Differentially encoded biological analyzer planar array apparatus and methods

Information

  • Patent Grant
  • 8298831
  • Patent Number
    8,298,831
  • Date Filed
    Friday, May 15, 2009
    15 years ago
  • Date Issued
    Tuesday, October 30, 2012
    12 years ago
Abstract
A method of probing a plurality of analyzer molecules distributed about a detection platform is disclosed. The method includes contacting a test sample to the plurality of analyzer molecules, scanning the plurality of analyzer molecules at a rate relating to a carrier frequency signal, and detecting the presence or absence of a biological molecule based at least in part upon the presence or absence of a signal substantially at a sideband of the carrier frequency signal. A molecule detection platform including a substrate and a plurality of targets positioned about the substrate is also disclosed. Specific analyzer molecules adapted to bind a specific analyte are immobilized about a first set of the targets. Nonspecific analyzer molecules are immobilized about a second set of the targets. The targets positioned about the substrate along at least a segment of a scanning pathway alternate between at least one of the first set and at least one of the second set. A method including providing a substrate for supporting biological analyzer molecules the substrate including at least one scanning pathway is also disclosed. The scanning pathway includes a plurality of scanning targets. Specific biological analyzer molecules adapted to detect a specific target analyte are distributed about a first set of the targets which alternate in groups of at least one with a second set of the targets the second set of the targets not including the specific biological analyzer molecules.
Description
TECHNICAL FIELD

The present invention generally relates to apparatus, methods and systems for detecting the presence of one or more target analytes or specific biological materials in a sample, and more particularly to a laser compact disc system for detecting the presence of biological materials and/or analyte molecules bound to target receptors on a disc by sensing changes in the optical characteristics of a probe beam reflected, transmitted, or diffracted by the disc caused by the materials and/or analytes.


BACKGROUND OF THE INVENTION

In many chemical, biological, medical, and diagnostic applications, it is desirable to detect the presence of specific molecular structures in a sample. Many molecular structures such as cells, viruses, bacteria, toxins, peptides, DNA fragments, pathogens, and antibodies are recognized by particular receptors. Biochemical technologies including gene chips, immunological chips, and DNA arrays for detecting gene expression patterns in cancer cells, exploit the interaction between these molecular structures and the receptors. [For examples see the descriptions in the following articles: Sanders, G. H. W. and A. Manz, Chip-based Microsystems for genomic and proteomic analysis. Trends in Anal. Chem., 2000, Vol. 19(6), p. 364-378. Wang, J., From DNA biosensors to gene chips. Nucl. Acids Res., 2000, Vol. 28(16), p. 3011-3016; Hagman, M., Doing immunology on a chip. Science, 2000, Vol. 290, p. 82-83; Marx, J., DNA Arrays reveal cancer in its many forms. Science, 2000, Vol. 289, p. 1670-1672]. These technologies generally employ a stationary chip prepared to include the desired receptors (those which interact with the target analyte or molecular structure under test). Since the receptor areas can be quite small, chips may be produced which test for a plurality of analytes. Ideally, many thousand binding receptors are provided to provide a complete assay. When the receptors are exposed to a biological sample, only a few may bind a specific protein or pathogen. Ideally, these receptor sites are identified in as short a time as possible.


One such technology for screening for a plurality of molecular structures is the so-called immunological compact disk, which simply includes an antibody microarray. [For examples see the descriptions in the following articles: Ekins, R., F. Chu, and E. Biggart, Development of microspot multi-analyte ratiometric immunoassay using dual flourescent-labelled antibodies. Anal. Chim. Acta, 1989, Vol. 227, p. 73-96; Ekins, R. and F. W. Chu, Multianalyte microspot immunoassay—Microanalytical “compact Disk” of the future. Clin. Chem., 1991, Vol. 37(11), p. 1955-1967; Ekins, R., Ligand assays: from electrophoresis to miniaturized microarrays. Clin. Chem., 1998, Vol. 44(9), p. 2015-2030]. Conventional fluorescence detection is employed to sense the presence in the microarray of the molecular structures under test. Other approaches to immunological assays employ traditional Mach-Zender interferometers that include waveguides and grating couplers. [For examples see the descriptions in the following articles: Gao, H., et al., Immunosensing with photo-immobilized immunoreagents on planar optical wave guides. Biosensors and Bioelectronics, 1995, Vol. 10, p. 317-328; Maisenholder, B., et al., A GaAs/AlGaAs-based refractometer platform for integrated optical sensing applications. Sensors and Actuators B, 1997, Vol. 38-39, p. 324-329; Kunz, R. E., Miniature integrated optical modules for chemical and biochemical sensing. Sensors and Actuators B, 1997, Vol. 38-39, p. 13-28; Dübendorfer, J. and R. E. Kunz, Reference pads for miniature integrated optical sensors. Sensors and Actuators B, 1997 Vol. 38-39, p. 116-121; Brecht, A. and G. Gauglitz, recent developments in optical transducers for chemical or biochemical applications. Sensors and Actuators B, 1997, Vol. 38-39, p. 1-7]. Interferometric optical biosensors have the intrinsic advantage of interferometric sensitivity, but are often characterized by large surface areas per element, long interaction lengths, or complicated resonance structures. They also can be susceptible to phase drift from thermal and mechanical effects. Current practice is to perform long time integrations (as in fluorescence detection) to achieve a significant signal. However, the long integration times place the measurement firmly in the range of 1/f noise (frequency=1/τ, where τ is the measurement time). Likewise, SPR measurement approaches (for example systems from Biacore) or resonant mirror approaches (for example systems from SRU Biosystems) are angle resolved or wavelength resolved, requiring detailed measurements that take long integration times.


