The present invention relates to a wafer probe for high frequency testing of integrated circuits and other electronic devices.
Integrated circuits (ICs) are economically attractive because large numbers of often complex circuits, for example microprocessors, can be inexpensively fabricated on the surface of a wafer or substrate. Following fabrication, individual dies, including one or more circuits, are separated or singulated and encased in a package that provides for electrical connections between the exterior of the package and the circuit on the enclosed die. The separation and packaging of a die comprises a significant portion of the cost of manufacturing a microelectronic device. To monitor and control the IC fabrication process and to avoid the cost of packaging defective dies, manufacturers commonly add electrical circuits or test structures to the wafer to enable on-wafer testing or “probing” to verify characteristics of the integrated circuits before the dies are singulated.
A test structure or device-under-test (DUT) typically comprises a simple circuit that includes a copy of one or more of the basic circuit elements of the integrated circuit, such as a single line of conducting material, a chain of vias or a single transistor. The circuit elements of the DUT are typically produced with the same processes and in the same layers of the fabrication as the corresponding elements of the marketable integrated circuits. Since the circuit elements of the DUT are fabricated with the same processes as the corresponding elements of the integrated circuits, the electrical properties of the DUT are expected to be representative of the electrical properties of the corresponding components of the integrated circuits. In addition to the DUT, test structures typically include a plurality of metallic contact or probe pads that are deposited at the wafer's surface and a plurality of conductive vias that interconnect the probe pads and the subsurface DUT. The performance of the test structure is typically tested by applying a test instrument generated signal to the probe pads and measuring the response of the test structure to the signal.
At higher frequencies, on-wafer characterization is commonly performed with a network analyzer. The network analyzer comprises a source of an AC signal, commonly a radio frequency (RF) or microwave frequency signal, that is transmitted to the DUT to produce a response. A forward-reverse switch directs the stimulating signals toward one or more of the probe pads of the DUT where a portion of the signal is transmitted to the DUT and another portion is reflected. Directional couplers or bridges pick off the forward or reverse waves traveling to and from the DUT. The waves are down-converted by intermediate frequency (IF) sections of the network analyzer where the signals are filtered, amplified and digitized for further processing and display. The result is a plurality of s-parameters (scattering parameters), the ratio of a normalized power wave comprising the response of the DUT to the normalized power wave comprising the stimulus supplied by the signal source.
The preferred interconnection between a network analyzer or other test instrument and a DUT is a wafer probe typically comprising a movable body that supports one or more contacts or probe tips that are arranged to engage a test structure's probe pad(s) on the surface of a wafer. Burr et al., U.S. Pat. No. 5,565,788, disclose a microwave probe comprising a support block which is attachable to a movable probe supporting member of a probe station. The support block supports a first end portion of a section of coaxial cable. The second end of the coaxial cable is freely suspended and, in turn, supports a probe tip section. Integrated circuits commonly utilize single ended or ground referenced signaling with a ground plane at the lower surface of the substrate on which the active and passive devices of the circuit are fabricated. Although there are a number of potential arrangements for the probe pads of a test structure that utilizes single-ended signaling, a common arrangement places a signal probe pad between a pair of spaced apart, grounded probe pads, a so-called ground-signal-ground (GSG) arrangement. The tip section of the microwave probe disclosed by Burr et al. includes a central signal conductor and one or more ground conductors generally arranged parallel to each other in a common plane to form a controlled impedance structure. The signal conductor is electrically connected to the inner conductor of a coaxial cable and the ground conductors are electrically connected to the outer conductor of the cable at the freely suspended end of the cable. A shield member is interconnected to the ground conductors and covers at least a portion of the signal conductor on the bottom side of the tip section. The shield member is tapered toward the tips with an opening for the tips of the conductive fingers. The signal conductor and the ground conductors each have an end portion extending beyond the shield member and, despite the presence of the shielding member, the end portions are able to resiliently flex relative to each other and away from their common plane so as to permit probing of devices having non-planar probe pad surfaces.
In another embodiment, Burr et al. disclose a microwave probe that includes a supporting section of coaxial cable including an inner conductor coaxially surrounded by an outer conductor. A tip section of the microwave probe includes a signal line extending along the top side of a dielectric substrate connecting a probe finger with the inner conductor of the coaxial cable. A metallic shield may be affixed to the underside of the dielectric substrate and is electrically coupled to the outer metallic conductor. Ground-connected fingers are placed adjacent the signal line conductors and are connected to the metallic shield by way of vias through the dielectric substrate. The signal conductor is electrically connected to the inner conductor and the ground plane is electrically connected to the outer conductor of the coaxial cable. The signal conductor and the ground conductor fingers (connected to the shield by vias) each have an end portion extending beyond the shield member and, despite the presence of the shielding member, the end portions are able to resiliently flex relative to each other and away from their common plane so as to permit devices having non-planar contact surfaces to be probed. While the structures disclosed by Burr et al. are intended to provide uniform results over a wide frequency range, they unfortunately tend to have non-uniform response characteristics at higher microwave frequencies.
Gleason et al., U.S. Pat. No. 6,815,963 B2, disclose a probe comprising a dielectric substrate that is attached to a shelf cut in the underside of the probe tip supporting portion of coaxial cable. The substrate projects beyond the end of the cable in the direction of the longitudinal axis of the cable. A signal trace is formed on the upper side of the substrate and conductively connects the center conductor of the coaxial cable with a via at the distal end of the signal trace, near the distal edge of the substrate. The via, passes through the substrate and conductively connects the signal trace to a contact bump or tip that will be brought into contact with a probe pad of the test structure to enable communication of a single-ended signal from the center conductor of the coaxial cable to the DUT. A conductive shield which is preferably planar in nature is affixed to the bottom surface of the substrate and electrically connected to the outer conductor of the coaxial cable. The conductive shield is typically coextensive with the lower surface of the substrate with the exception of an aperture encircling the contact tip for the signal trace. Contacts for contacting probe pads connected to the ground plane and spaced to either side of the signal probe pad of the test structure may also be provided. The conductive traces comprise a coplanar waveguide when the probe is operated at microwave frequencies.
At frequencies between DC and approximately 60 gigahertz (GHz), a coaxial cable is frequently preferred for communicating signals between the test instrumentation and the DUT. However, the central signal conductor of a coaxial cable is relatively small and, at microwave frequencies, skin effect restricts the current carrying area of the conductor to a thin layer at the conductor's surface. Heating of the dielectric separating the signal conductor and the coaxial ground conductor, may further impede the transmission of the signal. At frequencies greater than 40 GHz the probe and the test instrument are commonly interconnected with a waveguide. The waveguide comprises a hollow tube of conductive material, often rectangular in shape. Electromagnetic waves propagate in the waveguide channel by successive reflections from the inside surface(s) of the wall defining the waveguide channel. A waveguide is characterized by excellent isolation between signals and very low loss.
While a waveguide provides a low loss path for communicating signals between a probe and the related test instrumentation, the probes of Burr et al. and Gleason et al. rely on coaxial cable for connecting the waveguide and the probe tip. In addition to the reduced transmission efficiency of the coaxial cable resulting from skin effect and dielectric heating, the transition from coaxial cable to waveguide can be difficult and can introduce a substantial loss of signal. The transition from the waveguide to the coaxial cable is commonly accomplished by inserting the tip of the coaxial cable's center conductor into the interior of the waveguide and connecting the outer conductor to the wall of the waveguide. The projecting conductor acts as an antenna for the signals propagating in the waveguide. In a typical implementation a backshort, usually made of brass or some other reflective material and having a reflective face, is also included in the waveguide channel. The backshort is preferably located close to the projecting center conductor and typically oriented perpendicular to the waveguide channel so as to reflect any alternating signal present within the waveguide channel towards the projecting conductor. If properly positioned, the backshort will reflect the alternating signal within the waveguide into a standing wave pattern and signal degradation will be minimized in the transition from the coaxial cable to the waveguide. However, adjusting the position of the backshort relative to the center conductor of the coaxial cable to optimize performance in the primary band of the alternating signals, is often difficult and at high frequencies, very small deviations from the optimal position of the backshort may lead to significant signal degradation.
Katoh, U.S. Pat. No. 5,408,188, describes a wafer probe for high frequency single-ended signals in which a waveguide transitions directly to a coplanar line at the probe tip. The probe tip comprises a dielectric blade having a centrally located (laterally) signal conductor affixed to the lower surface of the blade. Ground conductors, spaced apart on either side of the signal conductor, are also affixed to the lower surface of the blade. The blade is clamped between separable upper and lower portions of the waveguide with the ground conductors in contact with the lower interior surface of the waveguide's wall. A stepped ridge affixed to the upper interior surface of the wall extends downward in the waveguide to approximately the level of the lower surface of the dielectric blade and the signal conductor which is affixed to the lower surface of the dielectric blade. The signal conductor is conductively interconnected with the downward projecting ridge. The high frequency waveguide probe enables probing with high frequency, single ended signals through the commonly utilized ground-signal-ground probe pad arrangement. However, the probe requires a special, split, waveguide section that includes a downwardly projecting ridge in the interior of the waveguide and, according to Katoh, the transition from the coplanar line of the probe tip to the waveguide can result in significant transmission losses.
While single-ended or ground referenced signaling predominates at lower frequencies, the integrity of single-ended signals is jeopardized at higher frequencies. Integrated circuits are fabricated by successive deposition of conductive, semi-conductive and insulating materials on a semi-conducting wafer and, as a result, electrical interconnections commonly exist between parts of the circuit's devices and between the devices and the substrate on which they are fabricated. These interconnections are commonly capacitive or inductive in nature resulting in frequency dependent parasitic impedances that make the true nature of ground referenced signals uncertain as the operating frequency of the circuit increases.
Referring to
What is desired, therefore, is a low cost wafer probe enabling efficient communication of high frequency, differential signals between a DUT and a test instrument.
Integrated circuits (ICs) and other microelectronic devices are fabricated by successively depositing and etching layers of conductive, semi-conductive or insulating material on the surface of a wafer or substrate of semi-conducting material. Typically, the rear surface of the wafer, the back plane, is connected to a ground potential and signals are input to and output by the circuit through conductors that are deposited proximate the front surface of the wafer.
ICs are commonly inspected “on wafer” by measuring the response of one or more test structures when the structures are stimulated by a test signal. A test structure typically comprises a simple circuit or device under test (DUT) comprising one or more of the elements of the marketable integrated circuits. The devices of the DUT are typically fabricated with the same processes and in the same layers of the wafer fabrication as the corresponding element(s) of the integrated circuit. In addition, a test structure typically comprises a plurality of probe pads that are deposited on the surface of the wafer and conductively connected by a plurality of vias to the DUT which located below the surface.
Preferably, the test structure or other device under test is temporarily connected to test instrumentation by a probe assembly. The probe assembly typically comprises a probe body that is secured to a movable portion of a probe station which includes a mechanism for securing a wafer and moving the probe assembly in −x, −y, and −z directions to enable contacts on the probe to be brought into conductive engagement with the probe pads on the surface of the wafer. At frequencies in the radio and microwave frequency ranges, a network analyzer is commonly used to generate the test signal and measure the response of the DUT.
