced device and analyzing its output.


The single ended signal output by the network analyzer may include a DC offset. If so, the output signal is commonly conducted to a bias tee 108 which comprises a capacitor 110 in series with the bias tee's radio frequency (RF) port 112 and an inductor 114, in series with a direct current (DC) port 116. The capacitor blocks transmission of the DC component of the signal from the RF port and the inductor blocks transmission of the modulated signal from the DC port but permits transmission of the DC portion of the signal. The DC port of the bias tee 108 is interconnected through the bias probe tip 140 to the bias probe pad 150 of the test structure enabling biasing of the transistors of the differential cell with the DC component of the output signal of the network analyzer.


The modulated signal from the RF port of the bias tee 108 is conducted to a balun 120 which converts the single ended signal to a balanced or differential signal comprising two differential signal components (Si+1 and Si−1) having substantially the same amplitude but opposite phase. Typically, the two components of the differential signal are transmitted over a coaxial cable from the balun to respective signal probe tips 146, 148 of a probe 42 which provides a transition from the signal path the coaxial cable to the signal path of the test structure's probe pads. The probe is movable relative to the test structure so that the each of the probe tips may be co-located with respective probe pads which are connected to the DUT.


The DUT sinks the differential input signals and outputs the differential output signal components (So+1 and So−1) which are conducted to respective probe pads 152, 154 of the differential gain cell. The components of the differential output signals are transmitted to a balun 122 which converts the differential signal components to a single ended signal which is transmitted to the signal sink 104 of the network analyzer for processing, analysis and display.


A balun used to convert single ended signals to differential signals and vice versa is commonly a transformer with an unbalanced connection made to one of the windings and a balanced connection made to the other winding and, typically, an expensive device. Further, baluns are typically large relative to the probe and are commonly remotely located and connected to the probe with coaxial cable which complicates the set up of the test instrumentation. What is desired, therefore, is a probe that incorporates a balun enabling use of a two-port network analyzer when probing differential circuits to reduce the cost and simplify the set up of the probing instrumentation.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a portion of a substrate including a differential test structure.



FIG. 2 is a schematic representation of a system for probing a differential test structure.



FIG. 3 is a perspective view of a probe with an integral balun.



FIG. 4 is a section view of the probe of FIG. 3 taken along line A-A.



FIG. 5 is a perspective view of a probe head and a free end of a coaxial cable of the probe of FIG. 3.



FIG. 6 is a section view of the probe head and the free end of the coaxial cable of FIG. 5 taken along line B-B.



FIG. 7 is a schematic view of current flows in a coaxial cable.



FIG. 8 is a graphical representation of inductance versus frequency for a plurality of magnetically permeable materials.



FIG. 9 is a perspective view of a probe with an integral balun that incorporates a biasing interconnection.



FIG. 10 is a perspective view of a probe head and conductors of the probe of FIG. 9.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The integrity of an integrated circuit (IC) manufacturing process is commonly tested by fabricating a plurality of test structures on a wafer that includes one or more marketable ICs. The test structures are fabricated using the same processes that are used to fabricate the marketable ICs. Characteristics of the marketable ICs are inferred by stimulating the test structure with a test instrument generated signal and capturing the response of the test structure. While test structures are typically simple circuits, the response of similar devices included in the more complex marketable ICs is expected to be similar to the response of the test structure because the devices in the marketable ICs and similar devices in the test structures are fabricated with the same process.


Referring in detail to the drawings where similar parts are identified by like reference numerals, and, more particularly to FIG. 1, a test structure 40 typically comprises a plurality of conductive bond or probe pads 32 deposited on the surface of a wafer or substrate 50; a device-under-test or DUT 30, typically a simple circuit comprising circuit elements produced by the same process and in the same layers of the wafer as corresponding components of the marketable ICs; and a plurality of conductive vias 34 connecting the probe pads and the elements of the DUT. The exemplary test structure 40 comprises a DUT that includes a differential gain cell 20, a common element of circuitry that utilizes differential signals. Circuits utilizing differential signaling are becoming increasingly common particularly for higher frequency applications. Compared to devices utilizing single ended signals, differential signaling or balanced devices typically operate at lower power levels, provide faster state transition for binary devices, have greater immunity to noise and reduced susceptibility to electromagnetic coupling, and are more tolerant of poor grounding conditions which are commonly encountered when integrated circuits are operated at higher frequencies.


The exemplary differential gain cell 20 comprises two substantially identical field effect (JFET) transistors 52A and 52B. However, a DUT typically comprises components corresponding to the components utilized in the marketable integrated circuits fabricated on the wafer and other types of transistors, such as bipolar junction (BJT) transistors or MOSFET transistors can be used in the construction of a differential gain cell of a test structure and additional active or passive circuit elements may be included in the test structure. The test structure includes five probe pads 150, 152, 154, 156 and 158 through which the transistors of the DUT are biased and through which the two components of the differential input and output signals are communicated to and from the test structure. The source terminals of the transistors of the differential gain cell are interconnected as a transistor bias terminal which is interconnected with a bias probe pad 150. The gate terminals of the transistors are respectively connected to probe pads 156, 158 of a first pair of signal probe pads and the drains of the transistors are respectively interconnected to the probe pads 152, 154 of the second pair of signal probe pads. A differential mode input signal, comprising an even mode component (Si+1) and an odd mode component (Si−1) of substantially the same amplitude but opposite in phase to the even mode component, is applied to one pair of signal probe pads, for example probe pads 156 and 158, causing the differential gain cell to output a differential mode output signal comprising an even mode component (So+1) and an odd mode component (So−1) from the probe pads 152 and 154 of the other pair of signal probe pads. Conversely, the DUT may be tested by sinking the input signal components in the probe pads 152 and 154 and sourcing the output signals from the probe pads 156 and 158.


While differential signaling provides a number of advantages, testing circuits utilizing differential signals can be more complicated than testing circuits utilizing single ended signals because the test instrumentation used in on-wafer probing commonly transmits and receives only single ended signals. A four-port network analyzer can output differential signals directly permitting mixed mode analysis of differential test structures, but four-port network analyzers are relatively rare and expensive. Two port network analyzers are more common and less expensive and are commonly used for testing differential devices, but the single ended signals output by the network analyzer must be converted to differential signals for input to a differential test structure and the differential output signals of the test structure must converted to single ended signals for input to the signal sink of the network analyzer.


Referring to FIG. 2, a two-port network analyzer 100 comprises a signal source 102 that outputs a single ended signal and a signal sink 104 that receives a single ended signal transmitted from the DUT 30 of a test structure. The network analyzer also includes a forward-reverse switch 106 that enables reversing the connections to the source and the sink so that the terminals of the DUT receiving the input signals and transmitting the output signals can be reversed. For example, with the forward-reverse switch in the illustrated position the probe pads 156, 158 sink the differential input signal components (Si+1 and Si−1) and the output signal components (So+1 and So−1) are transmitted from the probe pads 152 and 154. When the forward-reverse switch is moved to the second position, the input signal will be applied to probe pads 152 and 154 and the output signal will be transmitted from probe pads 156 and 158. The single ended output signal from the source of the network analyzer is typically converted by a balun to a balanced or differential signal comprising differential components having substantially the same amplitude but opposite phase. Likewise, a balun converts the differential output signal of the differential DUT to a single ended signal for processing and display be the signal sink of the two-port network analyzer.


The single ended output signal of the network analyzer may include a DC offset. If so and with the forward-reverse switch in the illustrated position, the output signal is commonly conducted to a bias tee 108 which comprises a capacitor 110 in series with a radio frequency (RF) port 112 and an inductor 114, in series with a DC port 116. The capacitor blocks transmission of the DC component of the network analyzer signal from the RF port, but permits transmission of the modulated signal component from the RF port. On the other hand, the inductor blocks transmission of the modulated signal component from the DC port but permits transmission of the DC portion of the signal. The DC port of the bias tee 108 is interconnected through the bias probe tip 140 to the bias probe pad 150 of a test structure enabling biasing of the transistors of a differential cell with the DC component of a signal transmitted by the network analyzer. A third bias tee 124 and a fourth bias tee 126 prevent conduction of the DC bias signal to the signal sink of the network analyzer.


The modulated component of the network analyzer output is conducted from the RF port of the bias tee to a balun 120 which converts the single ended signal to a differential signal having two components of substantially equal amplitude and opposite phase. The differential input signal components, Si+1 and Si−1, are communicated to respective probe tips 146, 148, typically, via coaxial cables interconnecting the balun and the probe tips. The probe tips 146, 148 of the movable probe 42 are arranged so that they may be co-located with the respective signal probe pads 156, 158 which are interconnected with the DUT 30 of a test structure.


In response to the differential input signal, the differential gain cell of the DUT outputs two differential output signal components (So+1 and So−1). The differential output signal components are conducted from respective probe pads 152, 154 of the test structure to respective probe tips 142, 144. The probe tips are interconnected, typically by coaxial cable, to a second balun 122 which converts the differential signals to a single ended signal. The modulated single ended signal is transmitted to the signal sink 104 of the network analyzer.


When the forward-reverse switch is moved to the second position, the single ended output of the network analyzer is conducted to the second balun 122 through a second bias tee 128 which separates the DC component from the modulated portion of the signal enabling biasing of the DUT. The second balun 122 converts the modulated portion of the single-ended output of the network analyzer to the differential input signal components which are conducted to the DUT through probe tips 142 and 144 and probe pads 152 and 154. The output of the DUT is conducted to the probe pads 156 and 158 and, in turn, the probe tips 146 and 148. The differential output signal components are converted to a single ended signal in the first balun 120 and the single ended signal is transmitted through the first 108 and fourth 124 bias tees to the signal sink of the network analyzer.


Baluns are commonly used to convert the single ended signals transmitted by two-port network analyzers to differential signals and vice versa. Baluns are typically expensive, comprising a transformer with an unbalanced connection to one of the windings and a balanced connection to the other winding. The baluns are typically separate from the probe and connected to the probe with coaxial cable because the balun is relatively large compared to a probe. The present inventor realized that if a balun; and, preferably, an inexpensive balun; could be incorporated into the probe, the set up of the instrumentation could be substantially facilitated, reducing the time and cost of wafer probing.


Referring FIGS. 3 and 4, the probe 200 with integral balun comprises a support block 202 which is suitably constructed for connection to a movable probe supporting member 204 of a probe station. For example, the support block includes an aperture 206 for engagement by a snugly fitting alignment pin 208 that projects vertically from the probe supporting member. In addition, the support block includes a pair of countersunk apertures 210 to accept a pair of fastening screws 212 arranged to engage threaded holes in the probe supporting member and secure the probe to the probe supporting member.


The probe includes an input port 214 which, in the embodiment depicted, comprises spark-plug type, K-connector. This connector enables the external connection of an ordinary coaxial cable permitting a well shielded high frequency transmission channel to be established between the probe and the network analyzer or other test instrumentation. If desired, other types of connectors can be used, such as a 2.4 mm. connector, a 1.85 mm. connector or a 1 mm. connector.