While the abovementioned techniques have proven useful for producing and reading assay information within the chemical, biological, medical and diagnostic application industries, developing improved fabrication and reading techniques for planar arrays with significant improvement in performance over existing planar array technology is desirable.


SUMMARY OF THE INVENTION

One embodiment according to the present invention includes a method of probing a plurality of analyzer molecules distributed about a detection platform. The method includes contacting a test sample to the plurality of analyzer molecules, scanning the plurality of analyzer molecules at a rate relating to a carrier frequency signal, and detecting the presence or absence of a biological molecule based at least in part upon the presence or absence of a signal substantially at a sideband of the carrier frequency signal.


Another embodiment according to the present invention includes a molecule detection platform including a substrate and a plurality of targets positioned about the substrate. Specific analyzer molecules adapted to bind a specific analyte are immobilized about a first set of the targets. Nonspecific analyzer molecules are immobilized about a second set of the targets. The targets positioned about the substrate along at least a segment of a scanning pathway alternate between at least one of the first set and at least one of the second set.


A further embodiment according to the present invention includes a method including providing a substrate for supporting biological analyzer molecules. The substrate includes at least one scanning pathway. The scanning pathway including a plurality of scanning targets. The method further includes distributing specific biological analyzer molecules adapted to detect a specific target analyte about a first set of the targets which alternate in groups of at least one with a second set of the targets. The second set of the targets does not include the specific biological analyzer molecules.


Additional embodiments, aspects, and advantages of the present invention will be apparent from the following description.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.



FIG. 1 shows a graph of noise power density versus frequency according to an embodiment of the present invention;



FIG. 2 shows a graph of power spectrum versus frequency according to an embodiment of the present invention;



FIG. 3 shows a distribution of elements according to an embodiment of the present invention;



FIG. 4 shows a distribution of elements according to an embodiment of the present invention;



FIG. 5 shows scanning of an element according to an embodiment of the present invention;



FIG. 6 shows a distribution of elements according to an embodiment of the present invention;



FIG. 7 shows a distribution of elements according to an embodiment of the present invention;



FIG. 8 shows a bio-CD according to an embodiment of the present invention;



FIG. 9A shows a bio-CD according to an embodiment of the present invention;



FIG. 9B shows a bio-CD according to an embodiment of the present invention;



FIG. 10A shows a bio-CD according to an embodiment of the present invention;



FIG. 10B shows a bio-CD according to an embodiment of the present invention;



FIG. 11 shows a bio-CD according to an embodiment of the present invention;



FIG. 12 shows scanning of elements according to an embodiment of the present invention;



FIG. 13 shows a detection system according to an embodiment of the present invention;



FIG. 14 shows a graph of time domain results of scanning a differentially encoded MD-class calibration disk;



FIG. 15 shows a graph of frequency domain results of scanning a differentially encoded MD-class calibration disk;



FIG. 16 shows a graph of frequency domain results of scanning a differentially encoded MD-class disk;



FIG. 17 shows a graph of frequency domain results of scanning a differentially encoded MD-class disk;



FIG. 18 shows a graph of frequency domain results of scanning a differentially encoded MD-class disk;



FIG. 19 shows a graph of frequency domain results of scanning a differentially encoded MD-class disk;



FIG. 20 shows a portion of an MD-class disk;



FIG. 21 shows a graph of time domain results of scanning the disk of FIG. 20;



FIG. 22 shows a graph of frequency domain results of scanning the disk of FIG. 20;



FIG. 23 shows a graph of time domain results of scanning a PC-class disk;



FIG. 24 shows a portion of a PC-class disk;



FIG. 25 shows a magnified view of a portion of FIG. 24;



FIG. 26 shows Fourier domain results of scanning the disk of FIG. 24;



FIG. 27 shows a demodulated image of the of the Fourier domain results of FIG. 26;



FIG. 28 shows a graph of a comparison of prescan subtraction without demodulation and prescan subtraction with demodulation.





DETAILED DESCRIPTION

For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.


With reference to FIG. 1 there is shown graph 1000 with frequency increasing along its x axis as indicated by x axis arrow 1020 and noise power density increasing along its y axis as indicated by its y axis arrow 1010. Frequency can be either temporal frequency (Hz) or spatial frequency (1/cm). Graph 1000 illustrates noise power density versus frequency in the absence of a carrier frequency. Curve 1030 illustrates the noise power density of total noise as it varies with frequency. Curve 1040 illustrates the noise power density of 1/f noise as it varies with frequency. A bandwidth between frequencies 1060 and 1070 is indicated by arrows BW. The total noise for this bandwidth is given by the area under curve 1030 labeled 1080 which represents detected noise power for a measurement taken at bandwidth BW. The frequency range where only static is detectable is illustrated by arrows ST. The frequency value of the 1/f noise knee is illustrated by line 1050 and represents the frequency above which a signal may be detected over noise.


With reference to FIG. 2 there is shown graph 2000 with frequency increasing along its x axis as indicated by x axis arrow 2020 and power spectrum increasing along its y axis as indicated by y axis arrow 2010. The power level of 1/f noise is illustrated by curve 2030. A DC sideband signal 2040 having DC sideband center frequency 2041, a carrier signal 2060 having carrier center frequency 2061, and carrier sidebands 2050 and 2070 having carrier sideband center frequencies 2051 and 2071, respectively, are also shown.