The test instrumentation is frequently connected to the probe by a length of coaxial cable which is connected to a coaxial cable connector or adapter which is affixed to the probe's body. A second portion of coaxial cable typically has one end that is supported by the probe's body and a second end that is freely suspended. The conductors at the end supported by the body of the probe are interconnected with the adapter enabling signals to be communicated from the test instrumentation to the freely suspended end of the second length of coaxial cable. A microstrip-type probe tip is commonly attached to the freely suspended end of the second portion of coaxial cable. A microstrip-type probe tip typically comprises a plurality of contacts or probe tips that are affixed to a substrate that is, in turn, affixed to the freely suspended end of the coaxial cable. Typically, one contact conducts the signal from the central conductor to a probe pad of the test structure. In addition, one or more contacts connected to the outer conductor of the coaxial cable are arranged to contact probe pads that are interconnected with the ground plane at the back surface of the wafer enabling the amplitude of the single-ended signals to be referenced to the ground potential of the DUT.
At higher microwave frequencies, the transmission efficiency of coaxial cable is substantially reduced as a result of skin effect and heating of the dielectric separating the coaxial conductors. In addition, coaxial cable adapters that can efficiently conduct signals at frequencies above 65 GHz have only recently become available and are quite expensive. Accordingly, for frequencies greater than approximately 40 GHz, it is common to utilize a waveguide to interconnect the instrumentation with the portion of the coaxial cable that supports the probe tip. A waveguide is characterized by excellent isolation between signals and very low signal loss. However, the transition from a coaxial cable to a waveguide can be expensive and difficult to execute and often results in a substantial signal loss in addition to the signal loss in the portion of coaxial cable that supports the probe tip. The present inventor considered the frequency limitations and the cost of coaxial cable components suitable for high frequencies and concluded that the transmission efficiency of a high frequency probe could be improved and the cost reduced with a waveguide probe that eliminates coaxial cable from the signal path connecting the probe's contacts to the test instrumentation.
Further, the inventor recognized that devices utilizing single ended or ground referenced signals were susceptible to poor grounding at microwave frequencies. As a result of the layering of conductive, semi-conductive and insulating materials, parasitic electrical interconnections commonly exist between parts of the devices that comprise an integrated circuit and between the devices and the substrate on which they are fabricated. These interconnections are typically capacitive and inductive in nature and the parasitic impedances between respective portions of the circuit and the ground plane are frequency dependent making the amplitude of a ground referenced signal uncertain. Referring to
Referring in detail to the drawings where similar parts are identified by like reference numerals, and, more particularly to
The exemplary waveguide probe 22 has a port which comprises a waveguide 34 having a flanged connector 36. The flanged connector enables selective connection, through a mating flanged connector 38, to an external waveguide 40 that connects the probe to the test instrumentation 42. The flanged connector may comprise, for example, one or more flexible or rotary connectors enabling movement of the probe relative to the external waveguide and the instrumentation. The waveguide 34 is affixed to a primary support block 44 of the probe which, in the preferred embodiment shown, is suitably constructed for connection to the probe-supporting member 24. To effect connection to the probe-supporting member, a round opening 46 that is formed on the support block is snugly and slidably fitted onto an alignment pin (not shown) that projects upward from the probe-supporting member. Screws 48, inserted into each of a pair of countersunk openings 50 in the block, engage a corresponding threaded aperture in the probe-supporting member to secure the probe to the supporting member. Ordinarily an −x, −y, −z positioning mechanism, such as a micrometer knob assembly, is provided to effect movement of the supporting member relative to the chuck so that the contacts 32 of the probe can be brought into pressing engagement with the probing pads 30 of a test structure or other DUT.
Referring also to
While a wide variety of cross-sections are available for waveguides, the cross-section of the waveguide channel preferably has a longer major axis or dimension (h) and a shorter minor axis or dimension (w) normal to the longitudinal axis 33 of the waveguide channel. For example, a rectangular waveguide channel is defined by a major dimension parallel to the longer sides of the rectangular channel and a minor dimension parallel to the shorter sides of the channel. Electromagnetic waves propagate in a waveguide channel by successive reflections from the inside surface(s) of the wall. A waveguide channel with unequal major and minor dimensions prevents mode rotation of the microwave signals.
The electric field is the gradient of the potential difference between points on the interior surface of the wall on opposite sides of the waveguide channel. In a waveguide channel defined by a longer major dimension and a shorter minor dimension, the potential difference is maximized at opposite sides of the waveguide channel at the midpoint or bisector of the major dimension. For example, in a rectangular waveguide, the distribution of the electric field 66 (illustrated schematically with a bracket) is maximized at the midpoint of the longest side of the rectangular waveguide channel. The field distribution and the potential difference in the waveguide channel permits a simple conductive connection for differential signals between the second ends of the conductive signal traces 60A, 60B and the interior surface of the waveguide's wall on opposite sides of the waveguide channel at the respective intersections of the bisector of the waveguide channel's major dimension. For example, the interconnections between the signal traces 60A, 60B and the wall of the waveguide is preferably at the midpoint of the longer walls of a rectangular waveguide channel. While interconnection of the traces and the wall of the waveguide at the bisection of the major axis of the channel maximizes the potential between the connections, the connections may be shifted away from the respective intersections with the wall by the bisector of the major dimension, by tilting the substrate relative to the wall or otherwise, for the purpose of matching the impedance of the probe with the DUT.
Referring to also
Referring also to
In addition, preferably, the transition from the coplanar lines of the probe tip to the wall of the waveguide is optimized by conductively interconnecting the conductive signal traces to the wall of the waveguide at a distance (L) from the end 58 of the waveguide 34. The optimum distance (L) is typically less than one-half the wavelength of the center frequency of signals that will be transmitted in the waveguide.
The end portion of the membrane 50 that is within the waveguide channel is secured to the interior surface of the waveguide adjacent the bisection 76 of the major dimension of the waveguide channel enabling the conductive signal traces supported on the surface of the membrane to be interconnected with the waveguide's wall at the bisection of the major dimension. Supporting the conductive signal traces on the upper surface of the membrane reinforces the probe tip's structure but, as illustrated in