In the depicted embodiment, a semi-rigid coaxial cable 216 is connected at its rearward end to the K-connector comprising the port of the probe. Referring also to FIGS. 5 and 6, the coaxial cable 216 preferably includes an elongate, tubular outer conductor 218 having an outer surface 220 and an inner surface 222, an inner conductor arranged within and coaxial with the inner surface of the outer conductor and an inner dielectric 226 that separates the inner conductor from the inner surface of the outer conductor for a length of the inner conductor. Preferably the coaxial cable is a phase-stable low-loss type cable. The coaxial cable may likewise include other layers of materials, as desired, and commonly includes an outer dielectric 228 encircling the outer surface of the outer conductor. To prepare the rearward end of the coaxial cable for connection to the K-connector, the rearward end is stripped to expose the inner conductor and this inner conductor is temporarily held inside a dummy connector while the adjacent outer conductor is soldered within a bore 230 formed in the primary support block. A recess 232 in the support block below this bore provides access to facilitate the soldering process. The dummy connector is then removed and the K-connector is screwed into a threaded opening formed in the block above the bore so as to effect electrical connection between the connector and the coaxial cable. A thread locking compound may be applied to the threads of the K-connector prior to its installation to ensure a secure physical connection.


The forward end of the coaxial cable remains freely suspended and, in this condition, serves as a movable support for a probe head 240 of the probe. Before being connected to the K-connector, the cables are bent along first and second intermediate portions in the manner shown so that a generally upwardly curving 90° bend and a downwardly curving bend, respectively, are formed in the cable.


The probe head 240 may be one of the many types of probe heads that have been developed for probing integrated circuits and other microelectronic devices. Godshalk et al., U.S. Pat. No. 5,506,515; Burr et al., U.S. Pat. No. 5,565,788; and Gleason et al., U.S. Pat. No. 6,815,963; assigned to Cascade Microtech Inc. and incorporated herein by reference, disclose a number of probe heads that may be utilized with the probe with integral balun. In a preferred embodiment, the probe 200 includes a microstrip style probe head comprising a dielectric sheet 242 having generally planar upper and lower surfaces that is affixed to the forward end of the coaxial cable. The underside of the cable is cut away to form a shelf 244, and the dielectric sheet is affixed to the shelf. Alternatively, the dielectric sheet may be supported by an upwardly facing shelf cut away from the cable or the end of the cable without a shelf. The dielectric sheet may comprise a flexible membrane or a plate of a more rigid dielectric material.


A pair of conductive signal traces are supported by the upper surface of the dielectric sheet. The conductive traces may be deposited, using any technique, or otherwise secured on the upper surface of the dielectric sheet. A first conductive signal trace 246 is electrically interconnected to the inner conductor 224 of the coaxial cable and a second conductive signal trace 248 is electrically interconnected to the outer conductor 218 of the coaxial cable . The respective conductive traces 246, 248 normally conduct the components of the differential input or output signals to or from the DUT. Other layers above, below, and/or between the conductive trace(s) and the dielectric sheet may be included, if desired.


Conductive vias 250 passing through the dielectric sheet enables transference of the signal path from the conductive traces on the upper surface of the sheet to the lower surface of the sheet. The conductive via provides a path from one side of the sheet to the other that is free from an air gap between the via and the dielectric for at least a majority of the thickness of the sheet and substantially reduces the capacitance of the signal path compared to a conductive finger extending over the end of the dielectric sheet.


The lower surface of the dielectric sheet includes a plurality of contact bumps or probe tips 252, 254 that are respectively electrically connected to the vias extending from the respective conductive traces on the upper surface of the dielectric sheet. The probe tips are preferably arranged with the centroids of their lower ends being substantially aligned and generally parallel to the forward edge of the probe head. The probe tips are spatially arranged proximate to each other so as to be co-locatable with respective probe pads that conduct signals for the test structure that is to be probed. It is to be understood that the probe tips may take any suitable form, such as a bump, a patterned structure, or an elongate conductor.


An integral balun 260 comprising a sleeve of magnetically permeable material substantially encircles a length of the outer surface of the outside conductor 218 of the coaxial cable 216 connecting the probe tip 250 and the probe's port 214. Referring to FIG. 7, a coaxial cable typically comprises two conductors, an elongate, tubular outer conductor 312 having an inner surface and an outer surface and an inner conductor 310 arranged within the aperture defined by the inner surface of the outer conductor and separated from the outer conductor by a dielectric. As a result of skin effect, the two conductors of the coaxial cable comprise three conductive paths: the inner conductor, the inner surface of the outer conductor and the outer surface of the outer conductor. When a single ended signal is transmitted to or from a source 304 on a coaxial cable one of the conductors, typically the outer conductor, is connected to ground 302 and the signal 306 is transmitted over the second conductor, typically the inner conductor. Since the electrical and magnetic fields produced by the signal flowing in the inner conductor are confined to the space separating the inner and outer conductors, a current 308 equal in magnitude to the signal but flowing in the opposite direction will flow on the inner surface of the outer conductor. At the second end of the outer conductor, a first portion 318 of the current flowing on the inner surface of the outer conductor will be transferred to the load 316 and, depending upon the relative impedances, a second portion of the current, an unbalance current 320, will flow back to ground on the outer surface of the outer conductor or be radiated from the outer conductor. The balun, the magnetically permeable sleeve 260, acts as an inductor 322 in the conductive path comprising the outer surface of the outer conductor to impede and substantially block the flow of the unbalance current on the outer surface of the outer conductor. As a result, equal and opposite differential signals, comprising the signal 306 and the current 308/318, are conducted between the inner and outer conductors of the coaxial cable and the ports 324, 326 of the load 316 which comprise the sinks for the components of the differential signal.


Similarly, when equal and opposite differential signals are sourced from the pair of ports 324, 326 of the load to the inner and outer conductors of the coaxial cable, the impedance introduced in the conductive path on the outer surface of the outer conductor by the magnetically permeable sleeve substantially blocks current flow over the outer surface of the outer conductor, confining the signals to the inner conductor and the inner surface of the outer conductor even though the outer conductor is grounded 302 at the opposite end of the cable and a single ended signal is conducted to the sink 304.


The magnetically permeable sleeve balun 260 comprises a plurality of magnetically permeable tubes or beads 262 arranged end-to-end along a length of the coaxial cable 216. The beads typically comprise ferrite toroids that substantially encircle the outer surface of the coaxial cable but the beads may comprise one or more non-continuous sections arranged around the circumference of the cable. Ferrites are typically ceramic ferromagnetic materials. The ingredients are mixed, fired, crushed or milled, and pressed or extruded and fired to form their final shape. Ferrites may comprise rare earth, such as cobalt, but the most common ferrites comprise about 50% iron oxide. The balance of the materials determines the grade of the final ferrite and commonly comprises a mixture of manganese or nickel and zinc or zinc-oxide. The magnetic permeability of ferrites is variable by varying the composition and the method of making of the ferrite. Referring to FIG. 8, the inductance produced by a ferrite bead is related to the ferrite's magnetic permeability and varies with frequency. To provide a probe useful over a wide range of frequencies, a preferred embodiment of the magnetic permeable sleeve balun comprises a plurality of beads comprising a plurality of differing ferrite materials 352, 354, 354 arranged so that the magnetic permeability of the beads is progressively higher as the distance from the probe tip increases. Moreover, the inductance of the magnetic sleeve balun is maximized at intervals of one-fourth of the wavelength of the signal being attenuated. In a preferred embodiment, the distance, L, 272 between the probe tips 254 and the end of the magnetic sleeve nearest the probe tips is less than one-half of the wavelength of the highest frequency to be measured by the probe and preferably less than thirty-five percent (35%) and more than fifteen percent (15%) of the wavelength of highest frequency and, more preferably, approximately one-fourth of the wavelength of the highest frequency to be measured. Similarly, it is preferable that the distance from the probe tips to a portion of the balun comprising a ferrite exhibiting a maximum inductance at a particular frequency be approximately one-fourth of wavelength of the frequency at which the inductance is maximized for the ferrite.


Although the balun substantially blocks the imbalance current which might flow on the outer surface of the outer conductor, a current can be induced in the outer conductor as a result of the presence of the conductor in the radiation fields of the probe pads. To reduce inducement of current by the radiation field, the protruding end of the coaxial cable may be slidably inserted into a tube 270 comprising a semi-flexible microwave-absorbing material. One material used for forming the tube comprises iron and urethane. The semi-flexible tube of microwave absorbing material serves to substantially reduce the levels of induced microwave energy that can travel along the outer conductor of the cable.


Referring to FIGS. 9 and 10, an additional embodiment of the probe 400 with integral balun includes a third probe tip 402 connectable to bias the DUT. The support block 402 includes an additional input port 404 which, in the embodiment depicted, comprises spark-plug type, K-connector enabling connection of the DC bias from the network analyzer. In the depicted embodiment, a cable 406 is connected at its rearward end to the second port of the probe and extends from the support block to the probe head 408.


The probe 408 comprising a dielectric sheet 410 has generally planar upper and lower surfaces and is affixed to the forward end of the coaxial cable 216. A first conductive signal trace 246 is electrically interconnected to the inner conductor 224 of the coaxial cable and a second conductive signal trace 248 is electrically interconnected to the outer conductor 218 of the coaxial cable. The respective conductive traces conduct the components of the differential input or output signals to or from the DUT. Conductive vias extend through the dielectric sheet enabling transference of the signal path from the conductive traces on the upper surface of the sheet to the lower surface of the sheet the contact bumps or probe tips 252, 254.


The conductor 414 of the cable 406 is conductively affixed to a via 416 extending from the bottom of the dielectric sheet to its top surface. A conductive trace 412 affixed to the lower surface of the dielectric sheet connects the via to a centrally located probe tip 420. The conductive layer may, if desired, cover substantially all of the lower surface of the dielectric sheet with the exception of clearance areas around the signal probe tips 252 and 254.


The probe with integral balun enables a two port network analyzer to be used without costly external baluns in probing integrated circuits and other microelectronic devices with differential signals.


The detailed description, above, sets forth numerous specific details to provide a thorough understanding of the present invention. However, those skilled in the art will appreciate that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid obscuring the present invention.


The detailed description, above, sets forth numerous specific details to provide a thorough understanding of the present invention. However, those skilled in the art will appreciate that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid obscuring the present invention.


All the references cited herein are incorporated by reference.


The terms and expressions that have been employed in the foregoing specification are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims that follow.