Graph 2000 illustrates one example of frequency domain detection of the molecular, cellular, or particulate content of a liquid or air sample in which an analyte binds on or in a support material to produce a periodic, quasi-periodic or harmonic modulation of phase or amplitude of an electromagnetic wave that probes the support material. The periodic or quasi-periodic modulation can be in time or space, leading to a time-domain carrier frequency or a space-domain carrier frequency, by relative motion of the probe beam and support. The presence of the bound analyte appears as a modulation sideband of the carrier frequency. As shown in graph 2000, carrier sideband signals 2050 and 2070 indicate the presence of one or more target analytes bound to analyzer molecules distributed about a support material which is probed with an electromagnetic wave in a detection system. The detection system preferably includes a photodetector, or another detector responsive to electromagnetic waves, that outputs a current as described below by Equation 1:







i


(
t
)


=


1
2



(

1
+

cos






ω
c


t


)



(

1
+

A





cos






ω
m


t


)






Equation 1 has a harmonic decomposition described by Equation 2:







i


(
t
)


=


1
2

+


1
2


cos






ω
c


t

+


A
2


cos






ω
m


t

+


A
4



cos


(


ω
c

+

ω
m


)



t

+


A
4



cos


(


ω
c

-

ω
m


)



t






Equation 2 describes a DC sideband at ωm, a carrier band at ωc, and two carrier sidebands at ωc−ωm and ωcm which correspond to DC sideband 2040, a carrier 2060, and sidebands 2050 and 2070 as shown in graph 2000. In Equations 1 and 2, t is time, i(t) is detector output current as a function of time, ωc is carrier angular frequency, ωm the modulation angular frequency, and A is the envelope amplitude. In further embodiments detector output could be a voltage, another electrical signal, an optical signal, or a magnetic signal, for example, or some combination of these and/or other outputs.


With reference to FIG. 3 there is shown a distribution of elements 3000 including elements 3010 and 3020. Elements 3010 and 3020 are distributed about reading pathway 3004 which is defined on a substrate. As shown by dashed lines 3030, 3040, 3050, 3060, and 3070, elements 3010 and 3020 are arranged in alternating groups of four. As shown by ellipses 3006 and 3008 this pattern can continue beyond the segment illustrated in FIG. 3 with the groups of four elements alternating as described above. A unit cell includes a group of four elements 3010 and a group of four elements 3020 as is indicated by arrow UC between dashed lines 3030 and 3050. Scanning footprint SF travels along reading pathway 3004 to scan the distribution of elements 3000. Additional embodiments include alternating groups of different numbers, for example, one, two, three, five or more, and corresponding different sizes of unit cells.


Elements 3010 include specific analyzer molecules which selectively bind with a target analyte and elements 3020 include nonspecific analyzer molecules which do not selectively bind with a target analyte but may exhibit similar binding properties with respect to other molecules. In a preferred embodiment according to the present invention, elements 3010 include specific antibodies immobilized about their surfaces, for example, as a monolayer, fractional monolayer, partial monolayer, or near monolayer, and elements 3020 include similarly immobilized nonspecific antibodies. For example, if an assay is to be conducted to identify a particular mouse protein the specific antibody could be goat anti-mouse IgG (the antibody to the mouse protein produced by a goat) and the nonspecific antibody could be goat anti-rat IgG (the antibody to an analogous rat protein produced by a goat). The goat anti-mouse IgG will selectively bind the mouse protein while the goat anti-rat IgG will not bind with it or will have a substantially lesser binding affinity, however, both IgGs exhibit similar nonspecific background binding with molecules other than the target analyte. In additional embodiments the non-specific protein could be a non-IgG, for example, casein or bovine serum albumin (BSA). These proteins could be used to test general protein-protein background, and could be used to test for systematics that are common to both groups of immobilized molecules. In further embodiments the specific analyzer molecules could be a cDNA that is complimentary to the target DNA, and the non-specific group could be a statistically similar, but not identical, cDNA. Additional embodiments cal include specific and non-specific aptamers. A variety of other specific and nonspecific antibody pairs may also be used, including those exhibiting varying degrees of similarity in nonspecific background binding and those not exhibiting similar nonspecific background binding. Furthermore, combinations of specific and nonspecific analyzer molecules other than antibodies may also be used. Additionally, nonspecific analyzer molecules may be omitted entirely in which case elements 3020 would not include immobilized molecules. These alternative exemplary embodiments and others can be used in connection with the present embodiment and also in connection with the other embodiments including those described elsewhere herein.


Distribution of elements 3000 is one example of differential encoding or envelope modulation of bimolecular information. According to a preferred embodiment of the present invention, distribution of elements 3000 is on a bio-CD where elements 3010 and 3020 are interferometric microstructures formed on a surface of the bio-CD, and reading pathway 3004 is one of a number of a substantially concentric circular tracks. As described above, elements 3010 on the track are active (carrying a specific biological analyzer molecule) and elements 3020 are inactive (carrying nonspecific molecules, no molecules, or inert molecules that may be comparable in size with the analyzer molecule). In this 4 on/4 off format, the carrier frequency corresponds to the positioning of each individual one of elements 3010 and 3020, and the detection frequency corresponds to the repeat period of the unit cell UC which is every eight elements. Thus, the detection frequency is equal to one-eighth of the carrier frequency. At disk rotation speeds of 6000 rpm (100 Hz) and 1024 elements per track, the carrier frequency is approximately 100 kHz and the detection frequency is approximately 12.5 kHz. A wide variety of other bimolecular platforms, scanning rates, and element distributions including, for example, those described herein, are contemplated and can result in a variety of other carrier frequencies and detection frequencies.