The waveguide probe can be simplified by leaving the end of the waveguide channel open. However, an open end of the waveguide channel permits an electric and magnetic field distribution that couples to a propagating wave in space and evanescent fields that couple to physical objects proximate the end of the waveguide. Shorting plates 78, 80 blocking portions of the waveguide channel at the end proximate the probe tip can reduce the fields proximate the end of the waveguide. The shorting plates can be arranged at an oblique angle to the longitudinal axis of the waveguide. Preferably, a first shorting plate 78, occluding a first portion of the waveguide channel above the membrane, is arranged to be perpendicular to the surface of the wafer when the probe pads are contacted to improve visibility of the contacts. A second shorting plate 80 below the membrane 52 is preferably arranged substantially parallel to the surface of the wafer when the probe pads are contacted to minimize the length of the membrane that must project from the end of the waveguide and reduce the likelihood that the waveguide will come in contact with wafer. The performance of the wafer probe can be optimized for a particular frequency band by adjusting the angles of the respective shorting plates relative to the longitudinal axis of the waveguide channel.
The detailed description, above, sets forth numerous specific details to provide a thorough understanding of the present invention. However, those skilled in the art will appreciate that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid obscuring the present invention.
All the references cited herein are incorporated by reference.
The terms and expressions that have been employed in the foregoing specification are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims that follow.
This application claims the benefit of U.S. Provisional App. No. 60/964,103, filed Aug. 8, 2007.
Number | Name | Date | Kind |
---|---|---|---|
491783 | Moyer | Feb 1893 | A |
1337866 | Whitacker | Apr 1920 | A |
2142625 | Zoethout | Jan 1939 | A |
2376101 | Tyzzer | May 1945 | A |
2389668 | Johnson | Nov 1945 | A |
2545258 | Cailloux | Mar 1951 | A |
2762234 | Dodd | Sep 1952 | A |
2901696 | Möllfors | Aug 1959 | A |
2921276 | Fubini | Jan 1960 | A |
3176091 | Hanson et al. | Mar 1965 | A |
3193712 | Harris | Jul 1965 | A |
3218584 | Ayer | Nov 1965 | A |
3230299 | Radziekowski | Jan 1966 | A |
3262593 | Hainer | Jul 1966 | A |
3396598 | Grispo | Aug 1968 | A |
3401126 | Miller et al. | Sep 1968 | A |
3429040 | Miller | Feb 1969 | A |
3445770 | Harmon | May 1969 | A |
3484679 | Hodgson et al. | Dec 1969 | A |
3541222 | Parks et al. | Nov 1970 | A |
3561280 | MacPhee et al. | Feb 1971 | A |
3573617 | Randolph et al. | Apr 1971 | A |
3596228 | Reed et al. | Jul 1971 | A |
3609539 | Gunthert | Sep 1971 | A |
3611199 | Safran | Oct 1971 | A |
3619780 | Hoeks | Nov 1971 | A |
3622915 | Davo | Nov 1971 | A |
3634807 | Grobe et al. | Jan 1972 | A |
3648169 | Wiesler | Mar 1972 | A |
3654585 | Wickersham | Apr 1972 | A |
3662318 | Decuyper | May 1972 | A |
3680037 | Nellis et al. | Jul 1972 | A |
3686624 | Napoli et al. | Aug 1972 | A |
3700998 | Lee et al. | Oct 1972 | A |
3705379 | Bogar | Dec 1972 | A |
3710251 | Hagge et al. | Jan 1973 | A |
3714572 | Ham et al. | Jan 1973 | A |
3725829 | Brown | Apr 1973 | A |
3740900 | Youmans et al. | Jun 1973 | A |
3766470 | Hay et al. | Oct 1973 | A |
3803709 | Beltz et al. | Apr 1974 | A |
3806801 | Bove | Apr 1974 | A |
3810016 | Chayka et al. | May 1974 | A |
3829076 | Sofy | Aug 1974 | A |
3833852 | Schoch | Sep 1974 | A |
3839672 | Anderson | Oct 1974 | A |
3849728 | Evans | Nov 1974 | A |
3858212 | Tompkins et al. | Dec 1974 | A |
3862790 | Davies et al. | Jan 1975 | A |
3866093 | Kusters et al. | Feb 1975 | A |
3867698 | Beltz et al. | Feb 1975 | A |
3882597 | Chayka et al. | May 1975 | A |
3930809 | Evans | Jan 1976 | A |
3936743 | Roch | Feb 1976 | A |
3952156 | Lahr | Apr 1976 | A |
3970934 | Aksu | Jul 1976 | A |
3971610 | Buchoff et al. | Jul 1976 | A |
3976959 | Gaspari | Aug 1976 | A |
3992073 | Buchoff et al. | Nov 1976 | A |
4001685 | Roch | Jan 1977 | A |
4008900 | Khoshaba | Feb 1977 | A |
4009456 | Hopfer | Feb 1977 | A |
4027935 | Byrnes et al. | Jun 1977 | A |
4035723 | Kvaternik | Jul 1977 | A |
4038599 | Bove et al. | Jul 1977 | A |
4038894 | Knibbe et al. | Aug 1977 | A |
4049252 | Bell | Sep 1977 | A |
4063195 | Abrams et al. | Dec 1977 | A |
4066943 | Roch | Jan 1978 | A |
4072576 | Arwin et al. | Feb 1978 | A |
4074201 | Lennon | Feb 1978 | A |
4093988 | Scott | Jun 1978 | A |
4099120 | Aksu | Jul 1978 | A |
4115735 | Stanford | Sep 1978 | A |
4116523 | Coberly | Sep 1978 | A |
4123706 | Roch | Oct 1978 | A |
4124787 | Aamoth et al. | Nov 1978 | A |
4135131 | Larsen et al. | Jan 1979 | A |
4151465 | Lenz | Apr 1979 | A |
4161692 | Tarzwell | Jul 1979 | A |
4177421 | Thornburg | Dec 1979 | A |
4184133 | Gehle | Jan 1980 | A |
4184729 | Parks et al. | Jan 1980 | A |
4216467 | Colston | Aug 1980 | A |
4225819 | Grau et al. | Sep 1980 | A |
4232398 | Gould et al. | Nov 1980 | A |
4251772 | Worsham et al. | Feb 1981 | A |
4275446 | Blaess | Jun 1981 | A |
4277741 | Faxvog et al. | Jul 1981 | A |
4280112 | Eisenhart | Jul 1981 | A |
4284033 | del Rio | Aug 1981 | A |
4284682 | Frosch et al. | Aug 1981 | A |
4287473 | Sawyer | Sep 1981 | A |
4302146 | Finlayson et al. | Nov 1981 | A |
4306235 | Christmann | Dec 1981 | A |
4312117 | Robillard et al. | Jan 1982 | A |
4327180 | Chen | Apr 1982 | A |
4330783 | Toia | May 1982 | A |
4340860 | Teeple, Jr. | Jul 1982 | A |
4346355 | Tsukii | Aug 1982 | A |
4357575 | Uren et al. | Nov 1982 | A |
4375631 | Goldberg | Mar 1983 | A |
4376920 | Smith | Mar 1983 | A |
4383217 | Shiell | May 1983 | A |
4401945 | Juengel | Aug 1983 | A |
4425395 | Negishi et al. | Jan 1984 | A |
4453142 | Murphy | Jun 1984 | A |
4468629 | Choma, Jr. | Aug 1984 | A |
4476363 | Berggren et al. | Oct 1984 | A |
4480223 | Aigo | Oct 1984 | A |
4487996 | Rabinowitz et al. | Dec 1984 | A |
4491783 | Sawayama et al. | Jan 1985 | A |
4502028 | Leake | Feb 1985 | A |
4515133 | Roman | May 1985 | A |
4515439 | Esswein | May 1985 | A |
4520314 | Asch et al. | May 1985 | A |
4528504 | Thornton, Jr. et al. | Jul 1985 | A |
4531474 | Inuta | Jul 1985 | A |
4551747 | Gilbert et al. | Nov 1985 | A |
4552033 | Marzhauser | Nov 1985 | A |
4553111 | Barrow | Nov 1985 | A |
4558609 | Kim | Dec 1985 | A |
4563640 | Hasegawa | Jan 1986 | A |
4567321 | Harayama | Jan 1986 | A |
4567436 | Koch | Jan 1986 | A |
4568890 | Bates | Feb 1986 | A |
4581679 | Smolley | Apr 1986 | A |
4588950 | Henley | May 1986 | A |
4589815 | Smith | May 1986 | A |
4593243 | Lao et al. | Jun 1986 | A |
4600907 | Grellman et al. | Jul 1986 | A |
4621169 | Petinelli et al. | Nov 1986 | A |
4626618 | Takaoka et al. | Dec 1986 | A |
4626805 | Jones | Dec 1986 | A |
4636722 | Ardezzone | Jan 1987 | A |
4636772 | Yasunaga | Jan 1987 | A |
4641659 | Sepponen | Feb 1987 | A |
4642417 | Ruthrof et al. | Feb 1987 | A |
4646005 | Ryan | Feb 1987 | A |
4649339 | Grangroth et al. | Mar 1987 | A |
4651115 | Wu | Mar 1987 | A |
4652082 | Warner | Mar 1987 | A |
4653174 | Gilder et al. | Mar 1987 | A |
4663840 | Ubbens et al. | May 1987 | A |
4669805 | Kosugi et al. | Jun 1987 | A |
4673839 | Veenendaal | Jun 1987 | A |
4684883 | Ackerman et al. | Aug 1987 | A |
4684884 | Soderlund | Aug 1987 | A |
4685150 | Maier | Aug 1987 | A |
4691163 | Blass et al. | Sep 1987 | A |
4696544 | Costella | Sep 1987 | A |
4697143 | Lockwood et al. | Sep 1987 | A |
4705447 | Smith | Nov 1987 | A |
4706050 | Andrews | Nov 1987 | A |
4707657 | Bøegh-Petersen | Nov 1987 | A |
4711563 | Lass | Dec 1987 | A |
4713347 | Mitchell et al. | Dec 1987 | A |
4714873 | McPherson et al. | Dec 1987 | A |
4725793 | Igarashi | Feb 1988 | A |
4727319 | Shahriary | Feb 1988 | A |
4727391 | Tajima et al. | Feb 1988 | A |
4727637 | Buckwitz et al. | Mar 1988 | A |
4734641 | Byrd, Jr. et al. | Mar 1988 | A |
4739259 | Hadwin et al. | Apr 1988 | A |
4740764 | Gerlack | Apr 1988 | A |
4742571 | Letron | May 1988 | A |
4744041 | Strunk et al. | May 1988 | A |
4746857 | Sakai et al. | May 1988 | A |
4749942 | Sang et al. | Jun 1988 | A |
4754239 | Sedivec | Jun 1988 | A |
4755742 | Agoston et al. | Jul 1988 | A |
4755746 | Mallory et al. | Jul 1988 | A |
4755747 | Sato | Jul 1988 | A |
4755872 | Bestler et al. | Jul 1988 | A |