Claims
  • 1. A probe for connecting one of a sink of a differential signal to a source of a single ended signal and a source of a differential signal to a sink of a single ended signal, said sink of said differential signal comprising a sink of a first differential signal component and a sink of a second differential signal component and said source of said differential signal comprising a source of said first differential signal component and a source of said second differential signal component, said probe comprising: (a) an elongate coaxial cable comprising: (i) a tubular outer conductor having an outer surface, an inner surface, a first end and a second end; and (ii) an inner conductor arranged within said inner surface of said outer conductor and having a first end proximate said first end of said outer conductor and a second end, said second end of said inner conductor and said second end of said outer conductor operatively connected to one of said source and said sink of said single ended signal and said first end of said outer conductor operatively connected to the respective one of said sink and source of said first differential signal component and said first end of said inner conductor operatively connected to the respective one of said sink and said source of said second differential signal component; and (b) a magnetically permeable sleeve having an inner surface substantially encircling a length of said coaxial cable and an outer surface.
  • 2. The probe of claim 1 wherein said magnetically permeable sleeve comprises: (a) a first sleeve proximate said first end of said outer conductor; and(b) a second sleeve more remote from said first end of said outer conductor than said first sleeve, said second sleeve not interconnected with said first sleeve.
  • 3. The probe of claim 1 wherein said magnetically permeable sleeve comprises: (a) a first sleeve proximate said first end of said outer conductor and having a first magnetic permeability; and(b) a second sleeve more remote from said first end of said outer conductor than said first sleeve and having a second magnetic permeability, said first magnetic permeability differing from said second magnetic permeability.
  • 4. The probe of claim 3 wherein said second magnetic permeability is greater than said first magnetic permeability.
  • 5. The probe of claim 1 wherein said sleeve includes a first end proximate said first end of said outer conductor and spaced apart from a connection of said outer conductor to the respective one of said source of said first differential signal component and said sink of said first differential signal component by a distance no greater than one-half of one wavelength of the highest frequency to be communicated by said probe.
  • 6. The probe of claim 1 wherein said sleeve includes a first end proximate said first end of said outer conductor and spaced apart from a connection of said outer conductor to the respective one of said source of said first differential signal component and said sink of said first differential signal component by a distance no greater than thirty-five percent of a wavelength of the highest frequency to be communicated by said probe and a distance no less than fifteen percent of said wavelength.
  • 7. The probe of claim 1 wherein said sleeve includes a first end proximate said first end of said outer conductor and spaced apart from a connection of said outer conductor to the respective one of said source of said first differential signal component and said sink of said first differential signal component by a distance no greater than thirty percent of a wavelength of the highest frequency to be communicated by said probe and a distance no less than twenty percent of said wavelength.
  • 8. The probe of claim 1 wherein said sleeve includes a first end proximate said first end of said outer conductor and spaced apart from a connection of said outer conductor to the respective one of said source of first differential signal component and said sink of said first differential signal component by a distance no greater than twenty-six percent of a wavelength of the highest frequency to be communicated by said probe and a distance no less than twenty-four percent of said wavelength.
  • 9. The probe of claim 1 further comprising a microwave absorber at least partially encircling said coaxial cable for a portion of a distance between said first end of said outer conductor and an end of said magnetically permeable sleeve nearer said first end of said outer conductor.
  • 10. The probe of claim 1 wherein said source and said sink of said single ended signal comprises a ground connectable to said outer conductor.
  • 11. The probe of claim 1 further comprising a third conductor interconnecting a source of a bias and a bias terminal of a device comprising said source and said sink of said differential signal.
  • 12. A probe comprising: (a) a support block securable to a movable probe supporting member; (b) an elongate coaxial cable secured to said support block, said coaxial cable comprising: (i) an elongate tubular outer conductor having an outer surface, an inner surface, a first end and a second end; (ii) an inner conductor arranged within said inner surface of said outer conductor and having a first end proximate said first end of said outer conductor, a second end proximate said second end of said outer conductor, said first end of said inner conductor and said first end of said outer conductor operatively connected to one of a source and a sink of a single ended signal; (c) a magnetically permeable sleeve having an inner surface substantially encircling a length said coaxial cable; and (d) a probe head secured to said elongate coaxial cable proximate said second end of said outer conductor and comprising a first probe tip conductively connected to said second end of said outer conductor and a second probe tip conductively connected to said second end of said inner conductor, said probe converting a single ended signal communicated to said first end of said inner and outer conductors to a first differential signal component at said first probe tip and a second differential signal component at said second probe tip and converting a first differential signal component communicated to said first probe tip and a second differential signal component communicated to said second probe tip to a Single ended signal at said first ends of said inner and outer conductors.
  • 13. The probe of claim 12 wherein said magnetically permeable sleeve comprises: (a) a first rigid sleeve proximate said second end of said outer conductor; and(b) a second rigid sleeve more remote from said second end of said outer conductor than said first sleeve, said first rigid sleeve not interconnected with said second rigid sleeve.
  • 14. The probe of claim 12 wherein said magnetically permeable sleeve comprises: (a) a first sleeve proximate said second end of said outer conductor and having a first magnetic permeability; and(b) a second sleeve more remote from said second end of said outer conductor than said first sleeve and having a second magnetic permeability, said first magnetic permeability differing from said second magnetic permeability.
  • 15. The probe of claim 14 wherein said second magnetic permeability is greater than said first magnetic permeability.
  • 16. The probe of claim 12 wherein said sleeve includes a first end proximate said second end of said outer conductor and spaced apart from said first probe tip by a distance no greater than one-half of one wavelength of the highest frequency to be communicated by said probe.
  • 17. The probe of claim 12 wherein said sleeve includes a first end proximate said second end of said outer conductor and spaced apart from said first probe tip by a distance no greater than thirty-five percent of a wavelength of the highest frequency to be communicated by said probe and a distance no less than fifteen percent of said wavelength.
  • 18. The probe of claim 12 wherein said sleeve includes a first end proximate said second end of said outer conductor and spaced apart from said first probe tip by a distance no greater than thirty percent of a wavelength of the highest frequency to be communicated by said probe and a distance no less than twenty percent of said wavelength.
  • 19. The probe of claim 12 wherein said sleeve includes a first end proximate said second end of said outer conductor and spaced apart from first probe tip by a distance no greater than twenty-six percent of a wavelength of the highest frequency to be communicated by said probe and a distance no less than twenty-four percent of said wavelength.
  • 20. The probe of claim 12 further comprising a microwave absorber at least partially encircling said coaxial cable for a portion of a distance between said first probe tip and an end of said magnetically permeable sleeve nearest said first probe tip.
  • 21. The probe of claim 12 wherein said source and said sink of said single ended signal comprises a ground connectable to said outer conductor.
  • 22. The probe of claim 12 further comprising a third conductor connectible to interconnect a source of a bias to a third probe tip.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional App. No. 60/812,150, filed Jun. 9, 2006.