According to a preferred embodiment of the present invention, an optical detection system including two phase-locked loops in series, with the front end referenced to the carrier frequency, and the back end referenced to the unit cell can be used to scan a bio-CD having distribution of elements 3000 with a laser. Differential encoding of distribution of elements 3000, for example as described above and elsewhere herein, can preferably reduce susceptibility to laser intensity drift or disk wobble by subtracting out these and other system drifts and biases, and can preferably directly subtract non-specific background binding, for example if the off region is printed with nonspecific antibody. One example of a detection system according to a preferred embodiment of the present invention can be found in U.S. Pat. No. 6,685,885 which is hereby incorporated by reference. This detection system could also be any other detection system responsive to electromagnetic waves including for example those described elsewhere herein.


According to a preferred embodiment of the present invention the detection system can utilize phase quadrature interferometric techniques. Examples of phase quadrature interferometric techniques include the micro-diffraction quadrature class (“MD-class”) and adaptive optic quadrature class (“AO-class”) as described in U.S. application Ser. No. 10/726,772 filed on Dec. 3, 2003 entitled “Adaptive Interferometric Multi-Analyte High-Speed Biosensor” (published on Aug. 26, 2004 as U.S. Pub. No. 2004/0166593), the contents of which are incorporated herein by reference. Other examples of phase quadrature interferometric techniques include the phase-contrast quadrature class (“PC-class”) as described in U.S. Provisional Patent Application No. 60/649,070, filed Feb. 1, 2005, entitled “Phase-Contrast Quadrature For Spinning Disk Interferometry And Immunological Assay”, U.S. Provisional Patent Application No. 60/755,177, filed Dec. 30, 2005, entitled “Phase-Contrast BioCD: High-Speed Immunoassays at Sub-Picogram Detection Levels”, and U.S. application Ser. No. 11/345,462 being filed the same day as the present application that claims priority to these two provisional applications and entitled “Method And Apparatus For Phase Contrast Quadrature Interferometric Detection Of An Immunoassay.” The disclosure of the utility application being filed on the same day as the present application is incorporated herein by reference. Additionally, further embodiments of the present invention include detection systems adapted to utilize surface plasmon resonance or SPR, fluorescence, resonance and other techniques in which high frequency modulation in time or space originates from analyte bound to a solid support with a spatial frequency that is scanned to produce a sideband indicating the presence of the analyte. Still other preferred embodiments of the present invention include detection platforms for use in these and other detection systems which include distributions of targets including analyzer molecules which produce sideband signals that depend upon modulation indicative of the presence of an analyte.


With reference to FIG. 4 there is shown a biosensor platform 4000 including a substrate 4030 having an upper surface 4010 and lower surface 4020. Interferometric elements 4040, 4050, 4060, and 4070 are formed on the upper surface 4010 of substrate 4030. Platform 4000 may also include additional interferometric elements in addition to those shown in the portion of platform 4000 illustrated in FIG. 4. A laser beam 4002 having wavelength λ scans the interferometric elements 4040, 4050, 4060, and 4070 in the direction indicated by arrow DM. Elements 4040 and 4050 include specific analyzer molecules immobilized about their scanned surfaces and elements 4060 and 4070 include nonspecific analyzer molecules immobilized about their scanned surfaces. These specific and nonspecific analyzer molecules can be, for example, the same or similar to those described above in connection with FIG. 3 and elsewhere herein. This configuration of specific and nonspecific analyzer molecules of biosensor platform 4000 is another example of differential encoding according to a preferred embodiment of the present invention. In one preferred embodiment of the present invention platform 4000 is a micro-diffraction bio-CD and elements 4040, 4050, 4060, and 4070 are radial spokes distributed about the surface of the bio-CD. Platform 4000 can also be any of various other biosensor platforms including, for example, those described herein.


Biosensor platform 4000 is one example of carrier suppression according to a preferred embodiment of the present invention. Elements 4060 and 4040 have a height illustrated by arrows HA and elements 4050 and 4070 have a height illustrated by arrows HB. Height HA is about λ/8 and height HB is about 3λ/8. Successive scanning of elements alternating between height HA and HB flips the phase quadratures detected for successive elements. This results in a modulation at about twice the amplitude as compared to a platform having interferometric elements with substantially uniform element heights. The carrier is suppressed by an approximately π phase difference between phase quadrature signals detected for successive elements. Carrier suppression may be useful in a variety of circumstances. In one example, where carrier side bands are weak relative to the carrier, carrier noise can impact detection. In another example where carrier sidebands overlap with the carrier, carrier noise can also impact detection. Carrier wave suppression can preferably increase the ratio of signal to noise. Complete carrier suppression or double sideband detection may be used to improve the signal to noise ratio of detection in these and other situations. Partial carrier suppression may also improve the signal to noise ratio of detection in these and other situations. Carrier wave suppression can also be accomplished in other manners, for example, fabrication of disk structures and reflectivities relative to beam width, through use of a clipper circuit that clips the high signal detected from a land of a detection platform, or through use of a filter, for example a band stop filter.