4755874 | Esrig et al. | Jul 1988 | A |
4757255 | Margozzi | Jul 1988 | A |
4764723 | Strid | Aug 1988 | A |
4766384 | Kleinberg et al. | Aug 1988 | A |
4772846 | Reeds | Sep 1988 | A |
4780670 | Cherry | Oct 1988 | A |
4783625 | Harry et al. | Nov 1988 | A |
4788851 | Brault | Dec 1988 | A |
4791363 | Logan | Dec 1988 | A |
4793814 | Zifcak et al. | Dec 1988 | A |
4795962 | Yanagawa et al. | Jan 1989 | A |
4805627 | Klingenbeck et al. | Feb 1989 | A |
4810981 | Herstein | Mar 1989 | A |
4812754 | Tracy et al. | Mar 1989 | A |
4818059 | Kakii et al. | Apr 1989 | A |
4827211 | Strid et al. | May 1989 | A |
4831494 | Arnold et al. | May 1989 | A |
4835495 | Simonutti | May 1989 | A |
4837507 | Hechtman | Jun 1989 | A |
4839587 | Flatley et al. | Jun 1989 | A |
4849689 | Gleason et al. | Jul 1989 | A |
4853624 | Rabjohn | Aug 1989 | A |
4853627 | Gleason et al. | Aug 1989 | A |
4858160 | Strid et al. | Aug 1989 | A |
4859989 | McPherson | Aug 1989 | A |
4864227 | Sato | Sep 1989 | A |
4871883 | Guiol | Oct 1989 | A |
4871964 | Boll et al. | Oct 1989 | A |
4888550 | Reid | Dec 1989 | A |
4891584 | Kamieniecki et al. | Jan 1990 | A |
4893914 | Hancock et al. | Jan 1990 | A |
4894612 | Drake et al. | Jan 1990 | A |
4899126 | Yamada | Feb 1990 | A |
4899998 | Feramachi | Feb 1990 | A |
4901012 | Gloanec et al. | Feb 1990 | A |
4904933 | Snyder et al. | Feb 1990 | A |
4904935 | Calma et al. | Feb 1990 | A |
4906920 | Huff et al. | Mar 1990 | A |
4908570 | Gupta et al. | Mar 1990 | A |
4912399 | Greub et al. | Mar 1990 | A |
4916002 | Carver | Apr 1990 | A |
4916398 | Rath | Apr 1990 | A |
4918373 | Newberg | Apr 1990 | A |
4918383 | Huff et al. | Apr 1990 | A |
4922128 | Dhong et al. | May 1990 | A |
4922186 | Tsuchiya et al. | May 1990 | A |
4922912 | Watanabe | May 1990 | A |
4926172 | Gorsek | May 1990 | A |
4929893 | Sato et al. | May 1990 | A |
4970386 | Buck | Nov 1990 | A |
4972073 | Lessing | Nov 1990 | A |
4975638 | Evans et al. | Dec 1990 | A |
4980637 | Huff et al. | Dec 1990 | A |
4980638 | Dermon et al. | Dec 1990 | A |
4983910 | Majidi-Ahy et al. | Jan 1991 | A |
4987100 | McBride et al. | Jan 1991 | A |
4988062 | London | Jan 1991 | A |
4991290 | MacKay | Feb 1991 | A |
4998062 | Ikeda | Mar 1991 | A |
4998063 | Miller | Mar 1991 | A |
5001423 | Abrami et al. | Mar 1991 | A |
5003253 | Majidi-Ahy et al. | Mar 1991 | A |
5012186 | Gleason | Apr 1991 | A |
5020219 | Leedy | Jun 1991 | A |
5021186 | Ota et al. | Jun 1991 | A |
5030907 | Yih et al. | Jul 1991 | A |
5041782 | Marzan | Aug 1991 | A |
5045781 | Gleason et al. | Sep 1991 | A |
5059898 | Barsotti et al. | Oct 1991 | A |
5061192 | Chapin et al. | Oct 1991 | A |
5061823 | Carroll | Oct 1991 | A |
5066357 | Smyth, Jr. et al. | Nov 1991 | A |
5069628 | Crumly | Dec 1991 | A |
5082627 | Stanbro | Jan 1992 | A |
5084671 | Miyata et al. | Jan 1992 | A |
5089774 | Nakano | Feb 1992 | A |
5091692 | Ohno et al. | Feb 1992 | A |
5091732 | Mileski et al. | Feb 1992 | A |
5095891 | Reitter | Mar 1992 | A |
5097101 | Trobough | Mar 1992 | A |
5097207 | Blanz | Mar 1992 | A |
5101453 | Rumbaugh | Mar 1992 | A |
5107076 | Bullock et al. | Apr 1992 | A |
5116180 | Fung et al. | May 1992 | A |
5126286 | Chance | Jun 1992 | A |
5126696 | Grote et al. | Jun 1992 | A |
5133119 | Afshari et al. | Jul 1992 | A |
5134365 | Okubo et al. | Jul 1992 | A |
5136237 | Smith et al. | Aug 1992 | A |
5138289 | McGrath | Aug 1992 | A |
5142224 | Smith et al. | Aug 1992 | A |
5145552 | Yoshizawa et al. | Sep 1992 | A |
5148131 | Amboss et al. | Sep 1992 | A |
5159264 | Anderson | Oct 1992 | A |
5159267 | Anderson | Oct 1992 | A |
5159752 | Mahant-Shetti et al. | Nov 1992 | A |
5160883 | Blanz | Nov 1992 | A |
5164319 | Hafeman et al. | Nov 1992 | A |
5166606 | Blanz | Nov 1992 | A |
5172049 | Kiyokawa et al. | Dec 1992 | A |
5172050 | Swapp | Dec 1992 | A |
5172051 | Zamborelli | Dec 1992 | A |
5177438 | Littlebury et al. | Jan 1993 | A |
5180977 | Huff | Jan 1993 | A |
5187443 | Bereskin | Feb 1993 | A |
5198752 | Miyata et al. | Mar 1993 | A |
5198753 | Hamburgen | Mar 1993 | A |
5202558 | Barker | Apr 1993 | A |
5202648 | McCandless | Apr 1993 | A |
5207585 | Byrnes et al. | May 1993 | A |
5214243 | Johnson | May 1993 | A |
5214374 | St. Onge | May 1993 | A |
5225037 | Elder et al. | Jul 1993 | A |
5227730 | King et al. | Jul 1993 | A |
5232789 | Platz et al. | Aug 1993 | A |
5233197 | Bowman et al. | Aug 1993 | A |
5233306 | Misra | Aug 1993 | A |
5245292 | Milesky et al. | Sep 1993 | A |
5266889 | Harwood et al. | Nov 1993 | A |
5266963 | Carter | Nov 1993 | A |
5267088 | Nomura | Nov 1993 | A |
5270664 | McMurtry et al. | Dec 1993 | A |
5274336 | Crook et al. | Dec 1993 | A |
5280156 | Niori et al. | Jan 1994 | A |
5289117 | Van Loan et al. | Feb 1994 | A |
5293175 | Hemmie et al. | Mar 1994 | A |
5298972 | Heffner | Mar 1994 | A |
5304924 | Yamano et al. | Apr 1994 | A |
5313157 | Pasiecznik, Jr. | May 1994 | A |
5315237 | Iwakura et al. | May 1994 | A |
5316435 | Monzingo | May 1994 | A |
5317656 | Moslehi et al. | May 1994 | A |
5321352 | Takebuchi | Jun 1994 | A |
5321453 | Mori et al. | Jun 1994 | A |
5326412 | Schreiber et al. | Jul 1994 | A |
5334931 | Clarke et al. | Aug 1994 | A |
5347204 | Gregory et al. | Sep 1994 | A |
5355079 | Evans et al. | Oct 1994 | A |
5357211 | Bryson et al. | Oct 1994 | A |
5360312 | Mozingo | Nov 1994 | A |
5361049 | Rubin et al. | Nov 1994 | A |
5363050 | Guo et al. | Nov 1994 | A |
5367165 | Toda et al. | Nov 1994 | A |
5369368 | Kassen et al. | Nov 1994 | A |
5371654 | Beaman et al. | Dec 1994 | A |
5373231 | Boll et al. | Dec 1994 | A |
5374938 | Hatazawa et al. | Dec 1994 | A |
5376790 | Linker et al. | Dec 1994 | A |
5383787 | Switky et al. | Jan 1995 | A |
5389885 | Swart | Feb 1995 | A |
5395253 | Crumly | Mar 1995 | A |
5397855 | Ferlier | Mar 1995 | A |
5404111 | Mori et al. | Apr 1995 | A |
5408188 | Katoh | Apr 1995 | A |
5408189 | Swart et al. | Apr 1995 | A |
5412330 | Ravel et al. | May 1995 | A |
5412866 | Woith et al. | May 1995 | A |
5414565 | Sullivan et al. | May 1995 | A |
5422574 | Kister | Jun 1995 | A |
5430813 | Anderson et al. | Jul 1995 | A |
5441690 | Ayala-Esquilin et al. | Aug 1995 | A |
5451884 | Sauerland | Sep 1995 | A |
5453404 | Leedy | Sep 1995 | A |
5457398 | Schwindt et al. | Oct 1995 | A |
5463324 | Wardwell et al. | Oct 1995 | A |
5467024 | Swapp | Nov 1995 | A |
5469324 | Henderson et al. | Nov 1995 | A |
5475316 | Hurley et al. | Dec 1995 | A |
5476211 | Khandros | Dec 1995 | A |
5477011 | Singles et al. | Dec 1995 | A |
5478748 | Akins, Jr. et al. | Dec 1995 | A |
5479108 | Cheng | Dec 1995 | A |
5479109 | Lau et al. | Dec 1995 | A |
5481196 | Nosov | Jan 1996 | A |
5481936 | Yanagisawa | Jan 1996 | A |
5487999 | Farnworth | Jan 1996 | A |
5488954 | Sleva et al. | Feb 1996 | A |
5493070 | Habu | Feb 1996 | A |
5493236 | Ishii et al. | Feb 1996 | A |
5500606 | Holmes | Mar 1996 | A |
5505150 | James et al. | Apr 1996 | A |
5506498 | Anderson et al. | Apr 1996 | A |
5506515 | Godshalk et al. | Apr 1996 | A |
5507652 | Wardwell | Apr 1996 | A |
5510792 | Ono et al. | Apr 1996 | A |
5511010 | Burns | Apr 1996 | A |
5512835 | Rivera et al. | Apr 1996 | A |
5517126 | Yamaguchi | May 1996 | A |
5521518 | Higgins | May 1996 | A |
5521522 | Abe et al. | May 1996 | A |
5523694 | Cole, Jr. | Jun 1996 | A |
5527372 | Voisine et al. | Jun 1996 | A |
5528158 | Sinsheimer et al. | Jun 1996 | A |
5530372 | Lee et al. | Jun 1996 | A |
5531022 | Beaman et al. | Jul 1996 | A |
5532608 | Behfar-Rad et al. | Jul 1996 | A |
5537372 | Albrecht et al. | Jul 1996 | A |
5539323 | Davis, Jr. | Jul 1996 | A |
5539676 | Yamaguchi | Jul 1996 | A |
5550481 | Holmes et al. | Aug 1996 | A |
5561378 | Bockelman et al. | Oct 1996 | A |
5565788 | Burr et al. | Oct 1996 | A |
5565881 | Phillips et al. | Oct 1996 | A |
5569591 | Kell et al. | Oct 1996 | A |
5571324 | Sago et al. | Nov 1996 | A |
5578932 | Adamian | Nov 1996 | A |
5583445 | Mullen | Dec 1996 | A |
5584120 | Roberts | Dec 1996 | A |
5584608 | Gillespie | Dec 1996 | A |
5589781 | Higgins et al. | Dec 1996 | A |
5594358 | Ishikawa et al. | Jan 1997 | A |
5600256 | Woith et al. | Feb 1997 | A |
5601740 | Eldridge et al. | Feb 1997 | A |