US Referenced Citations (1132)
Number Name Date Kind
491783 Moyer Feb 1893 A
1337866 Whitacker Apr 1920 A
2142625 Zoethout Jan 1939 A
2376101 Tyzzer May 1945 A
2389668 Johnson Nov 1945 A
2545258 Cailloux Mar 1951 A
2762234 Dodd Sep 1956 A
2901696 Möllfors Aug 1959 A
2921276 Fubini Jan 1960 A
2947939 Harwig Aug 1960 A
3176091 Hanson, et al. Mar 1965 A
6176091 Hanson et al. Mar 1965 B1
3193712 Harris Jul 1965 A
3218584 Ayer Nov 1965 A
3230299 Radziekowski Jan 1966 A
3262593 Hainer Jul 1966 A
3396598 Grispo Aug 1968 A
3401126 Miller et al. Sep 1968 A
3429040 Miller Feb 1969 A
3445770 Harmon May 1969 A
3484679 Hodgson et al. Dec 1969 A
3541222 Parks et al. Nov 1970 A
3561280 MacPhee et al. Feb 1971 A
3573617 Randolph et al. Apr 1971 A
3596228 Reed et al. Jul 1971 A
3609539 Gunthert Sep 1971 A
3611199 Safran Oct 1971 A
3619780 Hoeks Nov 1971 A
3622915 Davo Nov 1971 A
3634807 Grobe et al. Jan 1972 A
3648169 Wiesler Mar 1972 A
3654585 Wickersham Apr 1972 A
3662318 Decuyper May 1972 A
3680037 Nellis et al. Jul 1972 A
3686624 Napoli et al. Aug 1972 A
3700998 Lee et al. Oct 1972 A
3705379 Bogar Dec 1972 A
3710251 Hagge et al. Jan 1973 A
3714572 Ham et al. Jan 1973 A
3725829 Brown Apr 1973 A
3740900 Youmans et al. Jun 1973 A
3766470 Hay et al. Oct 1973 A
3803709 Beltz et al. Apr 1974 A
3806801 Bove Apr 1974 A
3810016 Chayka, et al. May 1974 A
3829076 Sofy Aug 1974 A
3833852 Schoch Sep 1974 A
3839672 Anderson Oct 1974 A
3849728 Evans Nov 1974 A
3858212 Tompkins et al. Dec 1974 A
3862790 Davies et al. Jan 1975 A
3866093 Kusters et al. Feb 1975 A
3867698 Beltz, et al. Feb 1975 A
3882597 Chayka, et al. May 1975 A
3930809 Evans Jan 1976 A
3936743 Roch Feb 1976 A
3952156 Lahr Apr 1976 A
3970934 Aksu Jul 1976 A
3971610 Buchoff et al. Jul 1976 A
3976959 Gaspari Aug 1976 A
3992073 Buchoff et al. Nov 1976 A
4001685 Roch Jan 1977 A
4008900 Khoshaba Feb 1977 A
4009456 Hopfer Feb 1977 A
4027935 Byrnes et al. Jun 1977 A
4035723 Kvaternik Jul 1977 A
4038599 Bove et al. Jul 1977 A
4038894 Knibbe et al. Aug 1977 A
4049252 Bell Sep 1977 A
4063195 Abrams et al. Dec 1977 A
4066943 Roch Jan 1978 A
4072576 Arwin et al. Feb 1978 A
4074201 Lennon Feb 1978 A
4093988 Scott Jun 1978 A
4099120 Aksu Jul 1978 A
4115735 Stanford Sep 1978 A
4116523 Coberly Sep 1978 A
4123706 Roch Oct 1978 A
4124787 Aamoth et al. Nov 1978 A
4135131 Larsen et al. Jan 1979 A
4151465 Lenz Apr 1979 A
4161692 Tarzwell Jul 1979 A
4177421 Thornburg Dec 1979 A
4184133 Gehle Jan 1980 A
4184729 Parks et al. Jan 1980 A
4216467 Colston Aug 1980 A
4225819 Grau et al. Sep 1980 A
4232398 Gould et al. Nov 1980 A
4251772 Worsham et al. Feb 1981 A
4275446 Blaess Jun 1981 A
4277741 Faxvog et al. Jul 1981 A
4280112 Eisenhart Jul 1981 A
4284033 del Rio Aug 1981 A
4284682 Tshirch et al. Aug 1981 A
4287473 Sawyer Sep 1981 A
4302146 Finlayson et al. Nov 1981 A
4306235 Christmann Dec 1981 A
4312117 Robillard et al. Jan 1982 A
4327180 Chen Apr 1982 A
4330783 Toia May 1982 A
4340860 Teeple, Jr. Jul 1982 A
4346355 Tsukii Aug 1982 A
4357575 Uren et al. Nov 1982 A
4375631 Goldberg Mar 1983 A
4376920 Smith Mar 1983 A
4383217 Shiell May 1983 A
4401945 Juengel Aug 1983 A
4425395 Negishi et al. Jan 1984 A
4453142 Murphy Jun 1984 A
4468629 Choma, Jr. Aug 1984 A
4476363 Berggren et al. Oct 1984 A
4480223 Aigo Oct 1984 A
4487996 Rabinowitz et al. Dec 1984 A
4491783 Sawayama et al. Jan 1985 A
4502028 Leake Feb 1985 A
4515133 Roman May 1985 A
4515439 Esswein May 1985 A
4520314 Asch et al. May 1985 A
4528504 Thornton, Jr. et al. Jul 1985 A
4531474 Inuta Jul 1985 A
4551747 Gilbert et al. Nov 1985 A
4552033 Marzhauser Nov 1985 A
4553111 Barrow Nov 1985 A
4558609 Kim Dec 1985 A
4563640 Hasegawa Jan 1986 A
4567321 Harayama Jan 1986 A
4567436 Koch Jan 1986 A
4568890 Bates Feb 1986 A
4581679 Smolley Apr 1986 A
4588950 Henley May 1986 A
4589815 Smith May 1986 A
4593243 Lao et al. Jun 1986 A
4600907 Grellman et al. Jul 1986 A
4621169 Petinelli et al. Nov 1986 A
4626618 Takaoka et al. Dec 1986 A
4626805 Jones Dec 1986 A
4636722 Ardezzone Jan 1987 A
4636772 Yasunaga Jan 1987 A
4641659 Sepponen Feb 1987 A
4642417 Ruthrof et al. Feb 1987 A
4646005 Ryan Feb 1987 A
4649339 Grangroth et al. Mar 1987 A
4651115 Wu Mar 1987 A
4652082 Warner Mar 1987 A
4653174 Gilder et al. Mar 1987 A
4663840 Ubbens et al. May 1987 A
4669805 Kosugi et al. Jun 1987 A
4673839 Veenendaal Jun 1987 A
4684883 Ackerman et al. Aug 1987 A
4684884 Soderlund Aug 1987 A
4685150 Maier Aug 1987 A
4691163 Blass et al. Sep 1987 A
4696544 Costella Sep 1987 A
4697143 Lockwood et al. Sep 1987 A
4705447 Smith Nov 1987 A
4706050 Andrews Nov 1987 A
4707657 Bøegh-Petersen Nov 1987 A
4711563 Lass Dec 1987 A
4713347 Mitchell et al. Dec 1987 A
4714873 McPherson et al. Dec 1987 A
4725793 Igarashi Feb 1988 A
4727319 Shahriary Feb 1988 A
4727391 Tajima et al. Feb 1988 A
4727637 Buckwitz et al. Mar 1988 A
4734641 Byrd, Jr. et al. Mar 1988 A
4739259 Hadwin et al. Apr 1988 A
4740764 Gerlack Apr 1988 A
4742571 Letron May 1988 A
4744041 Strunk et al. May 1988 A
4746857 Sakai et al. May 1988 A
4749942 Sang et al. Jun 1988 A
4754239 Sedivec Jun 1988 A
4755742 Mallory et al. Jul 1988 A
4755746 Mallory et al. Jul 1988 A
4755747 Sato Jul 1988 A
4755872 Esrig et al. Jul 1988 A
4755874 Esrig et al. Jul 1988 A
4757255 Margozzi Jul 1988 A
4764723 Strid Aug 1988 A
4766384 Kleinberg et al. Aug 1988 A
4772846 Reeds Sep 1988 A
4780670 Cherry Oct 1988 A
4783625 Harry et al. Nov 1988 A
4788851 Brault Dec 1988 A
4791363 Logan Dec 1988 A
4793814 Zifcak et al. Dec 1988 A
4795962 Yanagawa et al. Jan 1989 A
4805627 Klingenbeck et al. Feb 1989 A
4810981 Herstein Mar 1989 A
4812754 Tracy et al. Mar 1989 A
4818059 Kakii et al. Apr 1989 A
4827211 Strid et al. May 1989 A
4831494 Arnold et al. May 1989 A
4835495 Simonutti May 1989 A
4837507 Hechtman Jun 1989 A
4839587 Flatley et al. Jun 1989 A
4849689 Gleason et al. Jul 1989 A
4851767 Halbout et al. Jul 1989 A
4853624 Rabjohn Aug 1989 A
4853627 Gleason et al. Aug 1989 A
4858160 Strid et al. Aug 1989 A
4859989 McPherson Aug 1989 A
4864227 Sato Sep 1989 A
4871883 Guiol Oct 1989 A
4871964 Boll et al. Oct 1989 A
4888550 Reid Dec 1989 A
4891584 Kamieniecki et al. Jan 1990 A
4893914 Hancock et al. Jan 1990 A
4894612 Drake et al. Jan 1990 A
4899126 Yamada Feb 1990 A
4899998 Feramachi Feb 1990 A
4901012 Gloanec et al. Feb 1990 A
4904933 Snyder et al. Feb 1990 A
4904935 Calma et al. Feb 1990 A
4906920 Huff et al. Mar 1990 A
4908570 Gupta et al. Mar 1990 A
4912399 Greub et al. Mar 1990 A
4916002 Carver Apr 1990 A
4916398 Rath Apr 1990 A
4918373 Newberg Apr 1990 A
4918383 Huff et al. Apr 1990 A
4922128 Dhong et al. May 1990 A
4922186 Tsuchiya et al. May 1990 A
4922912 Watanabe May 1990 A
4926172 Gorsek May 1990 A
4929893 Sato et al. May 1990 A
4965514 Herrick Oct 1990 A
4970386 Buck Nov 1990 A
4972073 Lessing Nov 1990 A
4975638 Evans et al. Dec 1990 A
4980637 Huff et al. Dec 1990 A
4980638 Dermon et al. Dec 1990 A
4983910 Majidi-Ahy et al. Jan 1991 A
4987100 McBride et al. Jan 1991 A
4988062 London Jan 1991 A
4991290 MacKay Feb 1991 A
4998062 Ikeda Mar 1991 A
4998063 Miller Mar 1991 A
5001423 Abrami Mar 1991 A
5003253 Majidi-Ahy et al. Mar 1991 A
5007163 Pope et al. Apr 1991 A
5012186 Gleason Apr 1991 A
5020219 Leedy Jun 1991 A
5021186 Ota et al. Jun 1991 A
5030907 Yih et al. Jul 1991 A
5041782 Marzan Aug 1991 A
5045781 Gleason et al. Sep 1991 A
5059898 Barsotti et al. Oct 1991 A
5061192 Chapin et al. Oct 1991 A
5061823 Carroll Oct 1991 A
5066357 Smyth, Jr. et al. Nov 1991 A
5069628 Crumly Dec 1991 A
5082627 Stanbro Jan 1992 A
5084671 Miyata et al. Jan 1992 A
5089774 Nakano Feb 1992 A
5091692 Ohno et al. Feb 1992 A
5091732 Mileski et al. Feb 1992 A
5095891 Reitter Mar 1992 A
5097101 Trobough Mar 1992 A
5097207 Blanz Mar 1992 A
5101453 Rumbaugh Mar 1992 A
5107076 Bullock et al. Apr 1992 A
5116180 Fung et al. May 1992 A
5126286 Chance Jun 1992 A
5126696 Grote et al. Jun 1992 A
5128612 Aton et al. Jul 1992 A