With reference to FIG. 5 there is shown an example of a scanning 5000 during which footprint 5020 passes over element 5010. Areas 5021 are the areas of the scanning footprint not over element 5010 and area 5011 is the area in which scanning footprint 5020 overlaps element 5010. According to a preferred embodiment element 5010 is a gold microdiffraction element placed on a partially reflecting substrate. This embodiment allows carrier suppression by the total power reflected from the element being equal to the total power reflected under the condition of quadrature which removes the large modulation caused by the approximately 50% amplitude modulation of a micro diffraction bio-CD. This effect can be illustrated through the following equations. The total electrical (far) field is given by Equation 3:







E
T

=



E
0


A




[



r
L



A
L


+


r
r



A
r











ϕ




]






The total reflected intensity is given by Equation 4:







I
T

=



E
0
2

A



[



R
L



A
L
2


+


R
r



A
r
2


+

2






r
L



r
r



A
L



A
r


cos





ϕ


]






Under the condition of Land: Φ=0, AL=A and Ar=0. Thus, intensity reflected by land is given by Equation 5:

IL=I0RL


Under the condition of Quadrature: Φ=π/2. Thus, the reflected intensity under a condition of quadrature is given by Equation 6:










I
Q

=



E
0
2

A



[



R
L



A
L
2


+


R
r



A
r
2



]








=


I
0



[



R
L



a
L
2


+


R
r



a
r
2



]









where ai is the area fraction, and aL+ar=1. Conditions of balanced operation are given by Equations 7 and 8:

IQ=IL
RLaL2+Rrar2=RL


The solution of which are given in Equations 9 and 10:








1
-

a
L



1
+

a
L



=


R
L


R
r









a
L

=


1
-


R
L


R
r




1
+


R
L


R
r








For Equations 3-10, Ir is the total reflected intensity, IL is the intensity reflected by land, IO is the incident reflected intensity, IQ is the reflected intensity under a condition of quadrature, Eo is the reflected field, A is the total area, AL is area 5021, Ar is area 5011, aL is AL divided by the area of the beam footprint, aR is AL divided by the area of the element 5010 intersecting element 5020, RL is |rL|2, Rr is |rr|2 and Φ is the phase difference between reflected components of the laser. Thus, if the partially reflective substrate is silicon, for example, which has RL=32% and Rr=98%, then aL=51% and ar=49%.


With reference to FIG. 6 there is shown a biosensor platform 6000 including substrate 6030 having an upper surface 6010 and a lower surface 6020. Upper surface 6010 includes analyzer molecules 6040, 6050, 6060, 6070, 6080 and 6090 immobilized about surface 6010. Analyzer molecules 6040, 6060, and 6080 are specific analyzer molecules for selectively binding a particular analyte and analyzer molecules 6050, 6070 and 6090 are nonspecific analyzer molecules. The specific and nonspecific analyzer molecules can be, for example, the same or similar to those described elsewhere herein. FIG. 6 shows one example of an alternating pattern of specific and nonspecific analyzer molecules. Laser beam 6002 scans the analyzer molecules in the direction indicated by the arrow DM which is preferably accomplished by rotating the platform 6000 but could also be accomplished by other movement of platform 6000 or by movement of beam 6002. According to a preferred embodiment of the present invention platform 6000 is a phase contrast bio-CD or an adaptive optical bio-CD and analyzer molecules 6040, 6050, 6060, 6070, 6080 and 6090 are radial spokes or other patterns of analyzer molecules, however, platform 6000 could also be another kind of bio-CD or other platform including, for example, those described elsewhere herein.


During scanning of platform 6000 by laser beam 6002 signal phase modulation depends only upon the binding differences between the specific and nonspecific analyzer molecules. For example, nonspecific binding that is common to both the types of analyzer molecules is not imparted onto the signal beam or has minimal impact on the signal beam. The detected signal is therefore independent of nonspecific binding. In this embodiment there is no signal detected at or about the carrier frequency and only the modulation caused by binding of the specific analyte and the specific analyzer molecule is detected. This is one example of differential encoding including carrier wave suppression and double sideband detection.


With reference to FIG. 7 there is shown a biological analyzer platform 7000 including substrate 7030 including upper surface 7010 and lower surface 7020. Interferometric elements 7070 are distributed about upper surface 7010 and are spaced apart by gaps 7060. Interferometric elements 7070 include specific biological analyzer molecules 7040 and nonspecific biological analyzer molecules 7050 immobilized about their surfaces which can be the same or similar to those described elsewhere herein. Groups of the interferometric elements and analyzer molecules 7090 and 7091 are also shown. Groups 7090 and 7091 have patterns of specific and nonspecific analyzer molecules that are at spatial frequencies with a π phase difference, that is, the positions of specific and nonspecific analyzer molecules are flipped between groups 7090 and 7091. Platform 7000 is preferably an adaptive optical bio-CD, however, platform 6000 could also be any other type of biosensor platform or another type of bio-CD including, for example, those described elsewhere herein.


During scanning of platform 7000 by a laser beam the phase of the carrier is periodically flipped by π for successive groups 7090 and 7091. The effect of the phase flipping of the carrier is that the carrier is suppressed in the power spectrum and the modulation due to binding of a specific analyzer molecule to the specific antibodies is detectable at carrier sidebands. This is one example of differential encoding including carrier wave suppression and double sideband detection.