5610529 | Schwindt | Mar 1997 | A |
5611008 | Yap | Mar 1997 | A |
5617035 | Swapp | Apr 1997 | A |
5621333 | Long et al. | Apr 1997 | A |
5621400 | Corbi | Apr 1997 | A |
5623213 | Liu et al. | Apr 1997 | A |
5623214 | Pasiecznik, Jr. | Apr 1997 | A |
5627473 | Takami | May 1997 | A |
5628057 | Phillips et al. | May 1997 | A |
5629838 | Knight et al. | May 1997 | A |
5631571 | Spaziani et al. | May 1997 | A |
5633780 | Cronin | May 1997 | A |
5635846 | Beaman et al. | Jun 1997 | A |
5642298 | Mallory et al. | Jun 1997 | A |
5644248 | Fujimoto | Jul 1997 | A |
5653939 | Hollis et al. | Aug 1997 | A |
5656942 | Watts et al. | Aug 1997 | A |
5659421 | Rahmel et al. | Aug 1997 | A |
5666063 | Abercrombie et al. | Sep 1997 | A |
5669316 | Faz et al. | Sep 1997 | A |
5670322 | Eggers et al. | Sep 1997 | A |
5670888 | Cheng | Sep 1997 | A |
5672816 | Park et al. | Sep 1997 | A |
5675499 | Lee et al. | Oct 1997 | A |
5675932 | Mauney | Oct 1997 | A |
5676360 | Boucher et al. | Oct 1997 | A |
5678210 | Hannah | Oct 1997 | A |
5685232 | Inoue | Nov 1997 | A |
5686317 | Akram et al. | Nov 1997 | A |
5686960 | Sussman et al. | Nov 1997 | A |
5688618 | Hulderman et al. | Nov 1997 | A |
5700844 | Hederick et al. | Dec 1997 | A |
5704355 | Bridges | Jan 1998 | A |
5715819 | Svenson et al. | Feb 1998 | A |
5720098 | Kister | Feb 1998 | A |
5723347 | Kirano et al. | Mar 1998 | A |
5726211 | Hedrick et al. | Mar 1998 | A |
5728091 | Payne et al. | Mar 1998 | A |
5729150 | Schwindt | Mar 1998 | A |
5731920 | Katsuragawa | Mar 1998 | A |
5742174 | Kister et al. | Apr 1998 | A |
5744971 | Chan et al. | Apr 1998 | A |
5748506 | Bockelman | May 1998 | A |
5751153 | Bockelman | May 1998 | A |
5751252 | Phillips | May 1998 | A |
5756021 | Bedrick et al. | May 1998 | A |
5756908 | Knollmeyer et al. | May 1998 | A |
5764070 | Pedder | Jun 1998 | A |
5767690 | Fujimoto | Jun 1998 | A |
5772451 | Dozier, II et al. | Jun 1998 | A |
5773780 | Eldridge et al. | Jun 1998 | A |
5777485 | Tanaka et al. | Jul 1998 | A |
5785538 | Beaman et al. | Jul 1998 | A |
5792668 | Fuller et al. | Aug 1998 | A |
5793213 | Bockelman et al. | Aug 1998 | A |
5794133 | Kashima | Aug 1998 | A |
5803607 | Jones et al. | Sep 1998 | A |
5804607 | Hedrick et al. | Sep 1998 | A |
5804982 | Lo et al. | Sep 1998 | A |
5804983 | Nakajima et al. | Sep 1998 | A |
5806181 | Khandros et al. | Sep 1998 | A |
5807107 | Bright et al. | Sep 1998 | A |
5810607 | Shih et al. | Sep 1998 | A |
5811751 | Leona et al. | Sep 1998 | A |
5811982 | Beaman et al. | Sep 1998 | A |
5813847 | Eroglu et al. | Sep 1998 | A |
5814847 | Shihadeh et al. | Sep 1998 | A |
5820014 | Dozier, II et al. | Oct 1998 | A |
5821763 | Beaman et al. | Oct 1998 | A |
5824494 | Feldberg | Oct 1998 | A |
5829128 | Eldridge et al. | Nov 1998 | A |
5829437 | Bridges | Nov 1998 | A |
5831442 | Heigl | Nov 1998 | A |
5832601 | Eldridge et al. | Nov 1998 | A |
5833601 | Swartz et al. | Nov 1998 | A |
5838160 | Beaman et al. | Nov 1998 | A |
5841288 | Meaney et al. | Nov 1998 | A |
5841342 | Hegmann et al. | Nov 1998 | A |
5846708 | Hollis et al. | Dec 1998 | A |
5847569 | Ho et al. | Dec 1998 | A |
5848500 | Kirk | Dec 1998 | A |
5852232 | Samsavar et al. | Dec 1998 | A |
5852871 | Khandros | Dec 1998 | A |
5854608 | Leisten | Dec 1998 | A |
5864946 | Eldridge et al. | Feb 1999 | A |
5867073 | Weinreb et al. | Feb 1999 | A |
5869326 | Hofmann | Feb 1999 | A |
5869974 | Akram et al. | Feb 1999 | A |
5874361 | Collins et al. | Feb 1999 | A |
5876082 | Kempf et al. | Mar 1999 | A |
5878486 | Eldridge et al. | Mar 1999 | A |
5879289 | Yarush et al. | Mar 1999 | A |
5883522 | O'Boyle | Mar 1999 | A |
5883523 | Ferland et al. | Mar 1999 | A |
5884398 | Eldridge et al. | Mar 1999 | A |
5888075 | Hasegawa et al. | Mar 1999 | A |
5892539 | Colvin | Apr 1999 | A |
5896038 | Budnaitis et al. | Apr 1999 | A |
5900737 | Graham et al. | May 1999 | A |
5900738 | Khandros et al. | May 1999 | A |
5903143 | Mochizuki et al. | May 1999 | A |
5905421 | Oldfield | May 1999 | A |
5910727 | Fujihara et al. | Jun 1999 | A |
5912046 | Eldridge et al. | Jun 1999 | A |
5914613 | Gleason et al. | Jun 1999 | A |
5914614 | Beaman et al. | Jun 1999 | A |
5916689 | Collins et al. | Jun 1999 | A |
5917707 | Khandros et al. | Jun 1999 | A |
5923180 | Botka et al. | Jul 1999 | A |
5926029 | Ference et al. | Jul 1999 | A |
5926951 | Khandros et al. | Jul 1999 | A |
5940965 | Uhling et al. | Aug 1999 | A |
5944093 | Viswanath | Aug 1999 | A |
5945836 | Sayre et al. | Aug 1999 | A |
5949383 | Hayes et al. | Sep 1999 | A |
5949579 | Baker | Sep 1999 | A |
5959461 | Brown et al. | Sep 1999 | A |
5963364 | Leong et al. | Oct 1999 | A |
5966645 | Davis | Oct 1999 | A |
5970429 | Martin | Oct 1999 | A |
5973504 | Chong | Oct 1999 | A |
5974662 | Eldridge et al. | Nov 1999 | A |
5977783 | Takayama et al. | Nov 1999 | A |
5981268 | Kovacs et al. | Nov 1999 | A |
5982166 | Mautz | Nov 1999 | A |
5983493 | Eldridge et al. | Nov 1999 | A |
5993611 | Moroney, III et al. | Nov 1999 | A |
5994152 | Khandros et al. | Nov 1999 | A |
5995914 | Cabot | Nov 1999 | A |
5996102 | Haulin | Nov 1999 | A |
5998228 | Eldridge et al. | Dec 1999 | A |
5998768 | Hunter et al. | Dec 1999 | A |
5998864 | Khandros et al. | Dec 1999 | A |
5999268 | Yonezawa et al. | Dec 1999 | A |
6001760 | Katsuda et al. | Dec 1999 | A |
6002426 | Back et al. | Dec 1999 | A |
6006002 | Motok et al. | Dec 1999 | A |
6013586 | McGhee et al. | Jan 2000 | A |
6019612 | Hasegawa et al. | Feb 2000 | A |
6023103 | Chang et al. | Feb 2000 | A |
6028435 | Nikawa | Feb 2000 | A |
6029344 | Khandros et al. | Feb 2000 | A |
6031383 | Streib et al. | Feb 2000 | A |
6032356 | Eldridge et al. | Mar 2000 | A |
6032714 | Fenton | Mar 2000 | A |
6033935 | Dozier, II et al. | Mar 2000 | A |
6034533 | Tervo et al. | Mar 2000 | A |
6037785 | Higgins | Mar 2000 | A |
6040739 | Wedeen et al. | Mar 2000 | A |
6042712 | Mathieu | Mar 2000 | A |
6043563 | Eldridge et al. | Mar 2000 | A |
6046599 | Long et al. | Apr 2000 | A |
6049216 | Yang et al. | Apr 2000 | A |
6049976 | Khandros | Apr 2000 | A |
6050829 | Eldridge et al. | Apr 2000 | A |
6051422 | Kovacs et al. | Apr 2000 | A |
6052653 | Mazur et al. | Apr 2000 | A |
6054651 | Fogel et al. | Apr 2000 | A |
6054869 | Hutton et al. | Apr 2000 | A |
6059982 | Palagonia et al. | May 2000 | A |
6060888 | Blackham et al. | May 2000 | A |
6060892 | Yamagata | May 2000 | A |
6061589 | Bridges et al. | May 2000 | A |
6062879 | Beaman et al. | May 2000 | A |
6064213 | Khandros et al. | May 2000 | A |
6064217 | Smith | May 2000 | A |
6064218 | Godfrey et al. | May 2000 | A |
6066911 | Lindemann et al. | May 2000 | A |
6071009 | Clyne | Jun 2000 | A |
6078183 | Cole, Jr. | Jun 2000 | A |
6078500 | Beaman et al. | Jun 2000 | A |
6090261 | Mathieu | Jul 2000 | A |
6091236 | Piety et al. | Jul 2000 | A |
6091255 | Godfrey | Jul 2000 | A |
6091256 | Long et al. | Jul 2000 | A |
6096567 | Kaplan et al. | Aug 2000 | A |
6100815 | Pailthorp | Aug 2000 | A |
6104201 | Beaman et al. | Aug 2000 | A |
6104206 | Verkuil | Aug 2000 | A |
6110823 | Eldridge et al. | Aug 2000 | A |
6114864 | Soejima et al. | Sep 2000 | A |
6114865 | Lagowski et al. | Sep 2000 | A |
6118287 | Boll et al. | Sep 2000 | A |
6118894 | Schwartz et al. | Sep 2000 | A |
6121836 | Vallencourt | Sep 2000 | A |
6124725 | Sato | Sep 2000 | A |
6127831 | Khoury et al. | Oct 2000 | A |
6130536 | Powell et al. | Oct 2000 | A |
6137302 | Schwindt | Oct 2000 | A |
6144212 | Mizuta | Nov 2000 | A |
6146908 | Falque et al. | Nov 2000 | A |
6147502 | Fryer et al. | Nov 2000 | A |
6147851 | Anderson | Nov 2000 | A |
6150186 | Chen et al. | Nov 2000 | A |
6160407 | Nikawa | Dec 2000 | A |
6166553 | Sinsheimer | Dec 2000 | A |
6168974 | Chang et al. | Jan 2001 | B1 |
6169410 | Grace et al. | Jan 2001 | B1 |
6172337 | Johnsgard et al. | Jan 2001 | B1 |
6174744 | Watanabe et al. | Jan 2001 | B1 |
6175228 | Zamborelli et al. | Jan 2001 | B1 |
6176091 | Kishi et al. | Jan 2001 | B1 |
6181144 | Hembree et al. | Jan 2001 | B1 |
6181149 | Godfrey et al. | Jan 2001 | B1 |
6181297 | Leisten | Jan 2001 | B1 |
6181416 | Falk | Jan 2001 | B1 |
6184053 | Eldridge et al. | Feb 2001 | B1 |