5133119 Afshari et al. Jul 1992 A
5134365 Okubo et al. Jul 1992 A
5136237 Smith et al. Aug 1992 A
5138289 McGrath Aug 1992 A
5142224 Smith et al. Aug 1992 A
5145552 Yoshizawa et al. Sep 1992 A
5148131 Amboss et al. Sep 1992 A
5159264 Anderson Oct 1992 A
5159267 Anderson Oct 1992 A
5159752 Mahant-Shetti et al. Nov 1992 A
5160883 Blanz Nov 1992 A
5164319 Hafeman et al. Nov 1992 A
5166606 Blanz Nov 1992 A
5170930 Dolbear et al. Dec 1992 A
5172049 Kiyokawa et al. Dec 1992 A
5172050 Swapp Dec 1992 A
5172051 Zamborelli Dec 1992 A
5177438 Littlebury et al. Jan 1993 A
5180977 Huff Jan 1993 A
5187443 Bereskin Feb 1993 A
5198752 Miyata et al. Mar 1993 A
5198753 Hamburgen Mar 1993 A
5202558 Barker Apr 1993 A
5202648 McCandless Apr 1993 A
5207585 Byrnes et al. May 1993 A
5214243 Johnson May 1993 A
5214374 St. Onge May 1993 A
5225037 Elder et al. Jul 1993 A
5227730 King et al. Jul 1993 A
5232789 Platz et al. Aug 1993 A
5233197 Bowman et al. Aug 1993 A
5233306 Misra Aug 1993 A
5245292 Milesky et al. Sep 1993 A
5266889 Harwood et al. Nov 1993 A
5266963 Carter Nov 1993 A
5267088 Nomura Nov 1993 A
5270664 McMurty et al. Dec 1993 A
5274336 Crook et al. Dec 1993 A
5280156 Niori et al. Jan 1994 A
5281364 Stirling et al. Jan 1994 A
5289117 Van Loan et al. Feb 1994 A
5293175 Hemmie et al. Mar 1994 A
5298972 Heffner Mar 1994 A
5304924 Yamano et al. Apr 1994 A
5308250 Walz May 1994 A
5313157 Pasiecznik, Jr. May 1994 A
5315237 Iwakura et al. May 1994 A
5316435 Mozingo May 1994 A
5317656 Moslehi et al. May 1994 A
5321352 Takebuchi Jun 1994 A
5321453 Mori et al. Jun 1994 A
5326412 Schreiber et al. Jul 1994 A
5334931 Clarke et al. Aug 1994 A
5347204 Gregory et al. Sep 1994 A
5355079 Evans et al. Oct 1994 A
5357211 Bryson et al. Oct 1994 A
5360312 Mozingo Nov 1994 A
5361049 Rubin et al. Nov 1994 A
5363050 Guo et al. Nov 1994 A
5367165 Toda et al. Nov 1994 A
5369368 Kassen et al. Nov 1994 A
5371654 Beaman et al. Dec 1994 A
5373231 Boll et al. Dec 1994 A
5374938 Hatazawa et al. Dec 1994 A
5376790 Linker et al. Dec 1994 A
5383787 Switky et al. Jan 1995 A
5389885 Swart Feb 1995 A
5395253 Crumly Mar 1995 A
5397855 Ferlier Mar 1995 A
5404111 Mori et al. Apr 1995 A
5408188 Katoh Apr 1995 A
5408189 Swart et al. Apr 1995 A
5412330 Ravel et al. May 1995 A
5412866 Woith et al. May 1995 A
5414565 Sullivan et al. May 1995 A
5422574 Kister Jun 1995 A
5430813 Anderson et al. Jul 1995 A
5441690 Ayala-Esquilin et al. Aug 1995 A
5451884 Sauerland Sep 1995 A
5453404 Leedy Sep 1995 A
5457398 Schwindt et al. Oct 1995 A
5463324 Wardwell et al. Oct 1995 A
5467024 Swapp Nov 1995 A
5469324 Henderson et al. Nov 1995 A
5471185 Shea et al. Nov 1995 A
5475316 Hurley et al. Dec 1995 A
5476211 Khandros Dec 1995 A
5477011 Singles et al. Dec 1995 A
5478748 Akins, Jr. et al. Dec 1995 A
5479108 Cheng Dec 1995 A
5479109 Lau et al. Dec 1995 A
5481196 Nosov Jan 1996 A
5481936 Yanagisawa Jan 1996 A
5487999 Farnworth Jan 1996 A
5488954 Sleva et al. Feb 1996 A
5491425 Watanabe et al. Feb 1996 A
5493070 Habu Feb 1996 A
5493236 Ishii et al. Feb 1996 A
5500606 Holmes Mar 1996 A
5505150 James et al. Apr 1996 A
5506498 Anderson et al. Apr 1996 A
5506515 Godshalk et al. Apr 1996 A
5507652 Wardwell Apr 1996 A
5510792 Ono et al. Apr 1996 A
5511010 Burns Apr 1996 A
5512835 Rivera et al. Apr 1996 A
5517126 Yamaguchi May 1996 A
5521518 Higgins May 1996 A
5521522 Abe et al. May 1996 A
5523694 Cole, Jr. Jun 1996 A
5528158 Sinsheimer et al. Jun 1996 A
5530372 Lee et al. Jun 1996 A
5531022 Beaman et al. Jul 1996 A
5532608 Behfar-Rad et al. Jul 1996 A
5537372 Albrecht et al. Jul 1996 A
5539323 Davis, Jr. Jul 1996 A
5539676 Yamaguchi Jul 1996 A
5550481 Holmes et al. Aug 1996 A
5561378 Bockelman et al. Oct 1996 A
5565788 Burr et al. Oct 1996 A
5565881 Phillips et al. Oct 1996 A
5569591 Kell et al. Oct 1996 A
5571324 Sago et al. Nov 1996 A
5578932 Adamian Nov 1996 A
5583445 Mullen Dec 1996 A
5584120 Roberts Dec 1996 A
5584608 Gillespie Dec 1996 A
5589781 Higgens et al. Dec 1996 A
5594358 Ishikawa et al. Jan 1997 A
5600256 Woith et al. Feb 1997 A
5601740 Eldridge et al. Feb 1997 A
5610529 Schwindt Mar 1997 A
5611008 Yap Mar 1997 A
5617035 Swapp Apr 1997 A
5621333 Long et al. Apr 1997 A
5621400 Corbi Apr 1997 A
5623213 Liu et al. Apr 1997 A
5623214 Pasiecznik, Jr. Apr 1997 A
5627473 Takami May 1997 A
5628057 Phillips et al. May 1997 A
5629838 Knight et al. May 1997 A
5631571 Spaziani et al. May 1997 A
5633780 Cronin May 1997 A
5635846 Beaman et al. Jun 1997 A
5642298 Mallory et al. Jun 1997 A
5644248 Fujimoto Jul 1997 A
5653939 Hollis et al. Aug 1997 A
5656942 Watts et al. Aug 1997 A
5659421 Rahmel et al. Aug 1997 A
5666063 Abercrombie et al. Sep 1997 A
5669316 Faz et al. Sep 1997 A
5670322 Eggers et al. Sep 1997 A
5670888 Cheng Sep 1997 A
5672816 Park et al. Sep 1997 A
5675499 Lee et al. Oct 1997 A
5675932 Mauney Oct 1997 A
5676360 Boucher et al. Oct 1997 A
5678210 Hannah Oct 1997 A
5685232 Inoue Nov 1997 A
5686317 Akram et al. Nov 1997 A
5686960 Sussman et al. Nov 1997 A
5688618 Hulderman et al. Nov 1997 A
5700844 Hederick et al. Dec 1997 A
5704355 Bridges Jan 1998 A
5715819 Svenson et al. Feb 1998 A
5720098 Kister Feb 1998 A
5723347 Kirano et al. Mar 1998 A
5726211 Hedrick et al. Mar 1998 A
5728091 Payne et al. Mar 1998 A
5729150 Schwindt Mar 1998 A
5731920 Katsuragawa Mar 1998 A
5742174 Kister et al. Apr 1998 A
5744971 Chan et al. Apr 1998 A
5748506 Bockelman May 1998 A
5751153 Bockelman May 1998 A
5751252 Phillips May 1998 A
5756021 Bedrick et al. May 1998 A
5756908 Knollmeyer et al. May 1998 A
5764070 Pedder Jun 1998 A
5767690 Fujimoto Jun 1998 A
5772451 Dozier, II et al. Jun 1998 A
5773780 Eldridge et al. Jun 1998 A
5777485 Tanaka et al. Jul 1998 A
5785538 Beaman et al. Jul 1998 A
5792668 Fuller et al. Aug 1998 A
5793213 Bockelman et al. Aug 1998 A
5794133 Kashima Aug 1998 A
5803607 Jones et al. Sep 1998 A
5804483 Nakajima et al. Sep 1998 A
5804607 Hedrick et al. Sep 1998 A
5804982 Lo et al. Sep 1998 A
5804983 Nakajima et al. Sep 1998 A
5806181 Khandros et al. Sep 1998 A
5807107 Bright et al. Sep 1998 A
5808874 Smith Sep 1998 A
5810607 Shih et al. Sep 1998 A
5811751 Leona et al. Sep 1998 A
5811982 Beaman et al. Sep 1998 A
5813847 Eroglu et al. Sep 1998 A
5814847 Shihadeh et al. Sep 1998 A
5820014 Dozier, II et al. Oct 1998 A
5821763 Beaman et al. Oct 1998 A
5824494 Feldberg Oct 1998 A
5829128 Eldridge et al. Nov 1998 A
5829437 Bridges Nov 1998 A
5831442 Heigl Nov 1998 A
5832601 Eldridge et al. Nov 1998 A
5833601 Swartz et al. Nov 1998 A
5838160 Beaman et al. Nov 1998 A
5841288 Meaney et al. Nov 1998 A
5841342 Hegmann et al. Nov 1998 A
5846708 Hollis et al. Dec 1998 A
5847569 Ho et al. Dec 1998 A
5848500 Kirk Dec 1998 A
5852232 Samsavar et al. Dec 1998 A
5852871 Khandros Dec 1998 A
5854608 Leisten Dec 1998 A
5864946 Eldridge et al. Feb 1999 A
5867073 Weinreb et al. Feb 1999 A
5869326 Hofmann Feb 1999 A
5869974 Akram et al. Feb 1999 A
5874361 Collins et al. Feb 1999 A
5876082 Kempf et al. Mar 1999 A
5877452 McConnell Mar 1999 A
5878486 Eldridge et al. Mar 1999 A
5879289 Yarush et al. Mar 1999 A
5883522 O'Boyle Mar 1999 A
5883523 Ferland et al. Mar 1999 A
5884398 Eldridge et al. Mar 1999 A
5888075 Hasegawa et al. Mar 1999 A
5892539 Colvin Apr 1999 A
5896038 Budnaitis et al. Apr 1999 A
5900737 Graham et al. May 1999 A
5900738 Khandros et al. May 1999 A
5903143 Mochizuki et al. May 1999 A
5905421 Oldfield May 1999 A
5910727 Fujihara et al. Jun 1999 A
5912046 Eldridge et al. Jun 1999 A
5914613 Gleason et al. Jun 1999 A
5914614 Beaman et al. Jun 1999 A
5916689 Collins et al. Jun 1999 A
5917707 Khandros et al. Jun 1999 A
5923180 Botka et al. Jul 1999 A
5926029 Ference et al. Jul 1999 A
5926951 Khandros et al. Jul 1999 A
5940965 Uhling et al. Aug 1999 A
5944093 Viswanath Aug 1999 A
5945836 Sayre et al. Aug 1999 A
5949383 Hayes et al. Sep 1999 A
5949579 Baker Sep 1999 A
5959461 Brown et al. Sep 1999 A
5963364 Leong et al. Oct 1999 A
5966645 Davis Oct 1999 A