According to a preferred embodiment modulated signals are detected within a detection bandwidth Δfd. Narrow bandwidths reject more noise, but the detection bandwidth should preferably not be smaller than the signal bandwidth, otherwise a part of the signal is rejected with the noise. The signal bandwidth is determined by the relationship described by Equation 11:

ΔωxΔτ=1


where Δωs=2πΔfs, Δfs is the signal bandwidth, and Δτ is the duration of either a contiguous part of the signal, or the duration of the signal detection measurement. In preferred embodiments utilizing bio-CDs, the carrier frequency, fcarrier, is set by the rotation frequency of the bio-CD, fdisk, and by the number of spokes, targets, or interferometric elements, N, around a specified circumference as described by Equation 12:

fcarrier=Nfdisk


The signal bandwidth Δfs is described by Equation 13:







Δ






f
s


=


f
disk


2





π






The relative signal bandwidth Δfrel is described by Equation 14:







Δ






f
rel


=


Δ





f


f
carrier






For a single continuous track around a circumference, the relative bandwidth Δfrel is described by Equation 14:







Δ






f
rel


=


1

2





π





Δ





τ






f
carrier



=



f
disk


2





π






Nf
disk



=

1

2





π





N








If a circumference is divided into S equal arcs of M spokes, the relative bandwidth increases by a factor of S as described by Equation 15:







Δ






f
rel
S


=



N
M


Δ






f
rel


=

S





Δ






f
rel







Thus, for example, if N=1024, and S=16, the relative bandwidth is 0.25%. If fdisk=100 Hz, then fs=100 kHz, Δfs=16 Hz and Δfs rel=256 Hz. These relations suggest that S up to 128 segments or more is clearly a possible scenario for homogeneous bandwidths for which Δfs=2 kHz and Δfs rel=2%.


The foregoing example describes the case of homogeneous signal bandwidth. Signal bandwidths in practice are generally larger than the homogeneous bandwidths. These arise, for example, from frequency instability, which in the bio-CDs is from inhomogeneities in the fabricated or printed spokes. If the placement of the spokes is only accurate to 10 microns, then the bandwidth of the repetitive spoke pattern is approximately 4 kHz with a relative bandwidth of 4%. This inhomogeneous signal bandwidth sets the correct detection bandwidth for the bio-CDs. The number of segments can be increased to increase the homogeneous bandwidth until it is equal to the inhomogeneous bandwidth to the relationships described by Equations 16 and 17:







Δ






f
S


=

Δ






f

in





hom









BW
=


2





Δ






f

in





hom








For detection bandwidth BW, this sets the maximum segment number according to Equation 18:






S
=



2





π





N




(

BW

f
carrier


)






which for BW=3 kHz and fcarrier=100 kHz for N=1024, this sets the maximum S=136.


The ability to support segments suggests a disk array layout that segments the printed antibodies into wells. For N wells on a disk or S segments, the size of a well and its radial thickness are given by Equations 19 and 20:






a
=


r





d





θ





dr

=


r



2





π

S


dr

=

A
/
N









dr
=


AS

2





π





r





N


=



(


R
2
2

-

R
1
2


)


S


2





rN








where a is the area of a well, r is radius, dr is radial thickness of a well, θ is angular position, dθ is well arc length, A is the area of the annular region between radii R2 and R1, N is number of wells, S is the number of segments, R1 is the inner radius, and R2 is the outer radius.


With reference to FIG. 8 there is shown a bio-CD 8000 according to one embodiment of the present invention. Bio-CD 8000 is a 100 mm diameter disk or silicon wafer, however, any other dimension disk, wafer chip or other substrate or platform could also be used. Bio-CD 8000 includes sectors 8001, 8002, 8003, 8004, 8005, 8006, 8007, 8008, 8009, 8010, 8011, 8012, 8013, 8014, 8015, and 8016. Bio-CD 8000 further includes substantially concentric tracks of wells 8021, 8022, 8023, 8024, 8025, 8026, 8027, and 8028. Bio-CD 8000 has S=16 sectors, N=128 then T=8 (tracks) and the inner track radius and radial thicknesses are given in Table I:















Inner Track Radius
Radial Thickness dr


Track Number
(millimeters)
(millimeters)

















8028
20
6.56


8027
26.56
4.94


8026
31.50
3.60


8025
35.10
3.39


8024
38.50
3.13


8023
41.63
2.93


8022
44.56
2.76


8021
47.33
2.62









Bio-CD 8000 is one example of an equal area well layout according to the present invention. Other layouts are also contemplated, for example, a 512 well layout with S=16, T=32, and any other combination of sectors and tracks. According to a preferred embodiment layouts are used which bring the aspect ratio of arc length and radial thickness closer to unity which simplifies fabrication. Fabrication of this and other embodiments of the present invention can include particular features for various classes of bio-CDs. For example, a micro-diffraction bio-CD can have radial spokes fabricated from gold across the entire disk, and wells defined by hydrophobic dams. A pin plotter or ink-jet printer modified from biochip array printers can be used to deposit an equal amount of analyzer molecules into each well. Different antibodies can be deposited which then self-immobilize on thiolated gold. In another example gel printing can be used. In another example, for adaptive optical bio-CDs and phase constant bio-CDs, spokes can be printed as inert protein, dams can be put into place and antibody deposited into the wells by pin array plotters or protein spotters.