6184587 | Khandros et al. | Feb 2001 | B1 |
6184845 | Leisten et al. | Feb 2001 | B1 |
6191596 | Abiko | Feb 2001 | B1 |
6194720 | Li et al. | Feb 2001 | B1 |
6206273 | Beaman et al. | Mar 2001 | B1 |
6208225 | Miller | Mar 2001 | B1 |
RE37130 | Fiori, Jr. | Apr 2001 | E |
6211663 | Moulthrop et al. | Apr 2001 | B1 |
6211837 | Crouch et al. | Apr 2001 | B1 |
6215196 | Eldridge et al. | Apr 2001 | B1 |
6215295 | Smith, III | Apr 2001 | B1 |
6215670 | Khandros | Apr 2001 | B1 |
6218910 | Miller | Apr 2001 | B1 |
6222031 | Wakabayashi et al. | Apr 2001 | B1 |
6222970 | Wach et al. | Apr 2001 | B1 |
6229327 | Boll et al. | May 2001 | B1 |
6232149 | Dozier, II et al. | May 2001 | B1 |
6232787 | Lo et al. | May 2001 | B1 |
6232788 | Schwindt et al. | May 2001 | B1 |
6232789 | Schwindt | May 2001 | B1 |
6233613 | Walker et al. | May 2001 | B1 |
6236223 | Brady et al. | May 2001 | B1 |
6242803 | Khandros et al. | Jun 2001 | B1 |
6242929 | Mizuta | Jun 2001 | B1 |
6245692 | Pearce et al. | Jun 2001 | B1 |
6246247 | Eldridge et al. | Jun 2001 | B1 |
6251595 | Gordon et al. | Jun 2001 | B1 |
6255126 | Mathiue et al. | Jul 2001 | B1 |
6256882 | Gleason et al. | Jul 2001 | B1 |
6257564 | Avneri et al. | Jul 2001 | B1 |
6265950 | Schmidt et al. | Jul 2001 | B1 |
6268015 | Mathieu et al. | Jul 2001 | B1 |
6268016 | Bhatt et al. | Jul 2001 | B1 |
6271673 | Furuta et al. | Aug 2001 | B1 |
6274823 | Khandros et al. | Aug 2001 | B1 |
6275043 | Mühlberger et al. | Aug 2001 | B1 |
6275738 | Kasevich et al. | Aug 2001 | B1 |
6278051 | Peabody | Aug 2001 | B1 |
6278411 | Ohlsson et al. | Aug 2001 | B1 |
6281691 | Matsunaga et al. | Aug 2001 | B1 |
6286208 | Shih et al. | Sep 2001 | B1 |
6292760 | Burns | Sep 2001 | B1 |
6295729 | Beaman et al. | Oct 2001 | B1 |
6300775 | Peach et al. | Oct 2001 | B1 |
6300780 | Beaman et al. | Oct 2001 | B1 |
6307161 | Grube et al. | Oct 2001 | B1 |
6307363 | Anderson | Oct 2001 | B1 |
6307672 | DeNure | Oct 2001 | B1 |
6310483 | Taura et al. | Oct 2001 | B1 |
6320372 | Keller | Nov 2001 | B1 |
6320396 | Nikawa | Nov 2001 | B1 |
6327034 | Hoover et al. | Dec 2001 | B1 |
6329827 | Beaman et al. | Dec 2001 | B1 |
6330164 | Khandros et al. | Dec 2001 | B1 |
6332270 | Beaman et al. | Dec 2001 | B2 |
6334247 | Beaman et al. | Jan 2002 | B1 |
6335625 | Bryant et al. | Jan 2002 | B1 |
6339338 | Eldridge et al. | Jan 2002 | B1 |
6340568 | Hefti | Jan 2002 | B2 |
6340895 | Uher et al. | Jan 2002 | B1 |
6351885 | Suzuki et al. | Mar 2002 | B2 |
6352454 | Kim et al. | Mar 2002 | B1 |
6359456 | Hembree et al. | Mar 2002 | B1 |
6362792 | Sawamura et al. | Mar 2002 | B1 |
6366247 | Sawamura et al. | Apr 2002 | B1 |
6369776 | Leisten et al. | Apr 2002 | B1 |
6376258 | Hefti | Apr 2002 | B2 |
6384614 | Hager et al. | May 2002 | B1 |
6384615 | Schwindt | May 2002 | B2 |
6388455 | Kamieniecki et al. | May 2002 | B1 |
6395480 | Hefti | May 2002 | B1 |
6396296 | Tarter et al. | May 2002 | B1 |
6396298 | Young et al. | May 2002 | B1 |
6400168 | Matsunaga et al. | Jun 2002 | B2 |
6404213 | Noda | Jun 2002 | B2 |
6407542 | Conte | Jun 2002 | B1 |
6407562 | Whiteman | Jun 2002 | B1 |
6409724 | Penny et al. | Jun 2002 | B1 |
6414478 | Suzuki | Jul 2002 | B1 |
6415858 | Getchel et al. | Jul 2002 | B1 |
6418009 | Brunette | Jul 2002 | B1 |
6420722 | Moore et al. | Jul 2002 | B2 |
6424316 | Leisten et al. | Jul 2002 | B1 |
6429029 | Eldridge et al. | Aug 2002 | B1 |
6441315 | Eldridge et al. | Aug 2002 | B1 |
6442831 | Khandros et al. | Sep 2002 | B1 |
6447339 | Reed et al. | Sep 2002 | B1 |
6448788 | Meaney et al. | Sep 2002 | B1 |
6448865 | Miller | Sep 2002 | B1 |
6452406 | Beaman et al. | Sep 2002 | B1 |
6452411 | Miller et al. | Sep 2002 | B1 |
6456099 | Eldridge et al. | Sep 2002 | B1 |
6456103 | Eldridge et al. | Sep 2002 | B1 |
6459343 | Miller | Oct 2002 | B1 |
6459739 | Vitenberg | Oct 2002 | B1 |
6468098 | Eldridge | Oct 2002 | B1 |
6475822 | Eldridge | Nov 2002 | B2 |
6476333 | Khandros et al. | Nov 2002 | B1 |
6476442 | Williams et al. | Nov 2002 | B1 |
6476630 | Whitten et al. | Nov 2002 | B1 |
6479308 | Eldridge | Nov 2002 | B1 |
6480013 | Nayler et al. | Nov 2002 | B1 |
6480978 | Roy et al. | Nov 2002 | B1 |
6481939 | Gillespie et al. | Nov 2002 | B1 |
6482013 | Eldridge et al. | Nov 2002 | B2 |
6483327 | Bruce et al. | Nov 2002 | B1 |
6488405 | Eppes et al. | Dec 2002 | B1 |
6490471 | Svenson et al. | Dec 2002 | B2 |
6491968 | Mathieu et al. | Dec 2002 | B1 |
6496024 | Schwindt | Dec 2002 | B2 |
6499121 | Roy et al. | Dec 2002 | B1 |
6501343 | Miller | Dec 2002 | B2 |
6509751 | Mathieu et al. | Jan 2003 | B1 |
6512482 | Nelson et al. | Jan 2003 | B1 |
6520778 | Eldridge et al. | Feb 2003 | B1 |
6525555 | Khandros et al. | Feb 2003 | B1 |
6526655 | Beaman et al. | Mar 2003 | B2 |
6528984 | Beaman et al. | Mar 2003 | B2 |
6528993 | Shin et al. | Mar 2003 | B1 |
6529844 | Kapetanic et al. | Mar 2003 | B1 |
6534856 | Dozier, II et al. | Mar 2003 | B1 |
6538214 | Khandros | Mar 2003 | B2 |
6538538 | Hreish et al. | Mar 2003 | B2 |
6539531 | Miller et al. | Mar 2003 | B2 |
6548311 | Knoll | Apr 2003 | B1 |
6549022 | Cole, Jr. et al. | Apr 2003 | B1 |
6549106 | Martin | Apr 2003 | B2 |
6551884 | Masuoka | Apr 2003 | B2 |
6559671 | Miller et al. | May 2003 | B2 |
6566079 | Hefti | May 2003 | B2 |
6572608 | Lee et al. | Jun 2003 | B1 |
6573702 | Marcuse et al. | Jun 2003 | B2 |
6578264 | Gleason et al. | Jun 2003 | B1 |
6580283 | Carbone et al. | Jun 2003 | B1 |
6582979 | Coccioli et al. | Jun 2003 | B2 |
6587327 | Devoe et al. | Jul 2003 | B1 |
6597187 | Eldridge et al. | Jul 2003 | B2 |
6603322 | Boll et al. | Aug 2003 | B1 |
6603323 | Miller et al. | Aug 2003 | B1 |
6603324 | Eldridge et al. | Aug 2003 | B2 |
6605941 | Abe | Aug 2003 | B2 |
6605951 | Cowan | Aug 2003 | B1 |
6605955 | Costello et al. | Aug 2003 | B1 |
6606014 | Miller | Aug 2003 | B2 |
6606575 | Miller | Aug 2003 | B2 |
6608494 | Bruce et al. | Aug 2003 | B1 |
6611417 | Chen | Aug 2003 | B2 |
6615485 | Eldridge et al. | Sep 2003 | B2 |
6616966 | Mathieu et al. | Sep 2003 | B2 |
6617862 | Bruce | Sep 2003 | B1 |
6617866 | Ickes | Sep 2003 | B1 |
6621082 | Morita et al. | Sep 2003 | B2 |
6621260 | Eldridge et al. | Sep 2003 | B2 |
6622103 | Miller | Sep 2003 | B1 |
6624648 | Eldridge et al. | Sep 2003 | B2 |
6627461 | Chapman et al. | Sep 2003 | B2 |
6627483 | Ondricek et al. | Sep 2003 | B2 |
6627980 | Eldridge | Sep 2003 | B2 |
6628503 | Sogard | Sep 2003 | B2 |
6628980 | Atalar et al. | Sep 2003 | B2 |
6633174 | Satya et al. | Oct 2003 | B1 |
6636182 | Mehltretter | Oct 2003 | B2 |
6639461 | Tam et al. | Oct 2003 | B1 |
6640415 | Eslamy et al. | Nov 2003 | B2 |
6640432 | Mathieu et al. | Nov 2003 | B1 |
6642625 | Dozier, II et al. | Nov 2003 | B2 |
6643597 | Dunsmore | Nov 2003 | B1 |
6644982 | Ondricek et al. | Nov 2003 | B1 |
6646520 | Miller | Nov 2003 | B2 |
6653903 | Leich et al. | Nov 2003 | B2 |
6655023 | Eldridge et al. | Dec 2003 | B1 |
6657455 | Eldridge et al. | Dec 2003 | B2 |
6657601 | McLean | Dec 2003 | B2 |
6661316 | Hreish et al. | Dec 2003 | B2 |
6664628 | Khandros et al. | Dec 2003 | B2 |
6669489 | Dozier, II et al. | Dec 2003 | B1 |
6672875 | Mathieu et al. | Jan 2004 | B1 |
6677744 | Long | Jan 2004 | B1 |
6678850 | Roy et al. | Jan 2004 | B2 |
6678876 | Stevens et al. | Jan 2004 | B2 |
6680659 | Miller | Jan 2004 | B2 |
6685817 | Mathieu | Feb 2004 | B1 |
6686754 | Miller | Feb 2004 | B2 |
6690185 | Khandros et al. | Feb 2004 | B1 |
6701265 | Hill et al. | Mar 2004 | B2 |
6701612 | Khandros et al. | Mar 2004 | B2 |
6707548 | Kreimer et al. | Mar 2004 | B2 |
6708403 | Beaman et al. | Mar 2004 | B2 |
6710798 | Hershel et al. | Mar 2004 | B1 |
6713374 | Eldridge et al. | Mar 2004 | B2 |
6714828 | Eldridge et al. | Mar 2004 | B2 |
6717426 | Iwasaki | Apr 2004 | B2 |
6720501 | Henson | Apr 2004 | B1 |
6722032 | Beaman et al. | Apr 2004 | B2 |
6724205 | Hayden et al. | Apr 2004 | B1 |
6724928 | Davis | Apr 2004 | B1 |
6727579 | Eldridge et al. | Apr 2004 | B1 |
6727580 | Eldridge et al. | Apr 2004 | B1 |
6727716 | Sharif | Apr 2004 | B1 |
6729019 | Grube et al. | May 2004 | B2 |
6731804 | Carrieri et al. | May 2004 | B1 |
6734687 | Ishitani et al. | May 2004 | B1 |
6737920 | Jen et al. | May 2004 | B2 |