5970429 Martin Oct 1999 A
5973504 Chong Oct 1999 A
5974662 Eldridge et al. Nov 1999 A
5977783 Takayama et al. Nov 1999 A
5981268 Kovacs et al. Nov 1999 A
5982166 Mautz Nov 1999 A
5983493 Eldridge et al. Nov 1999 A
5993611 Moroney, III et al. Nov 1999 A
5994152 Khandros et al. Nov 1999 A
5995914 Cabot Nov 1999 A
5996102 Haulin Nov 1999 A
5998228 Eldridge et al. Dec 1999 A
5998768 Hunter et al. Dec 1999 A
5998864 Khandros et al. Dec 1999 A
5999268 Yonezawa et al. Dec 1999 A
6001760 Katsuda et al. Dec 1999 A
6002426 Back et al. Dec 1999 A
6006002 Motok et al. Dec 1999 A
6013586 McGhee et al. Jan 2000 A
6019612 Hasegawa et al. Feb 2000 A
6023103 Chang et al. Feb 2000 A
6028435 Nikawa Feb 2000 A
6029344 Khandros et al. Feb 2000 A
6031383 Streib et al. Feb 2000 A
6031384 Streib et al. Feb 2000 A
6032356 Eldridge et al. Mar 2000 A
6032714 Fenton Mar 2000 A
6033935 Dozier, II et al. Mar 2000 A
6034533 Tervo et al. Mar 2000 A
6037785 Higgins Mar 2000 A
6040739 Wedeen et al. Mar 2000 A
6042712 Mathieu Mar 2000 A
6043563 Eldridge et al. Mar 2000 A
6046599 Long et al. Apr 2000 A
6049216 Yang et al. Apr 2000 A
6049976 Khandros Apr 2000 A
6050829 Eldridge et al. Apr 2000 A
6051422 Kovacs et al. Apr 2000 A
6052653 Mazur et al. Apr 2000 A
6054651 Fogel et al. Apr 2000 A
6054869 Hutton et al. Apr 2000 A
6059982 Palagonia et al. May 2000 A
6060888 Blackham et al. May 2000 A
6060892 Yamagata May 2000 A
6061589 Bridges et al. May 2000 A
6062879 Beaman et al. May 2000 A
6064213 Khandros et al. May 2000 A
6064217 Smith May 2000 A
6064218 Godfrey et al. May 2000 A
6066911 Lindemann et al. May 2000 A
6071009 Clyne Jun 2000 A
6078183 Cole, Jr. Jun 2000 A
6078500 Beaman et al. Jun 2000 A
6090261 Mathieu Jul 2000 A
6091236 Piety et al. Jul 2000 A
6091255 Godfrey Jul 2000 A
6091256 Long et al. Jul 2000 A
6096561 Kaplan et al. Aug 2000 A
6096567 Kaplan et al. Aug 2000 A
6100815 Pailthorp Aug 2000 A
6104201 Beaman et al. Aug 2000 A
6104206 Verkull Aug 2000 A
6110823 Eldridge et al. Aug 2000 A
6114864 Soejima et al. Sep 2000 A
6114865 Lagowski et al. Sep 2000 A
6118287 Boll et al. Sep 2000 A
6118894 Schwartz et al. Sep 2000 A
6121836 Vallencourt Sep 2000 A
6124725 Sato Sep 2000 A
6127831 Khoury et al. Oct 2000 A
6130536 Powell et al. Oct 2000 A
6137302 Schwindt Oct 2000 A
6144212 Mizuta Nov 2000 A
6146908 Falque et al. Nov 2000 A
6147502 Fryer et al. Nov 2000 A
6147851 Anderson Nov 2000 A
6150186 Chen et al. Nov 2000 A
6160407 Nikawa Dec 2000 A
6166553 Sinsheimer Dec 2000 A
6168974 Chang et al. Jan 2001 B1
6169410 Grace et al. Jan 2001 B1
6172337 Johnsgard et al. Jan 2001 B1
6174744 Watanabe et al. Jan 2001 B1
6175228 Zamborelli et al. Jan 2001 B1
6181144 Hembree et al. Jan 2001 B1
6181149 Godfrey et al. Jan 2001 B1
6181297 Leisten Jan 2001 B1
6181416 Falk Jan 2001 B1
6184053 Eldridge et al. Feb 2001 B1
6184587 Khandros et al. Feb 2001 B1
6184845 Leisten et al. Feb 2001 B1
6191596 Abiko Feb 2001 B1
6194720 Li et al. Feb 2001 B1
6201453 Chan et al. Mar 2001 B1
6206273 Beaman et al. Mar 2001 B1
6208225 Miller Mar 2001 B1
RE37130 Fiori, Jr. Apr 2001 E
6211663 Moulthrop et al. Apr 2001 B1
6211837 Crouch et al. Apr 2001 B1
6215196 Eldridge et al. Apr 2001 B1
6215295 Smith, III Apr 2001 B1
6215670 Khandros Apr 2001 B1
6218910 Miller Apr 2001 B1
6222031 Wakabayashi et al. Apr 2001 B1
6222970 Wach et al. Apr 2001 B1
6229327 Boll et al. May 2001 B1
6232149 Dozier, II et al. May 2001 B1
6232787 Lo et al. May 2001 B1
6232788 Schwindt et al. May 2001 B1
6232789 Schwindt May 2001 B1
6233613 Walker et al. May 2001 B1
6236223 Brady et al. May 2001 B1
6242803 Khandros et al. Jun 2001 B1
6242929 Mizuta Jun 2001 B1
6245692 Pearce et al. Jun 2001 B1
6246247 Eldridge et al. Jun 2001 B1
6251595 Gordon et al. Jun 2001 B1
6255126 Mathiue et al. Jul 2001 B1
6256882 Gleason et al. Jul 2001 B1
6257564 Avneri et al. Jul 2001 B1
6257565 Avneri et al. Jul 2001 B1
6259260 Smith et al. Jul 2001 B1
6265950 Schmidt et al. Jul 2001 B1
6268015 Mathieu et al. Jul 2001 B1
6268016 Bhatt et al. Jul 2001 B1
6271673 Furuta et al. Aug 2001 B1
6274823 Khandros et al. Aug 2001 B1
6275043 Muhlberger et al. Aug 2001 B1
6275738 Kasevich et al. Aug 2001 B1
6278051 Peabody Aug 2001 B1
6278411 Ohlsson et al. Aug 2001 B1
6281691 Matsunaga et al. Aug 2001 B1
6286208 Shih et al. Sep 2001 B1
6292760 Burns Sep 2001 B1
6295729 Beaman et al. Oct 2001 B1
6300775 Peach et al. Oct 2001 B1
6300780 Beaman et al. Oct 2001 B1
6307161 Grube et al. Oct 2001 B1
6307363 Anderson Oct 2001 B1
6307672 DeNure Oct 2001 B1
6310483 Taura et al. Oct 2001 B1
6320372 Keller Nov 2001 B1
6320396 Nikawa Nov 2001 B1
6327034 Hoover et al. Dec 2001 B1
6329827 Beaman et al. Dec 2001 B1
6330164 Khandros et al. Dec 2001 B1
6332270 Beaman et al. Dec 2001 B2
6334247 Beaman et al. Jan 2002 B1
6335625 Bryant et al. Jan 2002 B1
6339338 Eldridge et al. Jan 2002 B1
6340568 Hefti Jan 2002 B2
6340895 Uher et al. Jan 2002 B1
6351885 Suzuki et al. Mar 2002 B2
6352454 Kim et al. Mar 2002 B1
6359456 Hembree et al. Mar 2002 B1
6362792 Sawamura et al. Mar 2002 B1
6366247 Sawamura et al. Apr 2002 B1
6369776 Leisten et al. Apr 2002 B1
6376258 Hefti Apr 2002 B2
6384614 Hager et al. May 2002 B1
6384615 Schwindt May 2002 B2
6388455 Kamieniecki et al. May 2002 B1
6395480 Hefti May 2002 B1
6396296 Tarter et al. May 2002 B1
6396298 Young et al. May 2002 B1
6400168 Matsunaga et al. Jun 2002 B2
6404213 Noda Jun 2002 B2
6407542 Conte Jun 2002 B1
6407562 Whiteman Jun 2002 B1
6409724 Penny et al. Jun 2002 B1
6414478 Suzuki Jul 2002 B1
6415858 Getchel et al. Jul 2002 B1
6418009 Brunette Jul 2002 B1
6420722 Moore et al. Jul 2002 B2
6424316 Leisten et al. Jul 2002 B1
6429029 Eldridge et al. Aug 2002 B1
6441315 Eldridge et al. Aug 2002 B1
6442831 Khandros et al. Sep 2002 B1
6447339 Reed et al. Sep 2002 B1
6448788 Meaney et al. Sep 2002 B1
6448865 Miller Sep 2002 B1
6452406 Beaman et al. Sep 2002 B1
6452411 Miller et al. Sep 2002 B1
6456099 Eldridge et al. Sep 2002 B1
6456103 Eldridge et al. Sep 2002 B1
6459343 Miller Oct 2002 B1
6459739 Vitenberg Oct 2002 B1
6468098 Eldridge Oct 2002 B1
6475822 Eldridge Nov 2002 B2
6476333 Khandros et al. Nov 2002 B1
6476442 Williams et al. Nov 2002 B1
6476630 Whitten et al. Nov 2002 B1
6479308 Eldridge Nov 2002 B1
6480013 Nayler et al. Nov 2002 B1
6480978 Roy et al. Nov 2002 B1
6481939 Gillespie et al. Nov 2002 B1
6482013 Eldridge et al. Nov 2002 B2
6483327 Bruce et al. Nov 2002 B1
6488405 Eppes et al. Dec 2002 B1
6490471 Svenson et al. Dec 2002 B2
6491968 Mathieu et al. Dec 2002 B1
6496024 Schwindt Dec 2002 B2
6499121 Roy et al. Dec 2002 B1
6501343 Miller Dec 2002 B2
6509751 Mathieu et al. Jan 2003 B1
6512482 Nelson et al. Jan 2003 B1
6520778 Eldridge et al. Feb 2003 B1
6525555 Khandros et al. Feb 2003 B1
6526655 Beaman et al. Mar 2003 B2
6528984 Beaman et al. Mar 2003 B2
6528993 Shin et al. Mar 2003 B1
6529844 Kapetanic et al. Mar 2003 B1
6534856 Dozier, II et al. Mar 2003 B1
6538214 Khandros Mar 2003 B2
6538538 Hreish et al. Mar 2003 B2
6539531 Miller et al. Mar 2003 B2
6548311 Knoll Apr 2003 B1
6549022 Cole, Jr. et al. Apr 2003 B1
6549106 Martin Apr 2003 B2
6551884 Masuoka Apr 2003 B2
6559671 Miller et al. May 2003 B2
6566079 Hefti May 2003 B2
6572608 Lee et al. Jun 2003 B1
6573702 Marcuse et al. Jun 2003 B2
6578264 Gleason et al. Jun 2003 B1
6580283 Carbone et al. Jun 2003 B1
6582979 Coccioli et al. Jun 2003 B2
6587327 Devoe et al. Jul 2003 B1
6597187 Eldridge et al. Jul 2003 B2
6603322 Boll et al. Aug 2003 B1
6603323 Miller et al. Aug 2003 B1
6603324 Eldridge et al. Aug 2003 B2
6605941 Abe Aug 2003 B2
6605951 Cowan Aug 2003 B1
6605955 Costello et al. Aug 2003 B1
6606014 Miller Aug 2003 B2
6606575 Miller Aug 2003 B2
6608494 Bruce et al. Aug 2003 B1
6611417 Chen Aug 2003 B2
6615485 Eldridge et al. Sep 2003 B2
6616966 Mathieu et al. Sep 2003 B2
6617862 Bruce Sep 2003 B1
6617866 Ickes Sep 2003 B1
6621082 Morita et al. Sep 2003 B2
6621260 Eldridge et al. Sep 2003 B2