With reference to FIGS. 9A, 9B, 10A, 10B and 11 there are shown bio-CDs 9000A, 9000B, 10000A, 10000B, and 11000 according to embodiments of the present invention where the wells are of equal area. In these embodiments, dr is held constant among the tracks, and ds=rdθ is also held constant. This leads to a varying dθ across the disk. In the preferred embodiment where well areas remain are equal, the radial width of each well is constant which simplifies design of the protein plotter, and optimal use of real-estate is made. This embodiment requires a carrier spoke number C to vary with radius, also causing the carrier frequency to vary with radius (for constant angular velocity). The relation of the spoke number is given by Equation 21:






C
=


2





π





r

Λ





where Λ is the spatial period, usually Λ=2w, where w is the beam waist. For a beam waist of 20 microns and Λ=40 microns, this gives the number of spokes as a function of radius C=3000 at r=20 mm and C=8000 at r=50 mm. The carrier frequencies are 300 kHz and 800 kHz, respectively.


For N wells, the area of each well is given by Equation 22:

a=rdθdr=A/N


The aspect ratio ar is set by the Equation 23:

rdθ=ardr


The radial widths and angular widths are given by Equation 24:






dr
=




A


a
r


N








and





d





θ

=


1
r






a
r


A

N









FIG. 9A shows a 96 well disk with an aspect ratio of 1 and dr=7.5 mm, a=61 mm2, T=4, Si=15, and So=33. FIG. 9B shown a 96 well disk with an aspect ratio of 4 and dr=4.3 mm, a=64 mm2, T=7, Si=8, and So=19. The well in FIGS. 9A and 9B areas are approximately 0.6 cm2. FIG. 10A shows a 512 well disk with an aspect ratio of 4, dr=1.76 mm, a=12.7 mm2, T=17, Si=17, and So=42, FIG. 10B shows a 1000 well disk with an aspect ratio of 4, dr=1.25 mm, a=6.4 mm2, T=24, Si=24, and So=59. FIG. 11 shows an 8000 well disk with an aspect ratio of 4, dr=0.45 mm, a=0.82 mm2, T=66, Si=69, and So=172. A variety of other disks with equal area wells and unequal well areas are also contemplated. In general, larger aspect ratios have narrower detection bandwidth, but more tracks with smaller track pitches.


With reference to FIG. 12 there are shown examples of scanning targets 12000. Targets 12000 are a periodically alternating pattern of targets including specific antibodies 12010 and targets including nonspecific antibodies or not including antibodies 12020. Specific and nonspecific antibodies are being immobilized about a substrate, for example, as described herein. After exposure to a sample including a specific target analyte, targets 12010 have the analyte bound to their analyzer molecules while targets 12020 exhibit little or no binding of the specific analyte. The period of the alternating pattern is shown by arrows LL, and the spatial frequency of the pattern is inversely proportional to its period as shown by Equation 25:







V
spatial

=

1
Λ





where Λ is the spatial periodicity and νspatial is the spatial frequency.


During scanning targets 12000 are illuminated by a scanning footprint such as a laser spot. The scanning footprint could be, for example, focused laser spot vv which has a width wo less than spatial periodicity Λ (preferably wo<<Λ) and moves relative to the targets 12000 with a velocity in the direction indicated by arrow v. Under these scanning conditions the spatial frequency νspatial is converted into temporal frequency on the transmitted or reflected beam as described by Equation 26:

f=V·ν


where f is the carrier frequency of phase or amplitude modulation.


The scanning footprint could also be, for example, broad area laser spot z which has a width wo greater than spatial periodicity Λ (preferably wo>>Λ) and can be stationary or can move relative to the targets 12000 with a velocity V in the direction indicated by arrow v. When laser spot z is stationary and broadly illuminates the spatial frequency, then the spatial frequency leads to diffraction at specific angles as described by Equation 27:






θ
=


sin

-
1




(

λ
Λ

)






where λ is the illumination wavelength, and Λ is the spatial period. When laser spot z moves over to targets 12000, or targets 12000 move with velocity V, then the diffracted orders acquire a phase modulation that is time-periodic.


The foregoing examples illustrate how spatial frequencies on a scanning platform, for example a chip or disk, can be converted into temporal frequencies in a laser scanning system, and how the two types of frequencies can be combined when a laser probes more than one target on the platform.


With reference to FIG. 13 there is shown detection system 13000 which includes detector 13010 and detector 13020. Detectors 13010 and 13020 could be any detectors for detecting electromagnetic waves, for example optical detectors. System 13000 further includes probe beam 13030 which can be a focused probe beam or a broad area probe beam. Probe beam 13030 scans targets 13040 which move relative to beam 13030 with a relative velocity in the direction indicated by arrow RV. The scanning targets 13040 by beam 13030 results in a transmitted or reflected mode 13012 and a diffracted mode 13022. Mode 13012 is directed to detector 13010 and mode 13022 is directed to detector 13020. Reference beam 13023 is directed to detector 13010 and reference beam 13023 is directed to detector 13020. Reference beam 13023 is preferably maintained in a condition of phase quadrature relative to the transmitted mode 13012. Reference beam 13033 is preferably maintained in a condition of phase quadrature relative to diffracted mode 13022. System 13000 also includes beam splitters 13011 and 13021 which could also be adaptive optical beam combiners. Having a reference wave that is in phase quadrature with detected signal allows a small shift in the phase modulation of the signal to linearly proportional change in detected intensity allowing signal modulation per bound analyte molecule to be maximized. Reference beams 13033 and 13023 can be added before photodetectors or can be combined adaptively with signals. Reference beams 13033 and 13023 can arise from a diffracted spatial mode, for example, in the case of wavefront splitting, from free space, or from partial reflections, for example, in the case of amplitude splitting. It is also contemplated that detection system 13000 could include only one or the other of detectors 13010 and 13020 and their related beams and modes.