6741085 | Khandros et al. | May 2004 | B1 |
6741092 | Eldridge et al. | May 2004 | B2 |
6741129 | Corsi et al. | May 2004 | B1 |
6744268 | Hollman | Jun 2004 | B2 |
6753679 | Kwong et al. | Jun 2004 | B1 |
6753699 | Stockstad | Jun 2004 | B2 |
6759311 | Eldridge et al. | Jul 2004 | B2 |
6759859 | Deng et al. | Jul 2004 | B2 |
6764869 | Eldridge | Jul 2004 | B2 |
6768328 | Self et al. | Jul 2004 | B2 |
6770955 | Coccioli et al. | Aug 2004 | B1 |
6771806 | Satya et al. | Aug 2004 | B1 |
6777319 | Grube et al. | Aug 2004 | B2 |
6778140 | Yeh | Aug 2004 | B1 |
6778406 | Grube et al. | Aug 2004 | B2 |
6780001 | Eldridge et al. | Aug 2004 | B2 |
6784674 | Miller | Aug 2004 | B2 |
6784677 | Miller | Aug 2004 | B2 |
6784679 | Sweet et al. | Aug 2004 | B2 |
6788093 | Aitren et al. | Sep 2004 | B2 |
6788094 | Khandros et al. | Sep 2004 | B2 |
6791176 | Mathieu et al. | Sep 2004 | B2 |
6794888 | Kawaguchi et al. | Sep 2004 | B2 |
6794934 | Betti-Berutto et al. | Sep 2004 | B2 |
6794950 | Du Toit et al. | Sep 2004 | B2 |
6798225 | Miller | Sep 2004 | B2 |
6798226 | Altmann et al. | Sep 2004 | B2 |
6806724 | Hayden et al. | Oct 2004 | B2 |
6806836 | Ogawa et al. | Oct 2004 | B2 |
6807734 | Eldridge et al. | Oct 2004 | B2 |
6809533 | Anlage et al. | Oct 2004 | B1 |
6811406 | Grube | Nov 2004 | B2 |
6812691 | Miller | Nov 2004 | B2 |
6812718 | Chong et al. | Nov 2004 | B1 |
6815963 | Gleason et al. | Nov 2004 | B2 |
6816031 | Miller | Nov 2004 | B1 |
6816840 | Goodwin, III | Nov 2004 | B1 |
6817052 | Grube | Nov 2004 | B2 |
6818840 | Khandros | Nov 2004 | B2 |
6822463 | Jacobs | Nov 2004 | B1 |
6822529 | Miller | Nov 2004 | B2 |
6825052 | Eldridge et al. | Nov 2004 | B2 |
6825422 | Eldridge et al. | Nov 2004 | B2 |
6827582 | Morris et al. | Dec 2004 | B2 |
6827584 | Mathieu et al. | Dec 2004 | B2 |
6835898 | Eldridge et al. | Dec 2004 | B2 |
6836962 | Khandros et al. | Jan 2005 | B2 |
6838885 | Kamitani | Jan 2005 | B2 |
6838893 | Khandros et al. | Jan 2005 | B2 |
6839964 | Henson | Jan 2005 | B2 |
6845491 | Miller et al. | Jan 2005 | B2 |
6850082 | Schwindt | Feb 2005 | B2 |
6856129 | Thomas et al. | Feb 2005 | B2 |
6856150 | Sporck et al. | Feb 2005 | B2 |
6862727 | Stevens | Mar 2005 | B2 |
6864105 | Grube et al. | Mar 2005 | B2 |
6864694 | McTigue | Mar 2005 | B2 |
6870359 | Sekel | Mar 2005 | B1 |
6870381 | Grube | Mar 2005 | B2 |
6882239 | Miller | Apr 2005 | B2 |
6882546 | Miller | Apr 2005 | B2 |
6887723 | Ondricek et al. | May 2005 | B1 |
6888362 | Eldridge et al. | May 2005 | B2 |
6891151 | Shimada et al. | May 2005 | B2 |
6891385 | Miller | May 2005 | B2 |
6900646 | Kasukabe et al. | May 2005 | B2 |
6900647 | Yoshida et al. | May 2005 | B2 |
6900652 | Mazur | May 2005 | B2 |
6900653 | Yu et al. | May 2005 | B2 |
6902416 | Feldman | Jun 2005 | B2 |
6902941 | Sun | Jun 2005 | B2 |
6903563 | Yoshida et al. | Jun 2005 | B2 |
6906506 | Reano et al. | Jun 2005 | B1 |
6906539 | Wilson et al. | Jun 2005 | B2 |
6906542 | Sakagawa et al. | Jun 2005 | B2 |
6906543 | Lou et al. | Jun 2005 | B2 |
6907149 | Slater | Jun 2005 | B2 |
6908364 | Back et al. | Jun 2005 | B2 |
6909297 | Ji et al. | Jun 2005 | B2 |
6909300 | Lu et al. | Jun 2005 | B2 |
6909983 | Sutherland | Jun 2005 | B2 |
6910268 | Miller | Jun 2005 | B2 |
6911814 | Miller et al. | Jun 2005 | B2 |
6911826 | Plotnikov et al. | Jun 2005 | B2 |
6911834 | Mitchell et al. | Jun 2005 | B2 |
6911835 | Chraft et al. | Jun 2005 | B2 |
6912468 | Marin et al. | Jun 2005 | B2 |
6913468 | Dozier, II et al. | Jul 2005 | B2 |
6914244 | Alani | Jul 2005 | B2 |
6914427 | Gifford et al. | Jul 2005 | B2 |
6914430 | Hasegawa et al. | Jul 2005 | B2 |
6914580 | Leisten | Jul 2005 | B2 |
6917195 | Hollman | Jul 2005 | B2 |
6917210 | Miller | Jul 2005 | B2 |
6917211 | Yoshida et al. | Jul 2005 | B2 |
6917525 | Mok et al. | Jul 2005 | B2 |
6919732 | Yoshida et al. | Jul 2005 | B2 |
6922069 | Jun | Jul 2005 | B2 |
6924653 | Schaeffer et al. | Aug 2005 | B2 |
6924655 | Kirby | Aug 2005 | B2 |
6927078 | Saijo et al. | Aug 2005 | B2 |
6927079 | Fyfield | Aug 2005 | B1 |
6927586 | Thiessen | Aug 2005 | B2 |
6927587 | Yoshioka | Aug 2005 | B2 |
6927598 | Lee et al. | Aug 2005 | B2 |
6930498 | Tervo et al. | Aug 2005 | B2 |
6933713 | Cannon | Aug 2005 | B2 |
6933717 | Dogaru et al. | Aug 2005 | B1 |
6933725 | Lim et al. | Aug 2005 | B2 |
6933736 | Kobayashi et al. | Aug 2005 | B2 |
6933737 | Sugawara | Aug 2005 | B2 |
6937020 | Munson et al. | Aug 2005 | B2 |
6937037 | Eldridge et al. | Aug 2005 | B2 |
6937040 | Maeda et al. | Aug 2005 | B2 |
6937042 | Yoshida et al. | Aug 2005 | B2 |
6937045 | Sinclair | Aug 2005 | B2 |
6937341 | Woollam et al. | Aug 2005 | B1 |
6940264 | Ryken, Jr. et al. | Sep 2005 | B2 |
6940283 | McQueeney | Sep 2005 | B2 |
6943563 | Martens | Sep 2005 | B2 |
6943571 | Worledge | Sep 2005 | B2 |
6943574 | Altmann et al. | Sep 2005 | B2 |
6944380 | Hideo et al. | Sep 2005 | B1 |
6946859 | Karavakis et al. | Sep 2005 | B2 |
6946860 | Cheng et al. | Sep 2005 | B2 |
6946864 | Gramann et al. | Sep 2005 | B2 |
6948391 | Brassell et al. | Sep 2005 | B2 |
6948981 | Pade | Sep 2005 | B2 |
6949942 | Eldridge et al. | Sep 2005 | B2 |
6970001 | Chheda et al. | Nov 2005 | B2 |
6987483 | Tran | Jan 2006 | B2 |
7001785 | Chen | Feb 2006 | B1 |
7002133 | Beausoleil et al. | Feb 2006 | B2 |
7002363 | Mathieu | Feb 2006 | B2 |
7002364 | Kang et al. | Feb 2006 | B2 |
7003184 | Ronnekleiv et al. | Feb 2006 | B2 |
7005842 | Fink et al. | Feb 2006 | B2 |
7005868 | McTigue | Feb 2006 | B2 |
7005879 | Robertazzi | Feb 2006 | B1 |
7006046 | Aisenbrey | Feb 2006 | B2 |
7007380 | Das et al. | Mar 2006 | B2 |
7009188 | Wang | Mar 2006 | B2 |
7009383 | Harwood et al. | Mar 2006 | B2 |
7009415 | Kobayashi et al. | Mar 2006 | B2 |
7011531 | Egitto et al. | Mar 2006 | B2 |
7012425 | Shoji | Mar 2006 | B2 |
7012441 | Chou et al. | Mar 2006 | B2 |
7013221 | Friend et al. | Mar 2006 | B1 |
7014499 | Yoon | Mar 2006 | B2 |
7015455 | Mitsuoka et al. | Mar 2006 | B2 |
7015689 | Kasajima et al. | Mar 2006 | B2 |
7015690 | Wang et al. | Mar 2006 | B2 |
7015703 | Hopkins et al. | Mar 2006 | B2 |
7015707 | Cherian | Mar 2006 | B2 |
7015708 | Beckous et al. | Mar 2006 | B2 |
7015709 | Capps et al. | Mar 2006 | B2 |
7015710 | Yoshida et al. | Mar 2006 | B2 |
7015711 | Rothaug et al. | Mar 2006 | B2 |
7019541 | Kittrell | Mar 2006 | B2 |
7019544 | Jacobs et al. | Mar 2006 | B1 |
7019701 | Ohno et al. | Mar 2006 | B2 |
7020360 | Satomura et al. | Mar 2006 | B2 |
7020363 | Johannessen | Mar 2006 | B2 |
7022976 | Santana, Jr. et al. | Apr 2006 | B1 |
7022985 | Knebel et al. | Apr 2006 | B2 |
7023225 | Blackwood | Apr 2006 | B2 |
7023226 | Okumura et al. | Apr 2006 | B2 |
7023231 | Howland, Jr. et al. | Apr 2006 | B2 |
7025628 | LaMeres et al. | Apr 2006 | B2 |
7026832 | Chaya et al. | Apr 2006 | B2 |
7026833 | Rincon et al. | Apr 2006 | B2 |
7026834 | Hwang | Apr 2006 | B2 |
7026835 | Farnworth et al. | Apr 2006 | B2 |
7030599 | Douglas | Apr 2006 | B2 |
7030827 | Mahler et al. | Apr 2006 | B2 |
7032307 | Matsunaga et al. | Apr 2006 | B2 |
7034553 | Gilboe | Apr 2006 | B2 |
7035738 | Matsumoto et al. | Apr 2006 | B2 |
7057404 | Gleason et al. | Jun 2006 | B2 |
7071722 | Yamada et al. | Jul 2006 | B2 |
7088981 | Chang | Aug 2006 | B2 |
7096133 | Martin et al. | Aug 2006 | B1 |
7161363 | Gleason et al. | Jan 2007 | B2 |
7173433 | Hoshi et al. | Feb 2007 | B2 |
7187188 | Andrews et al. | Mar 2007 | B2 |
7188037 | Hidehira | Mar 2007 | B2 |
7219416 | Inoue et al. | May 2007 | B2 |
7233160 | Hayden et al. | Jun 2007 | B2 |
7271603 | Gleason et al. | Sep 2007 | B2 |
7276922 | Miller et al. | Oct 2007 | B2 |
7315175 | Cole | Jan 2008 | B2 |
7319335 | Brunner et al. | Jan 2008 | B2 |
7319337 | Sakata | Jan 2008 | B2 |
7323680 | Chong | Jan 2008 | B2 |
7323899 | Schuette et al. | Jan 2008 | B2 |
7327153 | Weinraub | Feb 2008 | B2 |
7332918 | Sugiyama et al. | Feb 2008 | B2 |
7332923 | Schott et al. | Feb 2008 | B2 |
7342402 | Kim et al. | Mar 2008 | B2 |
7403028 | Campbell | Jul 2008 | B2 |
20010002794 | Draving et al. | Jun 2001 | A1 |
20010009061 | Gleason et al. | Jul 2001 | A1 |
20010009377 | Schwindt et al. | Jul 2001 | A1 |
20010010468 | Gleason et al. | Aug 2001 | A1 |