6622103 Miller Sep 2003 B1
6624648 Eldridge et al. Sep 2003 B2
6627461 Chapman et al. Sep 2003 B2
6627483 Ondricek et al. Sep 2003 B2
6627980 Eldridge Sep 2003 B2
6628503 Sogard Sep 2003 B2
6628980 Atalar et al. Sep 2003 B2
6633174 Satya et al. Oct 2003 B1
6636182 Mehltretter Oct 2003 B2
6639461 Tam et al. Oct 2003 B1
6640415 Eslamy et al. Nov 2003 B2
6640432 Mathieu et al. Nov 2003 B1
6642625 Dozier, II et al. Nov 2003 B2
6643597 Dunsmore Nov 2003 B1
6644982 Ondricek et al. Nov 2003 B1
6646520 Miller Nov 2003 B2
6653903 Leich et al. Nov 2003 B2
6655023 Eldridge et al. Dec 2003 B1
6657455 Eldridge et al. Dec 2003 B2
6657601 McLean Dec 2003 B2
6661316 Hreish et al. Dec 2003 B2
6664628 Khandros et al. Dec 2003 B2
6669489 Dozier, II et al. Dec 2003 B1
6672875 Mathieu et al. Jan 2004 B1
6677744 Long Jan 2004 B1
6678850 Roy et al. Jan 2004 B2
6678876 Stevens et al. Jan 2004 B2
6680659 Miller Jan 2004 B2
6685817 Mathieu Feb 2004 B1
6686754 Miller Feb 2004 B2
6690185 Khandros et al. Feb 2004 B1
6701265 Hill et al. Mar 2004 B2
6701612 Khandros et al. Mar 2004 B2
6707548 Kreimer et al. Mar 2004 B2
6708403 Beaman et al. Mar 2004 B2
6710265 Hill et al. Mar 2004 B2
6710798 Hershel et al. Mar 2004 B1
6713374 Eldridge et al. Mar 2004 B2
6714828 Eldridge et al. Mar 2004 B2
6717426 Iwasaki Apr 2004 B2
6720501 Henson Apr 2004 B1
6722032 Beaman et al. Apr 2004 B2
6724205 Hayden et al. Apr 2004 B1
6724928 Davis Apr 2004 B1
6727579 Eldridge et al. Apr 2004 B1
6727580 Eldridge et al. Apr 2004 B1
6727716 Sharif Apr 2004 B1
6729019 Grube et al. May 2004 B2
6731804 Carrieri et al. May 2004 B1
6734687 Ishitani et al. May 2004 B1
6737920 Jen et al. May 2004 B2
6741085 Khandros et al. May 2004 B1
6741092 Eldridge et al. May 2004 B2
6741129 Corsi et al. May 2004 B1
6744268 Hollman Jun 2004 B2
6753679 Kwong et al. Jun 2004 B1
6753699 Stockstad Jun 2004 B2
6759311 Eldridge et al. Jul 2004 B2
6759859 Deng et al. Jul 2004 B2
6764869 Eldridge et al. Jul 2004 B2
6768328 Self et al. Jul 2004 B2
6770955 Coccioli et al. Aug 2004 B1
6771806 Satya et al. Aug 2004 B1
6777319 Grube et al. Aug 2004 B2
6778140 Yeh Aug 2004 B1
6778406 Eldridge et al. Aug 2004 B2
6780001 Eldridge et al. Aug 2004 B2
6784674 Miller Aug 2004 B2
6784677 Miller Aug 2004 B2
6784679 Sweet et al. Aug 2004 B2
6788093 Aitren et al. Sep 2004 B2
6788094 Khandros et al. Sep 2004 B2
6791176 Mathieu et al. Sep 2004 B2
6794888 Kawaguchi et al. Sep 2004 B2
6794934 Betti-Berutto et al. Sep 2004 B2
6794950 Du Toit et al. Sep 2004 B2
6798225 Miller Sep 2004 B2
6798226 Altmann et al. Sep 2004 B2
6806724 Hayden et al. Oct 2004 B2
6806836 Ogawa et al. Oct 2004 B2
6807734 Eldridge et al. Oct 2004 B2
6809533 Anlage et al. Oct 2004 B1
6811406 Grube Nov 2004 B2
6812691 Miller Nov 2004 B2
6812718 Chong et al. Nov 2004 B1
6815963 Gleason et al. Nov 2004 B2
6816031 Miller Nov 2004 B1
6816840 Goodwin, III Nov 2004 B1
6817052 Grube Nov 2004 B2
6818840 Khandros Nov 2004 B2
6822463 Jacobs Nov 2004 B1
6822529 Miller Nov 2004 B2
6825052 Eldridge et al. Nov 2004 B2
6825422 Eldridge et al. Nov 2004 B2
6827582 Mathieu et al. Dec 2004 B2
6827584 Mathieu et al. Dec 2004 B2
6835898 Eldridge et al. Dec 2004 B2
6836962 Khandros et al. Jan 2005 B2
6838885 Kamitani Jan 2005 B2
6838893 Khandros et al. Jan 2005 B2
6839964 Henson Jan 2005 B2
6845491 Miller et al. Jan 2005 B2
6850082 Schwindt Feb 2005 B2
6856129 Thomas et al. Feb 2005 B2
6856150 Sporck et al. Feb 2005 B2
6862727 Stevens Mar 2005 B2
6864105 Grube et al. Mar 2005 B2
6864694 McTigue Mar 2005 B2
6870359 Sekel Mar 2005 B1
6870381 Grube Mar 2005 B2
6882239 Miller Apr 2005 B2
6882546 Miller Apr 2005 B2
6887723 Ondricek et al. May 2005 B1
6888362 Eldridge et al. May 2005 B2
6891385 Miller May 2005 B2
6900646 Kasukabe et al. May 2005 B2
6900647 Yoshida et al. May 2005 B2
6900652 Mazur May 2005 B2
6900653 Yu et al. May 2005 B2
6902416 Feldman Jun 2005 B2
6902941 Sun Jun 2005 B2
6903563 Yoshida et al. Jun 2005 B2
6906506 Reano et al. Jun 2005 B1
6906539 Wilson et al. Jun 2005 B2
6906542 Sakagawa et al. Jun 2005 B2
6906543 Lou et al. Jun 2005 B2
6907149 Slater Jun 2005 B2
6908364 Back et al. Jun 2005 B2
6909297 Ji et al. Jun 2005 B2
6909300 Lu et al. Jun 2005 B2
6909983 Sutherland Jun 2005 B2
6910268 Miller Jun 2005 B2
6911814 Miller et al. Jun 2005 B2
6911826 Plotnikov et al. Jun 2005 B2
6911834 Mitchell et al. Jun 2005 B2
6911835 Chraft et al. Jun 2005 B2
6912468 Marin et al. Jun 2005 B2
6913468 Dozier, II et al. Jul 2005 B2
6914244 Alani Jul 2005 B2
6914427 Gifford et al. Jul 2005 B2
6914430 Hasegawa et al. Jul 2005 B2
6914580 Leisten Jul 2005 B2
6917195 Hollman Jul 2005 B2
6917210 Miller Jul 2005 B2
6917211 Yoshida et al. Jul 2005 B2
6917525 Mok et al. Jul 2005 B2
6919732 Yoshida et al. Jul 2005 B2
6922069 Jun Jul 2005 B2
6924653 Schaeffer et al. Aug 2005 B2
6924655 Kirby Aug 2005 B2
6927078 Saijo et al. Aug 2005 B2
6927079 Fyfield Aug 2005 B1
6927586 Thiessen Aug 2005 B2
6927587 Yoshioka Aug 2005 B2
6927598 Lee et al. Aug 2005 B2
6930498 Tervo et al. Aug 2005 B2
6933713 Cannon Aug 2005 B2
6933717 Dogaru et al. Aug 2005 B1
6933725 Lim et al. Aug 2005 B2
6933736 Kobayashi et al. Aug 2005 B2
6933737 Sugawara Aug 2005 B2
6937020 Munson et al. Aug 2005 B2
6937037 Eldridge et al. Aug 2005 B2
6937040 Maeda et al. Aug 2005 B2
6937042 Yoshida et al. Aug 2005 B2
6937045 Sinclair Aug 2005 B2
6937341 Woollam et al. Aug 2005 B1
6940264 Ryken, Jr. et al. Sep 2005 B2
6940283 McQueeney Sep 2005 B2
6943563 Martens Sep 2005 B2
6943571 Worledge Sep 2005 B2
6943574 Altmann et al. Sep 2005 B2
6944380 Hideo et al. Sep 2005 B1
6946375 Karavakis et al. Sep 2005 B2
6946859 Karavakis et al. Sep 2005 B2
6946860 Cheng et al. Sep 2005 B2
6946864 Gramann et al. Sep 2005 B2
6948391 Brassell et al. Sep 2005 B2
6948981 Pade Sep 2005 B2
6949942 Eldridge et al. Sep 2005 B2
6970001 Chheda et al. Nov 2005 B2
6987483 Tran Jan 2006 B2
7001785 Chen Feb 2006 B1
7002133 Beausoleil et al. Feb 2006 B2
7002363 Mathieu Feb 2006 B2
7002364 Kang et al. Feb 2006 B2
7003184 Ronnekleiv et al. Feb 2006 B2
7005842 Fink et al. Feb 2006 B2
7005868 McTigue Feb 2006 B2
7005879 Robertazzi Feb 2006 B1
7006046 Aisenbrey Feb 2006 B2
7007380 Das et al. Mar 2006 B2
7009188 Wang Mar 2006 B2
7009383 Harwood et al. Mar 2006 B2
7009415 Kobayashi et al. Mar 2006 B2
7011531 Egitto et al. Mar 2006 B2
7012425 Shoji Mar 2006 B2
7012441 Chou et al. Mar 2006 B2
7013221 Friend et al. Mar 2006 B1
7014499 Yoon Mar 2006 B2
7015455 Mitsuoka et al. Mar 2006 B2
7015689 Kasajima et al. Mar 2006 B2
7015690 Wang et al. Mar 2006 B2
7015703 Hopkins et al. Mar 2006 B2
7015707 Cherian Mar 2006 B2
7015708 Beckous et al. Mar 2006 B2
7015709 Capps et al. Mar 2006 B2
7015710 Yoshida et al. Mar 2006 B2
7015711 Rothaug et al. Mar 2006 B2
7019541 Kittrell Mar 2006 B2
7019544 Jacobs et al. Mar 2006 B1
7019701 Ohno et al. Mar 2006 B2
7020360 Satomura et al. Mar 2006 B2
7020363 Johannessen Mar 2006 B2
7022976 Santana, Jr. et al. Apr 2006 B1
7022985 Knebel et al. Apr 2006 B2
7023225 Blackwood Apr 2006 B2
7023226 Okumura et al. Apr 2006 B2
7023231 Howland, Jr. et al. Apr 2006 B2
7025628 LaMeres et al. Apr 2006 B2
7026832 Chaya et al. Apr 2006 B2
7026833 Rincon et al. Apr 2006 B2
7026834 Hwang Apr 2006 B2
7026835 Farnworth et al. Apr 2006 B2
7030328 Beerling Apr 2006 B1
7030599 Douglas Apr 2006 B2
7030827 Mahler et al. Apr 2006 B2
7032307 Matsunaga et al. Apr 2006 B2
7034553 Gilboe Apr 2006 B2
7035738 Matsumoto et al. Apr 2006 B2
7057404 Gleason et al. Jun 2006 B2
7071722 Yamada et al. Jul 2006 B2
7088981 Chang Aug 2006 B2
7096133 Martin et al. Aug 2006 B1
7161363 Gleason et al. Jan 2007 B2
7173433 Hoshi et al. Feb 2007 B2
7187188 Andrews et al. Mar 2007 B2
7188037 Hidehira Mar 2007 B2
7219416 Inoue et al. May 2007 B2
7233160 Hayden et al. Jun 2007 B2
7253646 Lou et al. Aug 2007 B2
7271603 Gleason et al. Sep 2007 B2
7276922 Miller et al. Oct 2007 B2
7315175 Cole Jan 2008 B2