20010020283 | Sakaguchi | Sep 2001 | A1 |
20010024116 | Draving | Sep 2001 | A1 |
20010030549 | Gleason et al. | Oct 2001 | A1 |
20010043073 | Montoya | Nov 2001 | A1 |
20010044152 | Burnett | Nov 2001 | A1 |
20010045511 | Moore et al. | Nov 2001 | A1 |
20010054906 | Fujimura | Dec 2001 | A1 |
20020005728 | Babson et al. | Jan 2002 | A1 |
20020008533 | Ito et al. | Jan 2002 | A1 |
20020009377 | Shafer | Jan 2002 | A1 |
20020009378 | Obara | Jan 2002 | A1 |
20020011859 | Smith et al. | Jan 2002 | A1 |
20020011863 | Takahashi et al. | Jan 2002 | A1 |
20020050828 | Seward, IV et al. | May 2002 | A1 |
20020070743 | Felici et al. | Jun 2002 | A1 |
20020070745 | Johnson et al. | Jun 2002 | A1 |
20020079911 | Schwindt | Jun 2002 | A1 |
20020109088 | Nara et al. | Aug 2002 | A1 |
20020118034 | Laureanti | Aug 2002 | A1 |
20020149377 | Hefti et al. | Oct 2002 | A1 |
20020153909 | Petersen et al. | Oct 2002 | A1 |
20020163769 | Brown | Nov 2002 | A1 |
20020168659 | Hefti et al. | Nov 2002 | A1 |
20020176160 | Suzuki et al. | Nov 2002 | A1 |
20020180466 | Hiramatsu et al. | Dec 2002 | A1 |
20020197709 | van der Weide et al. | Dec 2002 | A1 |
20030010877 | Landreville et al. | Jan 2003 | A1 |
20030030822 | Finarov | Feb 2003 | A1 |
20030032000 | Liu et al. | Feb 2003 | A1 |
20030040004 | Hefti et al. | Feb 2003 | A1 |
20030057513 | Leedy | Mar 2003 | A1 |
20030062915 | Arnold et al. | Apr 2003 | A1 |
20030072549 | Facer et al. | Apr 2003 | A1 |
20030076585 | Ledley | Apr 2003 | A1 |
20030077649 | Cho et al. | Apr 2003 | A1 |
20030088180 | Van Veen et al. | May 2003 | A1 |
20030119057 | Gascoyne et al. | Jun 2003 | A1 |
20030139662 | Seidman | Jul 2003 | A1 |
20030139790 | Ingle et al. | Jul 2003 | A1 |
20030155939 | Lutz et al. | Aug 2003 | A1 |
20030170898 | Gundersen et al. | Sep 2003 | A1 |
20030184332 | Tomimatsu et al. | Oct 2003 | A1 |
20030215966 | Rolda et al. | Nov 2003 | A1 |
20040015060 | Samsoondar et al. | Jan 2004 | A1 |
20040021475 | Ito et al. | Feb 2004 | A1 |
20040061514 | Schwindt et al. | Apr 2004 | A1 |
20040066181 | Theis | Apr 2004 | A1 |
20040069776 | Fagrell et al. | Apr 2004 | A1 |
20040090223 | Yonezawa | May 2004 | A1 |
20040095145 | Boudiaf et al. | May 2004 | A1 |
20040095641 | Russum et al. | May 2004 | A1 |
20040100276 | Fanton | May 2004 | A1 |
20040100297 | Tanioka et al. | May 2004 | A1 |
20040108847 | Stoll et al. | Jun 2004 | A1 |
20040113640 | Cooper et al. | Jun 2004 | A1 |
20040130787 | Thome-Forster et al. | Jul 2004 | A1 |
20040132222 | Hembree et al. | Jul 2004 | A1 |
20040134899 | Hiramatsu et al. | Jul 2004 | A1 |
20040140819 | McTigue et al. | Jul 2004 | A1 |
20040147034 | Gore et al. | Jul 2004 | A1 |
20040162689 | Jamneala et al. | Aug 2004 | A1 |
20040170312 | Soenksen | Sep 2004 | A1 |
20040175294 | Ellison et al. | Sep 2004 | A1 |
20040186382 | Modell et al. | Sep 2004 | A1 |
20040193382 | Adamian et al. | Sep 2004 | A1 |
20040197771 | Powers et al. | Oct 2004 | A1 |
20040199350 | Blackham et al. | Oct 2004 | A1 |
20040201388 | Barr | Oct 2004 | A1 |
20040207072 | Hiramatsu et al. | Oct 2004 | A1 |
20040207424 | Hollman | Oct 2004 | A1 |
20040239338 | Jonsson et al. | Dec 2004 | A1 |
20040246004 | Heuermann | Dec 2004 | A1 |
20040251922 | Martens et al. | Dec 2004 | A1 |
20050024069 | Hayden et al. | Feb 2005 | A1 |
20050026276 | Chou | Feb 2005 | A1 |
20050030047 | Adamian | Feb 2005 | A1 |
20050054029 | Tomimatsu et al. | Mar 2005 | A1 |
20050062533 | Vice | Mar 2005 | A1 |
20050068054 | Mok et al. | Mar 2005 | A1 |
20050083130 | Grilo | Apr 2005 | A1 |
20050088191 | Lesher | Apr 2005 | A1 |
20050101846 | Fine et al. | May 2005 | A1 |
20050116730 | Hsu | Jun 2005 | A1 |
20050142033 | Glezer et al. | Jun 2005 | A1 |
20050151548 | Hayden et al. | Jul 2005 | A1 |
20050156675 | Rohde et al. | Jul 2005 | A1 |
20050164160 | Gunter et al. | Jul 2005 | A1 |
20050165316 | Lowery et al. | Jul 2005 | A1 |
20050168722 | Forstner et al. | Aug 2005 | A1 |
20050172703 | Kley | Aug 2005 | A1 |
20050174191 | Brunker et al. | Aug 2005 | A1 |
20050178980 | Skidmore et al. | Aug 2005 | A1 |
20050179444 | Tiemeijer | Aug 2005 | A1 |
20050195124 | Puente Baliarda et al. | Sep 2005 | A1 |
20050229053 | Sunter | Oct 2005 | A1 |
20050236587 | Kodama et al. | Oct 2005 | A1 |
20050237102 | Tanaka | Oct 2005 | A1 |
20060030060 | Noguchi et al. | Feb 2006 | A1 |
20060052075 | Galivanche et al. | Mar 2006 | A1 |
20060155270 | Hancock et al. | Jul 2006 | A1 |
20060184041 | Andrews et al. | Aug 2006 | A1 |
20060220663 | Oikawa | Oct 2006 | A1 |
20060226864 | Kramer | Oct 2006 | A1 |
20070024506 | Hardacker | Feb 2007 | A1 |
20070030021 | Cowan et al. | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
607045 | Nov 1978 | CH |
1083975 | Mar 1994 | CN |
2951072 | Jul 1981 | DE |
3426565 | Jan 1986 | DE |
3637549 | May 1988 | DE |
288234 | Mar 1991 | DE |
4223658 | Jan 1993 | DE |
9313420 | Oct 1993 | DE |
19522774 | Jan 1997 | DE |
19542955 | May 1997 | DE |
19618717 | Jan 1998 | DE |
19749687 | May 1998 | DE |
29809568 | Oct 1998 | DE |
10000324 | Jul 2001 | DE |
20220754 | May 2004 | DE |
0230766 | Dec 1985 | EP |
0195520 | Sep 1986 | EP |
0230348 | Jul 1987 | EP |
0259163 | Mar 1988 | EP |
0259183 | Mar 1988 | EP |
0259942 | Mar 1988 | EP |
0261986 | Mar 1988 | EP |
0270422 | Jun 1988 | EP |
0333521 | Sep 1989 | EP |
0460911 | Dec 1991 | EP |
0846476 | Jun 1998 | EP |
0945736 | Sep 1999 | EP |
579665 | Aug 1946 | GB |
2014315 | Aug 1979 | GB |
2179458 | Mar 1987 | GB |
52-19046 | Feb 1977 | JP |
53037077 | Apr 1978 | JP |
53-052354 | May 1978 | JP |
55115383 | Sep 1980 | JP |
56-007439 | Jan 1981 | JP |
5691503 | Jul 1981 | JP |
56088333 | Jul 1981 | JP |
57075480 | May 1982 | JP |
57163035 | Oct 1982 | JP |
57171805 | Oct 1982 | JP |
58-130602 | Aug 1983 | JP |
594189 | Jan 1984 | JP |
60-5462 | Apr 1984 | JP |
60-236241 | Nov 1985 | JP |
61142802 | Jun 1986 | JP |
62-11243 | Jan 1987 | JP |
62-51235 | Mar 1987 | JP |
62-58650 | Mar 1987 | JP |
62098634 | May 1987 | JP |
62107937 | May 1987 | JP |
62-179126 | Aug 1987 | JP |
62239050 | Oct 1987 | JP |
62295374 | Dec 1987 | JP |
63-108736 | May 1988 | JP |
63-129640 | Jun 1988 | JP |
63-143814 | Jun 1988 | JP |
63-152141 | Jun 1988 | JP |
63-192246 | Aug 1988 | JP |
63-318745 | Dec 1988 | JP |
64-21309 | Feb 1989 | JP |
1-165968 | Jun 1989 | JP |
1-214038 | Aug 1989 | JP |
01209380 | Aug 1989 | JP |
1-219575 | Sep 1989 | JP |
1-296167 | Nov 1989 | JP |
2-22836 | Jan 1990 | JP |
2-141681 | May 1990 | JP |
02124469 | May 1990 | JP |
02135804 | May 1990 | JP |
2-191352 | Jul 1990 | JP |
3-175367 | Jul 1991 | JP |
3196206 | Aug 1991 | JP |
03228348 | Oct 1991 | JP |
04130639 | May 1992 | JP |
04159043 | Jun 1992 | JP |
04206930 | Jul 1992 | JP |
4-340248 | Nov 1992 | JP |
05082631 | Apr 1993 | JP |
5-113451 | May 1993 | JP |
5157790 | Jun 1993 | JP |
5166893 | Jul 1993 | JP |
6-71425 | Mar 1994 | JP |
6-85044 | Mar 1994 | JP |
6-102313 | Apr 1994 | JP |
6-132709 | May 1994 | JP |
6-160236 | Jun 1994 | JP |
6154238 | Jun 1994 | JP |
6-295949 | Oct 1994 | JP |
7005078 | Jan 1995 | JP |
7012871 | Jan 1995 | JP |
7-201945 | Aug 1995 | JP |
8035987 | Feb 1996 | JP |
8-261898 | Oct 1996 | JP |
08330401 | Dec 1996 | JP |
09127432 | May 1997 | JP |
10-48256 | Feb 1998 | JP |
10116866 | May 1998 | JP |
11004001 | Jan 1999 | JP |
11023975 | Jan 1999 | JP |
2000-137120 | May 2000 | JP |
2000-329664 | Nov 2000 | JP |
2001-33633 | Feb 2001 | JP |
2001-124676 | May 2001 | JP |
2001-189285 | Jul 2001 | JP |
2001-189378 | Jul 2001 | JP |
2002-203879 | Jul 2002 | JP |
2002243502 | Aug 2002 | JP |
2004-507851 | Mar 2004 | JP |
20030090158 | Nov 2003 | KR |
843040 | Jun 1981 | SU |
1195402 | Nov 1985 | SU |
1327023 | Jul 1987 | SU |
1392603 | Apr 1988 | SU |
WO8000101 | Jan 1980 | WO |
WO9410554 | May 1994 | WO |
WO9807040 | Feb 1998 | WO |
W0073905 | Dec 2000 | WO |
WO0107207 | Feb 2001 | WO |
WO 0169656 | Sep 2001 | WO |
WO 2004044604 | May 2004 | WO |
WO 2004065944 | Aug 2004 | WO |
WO 2004079299 | Sep 2004 | WO |
WO 2005062025 | Jul 2005 | WO |
WO 2007145727 | Dec 2007 | WO |
WO 2007145728 | Dec 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090189623 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
60964103 | Aug 2007 | US |