7319335 Brunner et al. Jan 2008 B2
7319337 Sakata Jan 2008 B2
7323680 Chong Jan 2008 B2
7323899 Schuette et al. Jan 2008 B2
7327153 Weinraub Feb 2008 B2
7332918 Sugiyama et al. Feb 2008 B2
7332923 Schott et al. Feb 2008 B2
7342402 Kim et al. Mar 2008 B2
7403028 Campbell Jul 2008 B2
20010002794 Draving et al. Jun 2001 A1
20010009061 Gleason et al. Jul 2001 A1
20010009377 Schwindt et al. Jul 2001 A1
20010010468 Gleason et al. Aug 2001 A1
20010020283 Sakaguchi Sep 2001 A1
20010024116 Draving Sep 2001 A1
20010030549 Gleason et al. Oct 2001 A1
20010043073 Montoya Nov 2001 A1
20010044152 Burnett Nov 2001 A1
20010045511 Moore et al. Nov 2001 A1
20010054906 Fujimura Dec 2001 A1
20020005728 Babson et al. Jan 2002 A1
20020008533 Ito et al. Jan 2002 A1
20020009377 Shafer Jan 2002 A1
20020009378 Obara Jan 2002 A1
20020011859 Smith et al. Jan 2002 A1
20020011863 Takahashi et al. Jan 2002 A1
20020030480 Appen et al. Mar 2002 A1
20020050828 Seward, IV et al. May 2002 A1
20020070743 Felici et al. Jun 2002 A1
20020070745 Johnson et al. Jun 2002 A1
20020079911 Schwindt Jun 2002 A1
20020105396 Streeter et al. Aug 2002 A1
20020109088 Nara et al. Aug 2002 A1
20020118034 Laureanti Aug 2002 A1
20020149377 Hefti et al. Oct 2002 A1
20020153909 Petersen et al. Oct 2002 A1
20020163769 Brown Nov 2002 A1
20020168659 Hefti et al. Nov 2002 A1
20020176160 Suzuki et al. Nov 2002 A1
20020180466 Hiramatsu et al. Dec 2002 A1
20020197709 Van der Weide et al. Dec 2002 A1
20030010877 Landreville et al. Jan 2003 A1
20030030822 Finarov Feb 2003 A1
20030032000 Liu et al. Feb 2003 A1
20030040004 Hefti et al. Feb 2003 A1
20030057513 Leedy Mar 2003 A1
20030062915 Arnold et al. Apr 2003 A1
20030072549 Facer et al. Apr 2003 A1
20030076585 Ledley Apr 2003 A1
20030077649 Cho et al. Apr 2003 A1
20030088180 Van Veen et al. May 2003 A1
20030119057 Gascoyne et al. Jun 2003 A1
20030139662 Seidman Jul 2003 A1
20030139790 Ingle et al. Jul 2003 A1
20030155939 Lutz et al. Aug 2003 A1
20030170898 Gunderson et al. Sep 2003 A1
20030184332 Tomimatsu et al. Oct 2003 A1
20030215966 Rolda et al. Nov 2003 A1
20030234659 Zieleman Dec 2003 A1
20040015060 Samsoondar et al. Jan 2004 A1
20040021475 Ito et al. Feb 2004 A1
20040029425 Yean et al. Feb 2004 A1
20040061514 Schwindt et al. Apr 2004 A1
20040066181 Theis Apr 2004 A1
20040069776 Fagrell et al. Apr 2004 A1
20040090223 Yonezawa May 2004 A1
20040095145 Boudiaf et al. May 2004 A1
20040095641 Russum et al. May 2004 A1
20040100276 Fanton May 2004 A1
20040100297 Tanioka et al. May 2004 A1
20040108847 Stoll et al. Jun 2004 A1
20040113640 Cooper et al. Jun 2004 A1
20040130787 Thome-Forster et al. Jul 2004 A1
20040132222 Hembree et al. Jul 2004 A1
20040134899 Hiramatsu et al. Jul 2004 A1
20040140819 McTigue et al. Jul 2004 A1
20040147034 Gore et al. Jul 2004 A1
20040162689 Jamneala et al. Aug 2004 A1
20040170312 Soenksen Sep 2004 A1
20040175294 Ellison et al. Sep 2004 A1
20040186382 Modell et al. Sep 2004 A1
20040193382 Adamian et al. Sep 2004 A1
20040197771 Powers et al. Oct 2004 A1
20040199350 Blackham et al. Oct 2004 A1
20040201388 Barr Oct 2004 A1
20040207072 Hiramatsu et al. Oct 2004 A1
20040207424 Hollman Oct 2004 A1
20040239338 Johnsson et al. Dec 2004 A1
20040246004 Heuermann Dec 2004 A1
20040251922 Martens et al. Dec 2004 A1
20050024069 Hayden et al. Feb 2005 A1
20050026276 Chou Feb 2005 A1
20050030047 Adamian Feb 2005 A1
20050054029 Tomimatsu et al. Mar 2005 A1
20050062533 Vice Mar 2005 A1
20050068054 Mok et al. Mar 2005 A1
20050083130 Grilo Apr 2005 A1
20050088191 Lesher Apr 2005 A1
20050101846 Fine et al. May 2005 A1
20050116730 Hsu Jun 2005 A1
20050142033 Glezer et al. Jun 2005 A1
20050151548 Hayden et al. Jul 2005 A1
20050156675 Rohde et al. Jul 2005 A1
20050164160 Gunter et al. Jul 2005 A1
20050165316 Lowery et al. Jul 2005 A1
20050168722 Forstner et al. Aug 2005 A1
20050172703 Kley Aug 2005 A1
20050174191 Brunker et al. Aug 2005 A1
20050178980 Skidmore et al. Aug 2005 A1
20050179444 Tiemeijer Aug 2005 A1
20050195124 Puente Baliarda et al. Sep 2005 A1
20050229053 Sunter Oct 2005 A1
20050236587 Kodama et al. Oct 2005 A1
20050237102 Tanaka Oct 2005 A1
20060030060 Noguchi et al. Feb 2006 A1
20060052075 Galivanche et al. Mar 2006 A1
20060155270 Hancock et al. Jul 2006 A1
20060184041 Andrews et al. Aug 2006 A1
20060220663 Oikawa Oct 2006 A1
20060226864 Kramer Oct 2006 A1
20070024506 Hardacker Feb 2007 A1
20070030021 Cowan et al. Feb 2007 A1
20070145989 Zhu et al. Jun 2007 A1
20080111571 Smith et al. May 2008 A1
Foreign Referenced Citations (152)
Number Date Country
607 045 Nov 1978 CH
1083975 Mar 1994 CN
2951072 Jul 1981 DE
3426565 Jan 1986 DE
3637549 May 1988 DE
288234 Mar 1991 DE
4223658 Jan 1993 DE
9313420 Oct 1993 DE
19522774 Jan 1997 DE
19542955 May 1997 DE
19618717 Jan 1998 DE
19749687 May 1998 DE
29809568 Oct 1998 DE
10000324 Jul 2001 DE
20220754 May 2004 DE
0230766 Dec 1985 EP
0195520 Sep 1986 EP
0230348 Jul 1987 EP
0259163 Mar 1988 EP
0259183 Mar 1988 EP
0259942 Mar 1988 EP
0261986 Mar 1988 EP
0270422 Jun 1988 EP
0333521 Sep 1989 EP
0460911 Dec 1991 EP
0846476 Jun 1998 EP
0 945 736 Sep 1999 EP
0945736 Sep 1999 EP
579665 Aug 1946 GB
2014315 Aug 1979 GB
2179458 Mar 1987 GB
52-19046 Feb 1977 JP
53-037077 Apr 1978 JP
53037077 Apr 1978 JP
53-052354 May 1978 JP
55-115383 Sep 1980 JP
55115383 Sep 1980 JP
56-007439 Jan 1981 JP
56-88333 Jul 1981 JP
5691503 Jul 1981 JP
56088333 Jul 1981 JP
57-075480 May 1982 JP
57075480 May 1982 JP
57-163035 Oct 1982 JP
57163035 Oct 1982 JP
57171805 Oct 1982 JP
58-130602 Aug 1983 JP
594189 Jan 1984 JP
60-5462 Apr 1984 JP
60-236241 Nov 1985 JP
61142802 Jun 1986 JP
62-11243 Jan 1987 JP
62-51235 Mar 1987 JP
62-58650 Mar 1987 JP
62-098634 May 1987 JP
62-107937 May 1987 JP
62098634 May 1987 JP
62107937 May 1987 JP
62-179126 Aug 1987 JP
62-239050 Oct 1987 JP
62239050 Oct 1987 JP
62295374 Dec 1987 JP
63-108736 May 1988 JP
63-129640 Jun 1988 JP
63-143814 Jun 1988 JP
63-152141 Jun 1988 JP
63-192246 Aug 1988 JP
63-318745 Dec 1988 JP
64-21309 Feb 1989 JP
1-165968 Jun 1989 JP
1-214038 Aug 1989 JP
01209380 Aug 1989 JP
1-219575 Sep 1989 JP
1-296167 Nov 1989 JP
2-22836 Jan 1990 JP
2-124469 May 1990 JP
2-141681 May 1990 JP
02124469 May 1990 JP
02135804 May 1990 JP
2-191352 Jul 1990 JP
3-175367 Jul 1991 JP
3-196206 Aug 1991 JP
3196206 Aug 1991 JP
3-228348 Oct 1991 JP
03228348 Oct 1991 JP
4-130639 May 1992 JP
04130639 May 1992 JP
4-159043 Jun 1992 JP
04159043 Jun 1992 JP
4-206930 Jul 1992 JP
04206930 Jul 1992 JP
4-340248 Nov 1992 JP
5-082631 Apr 1993 JP
05082631 Apr 1993 JP
5-113451 May 1993 JP
51-57790 Jun 1993 JP
5157790 Jun 1993 JP
51-66893 Jul 1993 JP
5166893 Jul 1993 JP
6-85044 Mar 1994 JP
60-71425 Mar 1994 JP
6-102313 Apr 1994 JP
6-132709 May 1994 JP
6-160236 Jun 1994 JP
6154238 Jun 1994 JP
6-295949 Oct 1994 JP
7-005078 Jan 1995 JP
7-12871 Jan 1995 JP
7005078 Jan 1995 JP
7012871 Jan 1995 JP
7-201945 Aug 1995 JP
8-35987 Feb 1996 JP
8035987 Feb 1996 JP
8-261898 Oct 1996 JP
8-330401 Dec 1996 JP
08330401 Dec 1996 JP
09127432 May 1997 JP
10-48256 Feb 1998 JP
10-116866 May 1998 JP
10116866 May 1998 JP
11-023975 Jan 1999 JP
11004001 Jan 1999 JP
11023975 Jan 1999 JP
2000-137120 May 2000 JP
2000-329664 Nov 2000 JP
2001-33633 Feb 2001 JP
2001-124676 May 2001 JP
2001-189285 Jul 2001 JP
2001-189378 Jul 2001 JP
2002-203879 Jul 2002 JP
2002-243502 Aug 2002 JP
2002243502 Aug 2002 JP
2004-507851 Mar 2004 JP
20030090158 Nov 2003 KR
843040 Jun 1981 SU
1195402 Nov 1985 SU
1327023 Jul 1987 SU
1392603 Apr 1988 SU
WO8000101 Jan 1980 WO
WO9410554 May 1994 WO
WO 9629629 Jan 1996 WO
WO 9750001 Dec 1997 WO
WO9807040 Feb 1998 WO
WO 0073905 Dec 2000 WO
WO0107207 Feb 2001 WO
WO 0169656 Sep 2001 WO
WO 2004044604 May 2004 WO
WO 2004065944 Aug 2004 WO
WO 2004079299 Sep 2004 WO
WO 2005062025 Jul 2005 WO
WO 2007145727 Dec 2007 WO
WO 2007145728 Dec 2007 WO
Related Publications (1)
Number Date Country
20080012591 A1 Jan 2008 US
Provisional Applications (1)
Number Date Country
60812150 Jun 2006 US