Experimental demonstrations of several exemplary embodiments including carrier side band detection according to the present invention will now be described in connection with FIGS. 14-28. With reference to FIG. 14, there is shown graph 14000 with time increasing along its x axis as indicated by x axis arrow 1420 and signal intensity (voltage) increasing along its y axis as indicated by y axis arrow 14010. Graph 14000 further shows signal 14030 which is a voltage signal that varies with time. Signal 14030 results from the scanning of an MD-class calibration disk which was fabricated with 1024 gold spokes deposited radially on a dielectric substrate. The average (mean) spoke height was 80 nm. Of the 1024 spokes, 512 spokes were below the average height, 512 spokes were above the average height, and the spokes alternated between those above the average height and those below the average height.


Scanning the MD-class calibration disk produced signal 14030 which includes a series of alternating local minima 14031 and 14032 corresponding to and indicating the two spoke heights. The signal intensity difference between the alternating local minima 14031 and 14032 is illustrated by arrow 14040 and corresponds to a height difference of about 30 nm between alternating spokes. This height difference is representative of the height difference cause by certain target analytes to analyzer molecules. The signal level corresponding to the average spoke height of about 80 nm is indicated by dashed line 14050. The MD-class calibration disk thus provides a simulation of a differential encoding scheme whereby every other alternating spoke includes analyzer molecules that bind a target analyte and can be compared to a reference spoke. The fast relative comparison between the two types of spokes allows for significant noise reduction.


With reference to FIG. 15 there is shown graph 15000 with frequency increasing along its x axis as shown by x axis arrow 15020 and power increasing logarithmically along its y axis as shown by y axis arrow 15010. Graph 15000 shows the frequency domain results of the scanning of the MD-class calibration disk described above in connection with FIG. 14. Graph 15000 shows carrier signal 15030 at 200 kHz, sideband signal 15031 at 100 kHz, and sideband signal 15032 at 300 kHz. Thus the sideband signals are present at half carrier frequency increments. A strong 1/f noise peak 15040 is present at zero frequency, and a significantly suppressed noise floor is present at the frequencies of carrier and sideband signals 15030, 15031 and 15032. The noise suppression by operating at this scanning rate is over 60 dB or 3 orders of magnitude better signal to noise ratio when compared to a static measurement at DC (zero frequency). This is a fundamental advantage to high speed repetitive sampling according to certain embodiments of the present invention.


With reference to FIG. 16 there is shown graph 16000 with frequency increasing along its x axis as shown by x axis arrow 16020 and power increasing along its y axis as shown by y axis arrow 16010. Graph 16000 shows an example of protein side-band detection for an MD-class disk having proteins (in this case antibody IgG molecules) immobilized on a 1024-spoke disk with 64 segments composed of 8 elements with protein and 8 elements without. This created a disk with an alternating pattern of 8 gold spokes carrying protein followed by 8 bare gold spokes. This pattern repeated for a total of 64 segments each with a total of 16 elements divided into 8 with protein and 8 without. The proteins were patterned using a polydimethylsiloxane (PDMS) stencil on the disk. A control track which did not include printed protein was also included on the disk. The results of scanning the control track are indicated by dotted line 16060 and the results of scanning a track including the patterned protein are indicated by line 16050.


Graph 16000 shows 16030 the 1/f noise at DC and two DC sideband signals 16031 and 16032. A carrier frequency signal (not shown) is present at about 100 kHz. The presence of protein is detected as a 1/64 harmonic of the carrier frequency at about 1.6 kHz as shown by signal 16032 and also by signal 16031 at about −1.6 kHz. A second harmonic signal 16034 and 16033 is also present at 1/32 the carrier frequency and is caused by slight asymmetry in the deposition of the proteins. A comparison of protein track signal 16050 and signal 16060 of a control track containing no protein illustrates the strong effect of the protein in producing sideband signals with a 20:1 signal to noise ratio as indicated by arrow 16040.


With reference to FIG. 17 there is shown graph 17000 with frequency increasing along its x axis as shown by x axis arrow 17020 and power spectrum increasing logarithmically along its y axis as shown by y axis arrow 17010. Graph 17000 presents average values for scanning of six tracks of the MD-class disk which is described above in connection with FIG. 16. Graph 17000 shows a comparison of 1/64 harmonic signal 17040 at about 1.6 kHz, which is generated by and indicates the presence of protein, and carrier signal 17030. As illustrated by arrow 17050, the protein modulation is about 4.6% of the carrier wave, which is consistent with a monolayer of immobilized protein.


With reference to FIG. 18 there is shown graph 18000 with frequency increasing along its x axis as shown by x axis arrow 18020 and power spectrum increasing logarithmically along its y axis as shown by y axis arrow 18010. While the side bands off of DC yielded the best signal-to-noise ratio for scanning the MD-class disk described above in connection with FIG. 16, every carrier harmonic includes two side-bands. Thus, as shown in graph 18000 fundamental carrier harmonic 18030 which is at about 80 kHz includes sidebands 18031 and 18032. Sidebands 18031 and 18032 are small peaks above and below the harmonic carrier frequency 18030 which indicate the presence of the protein. Every other carrier harmonic also has two associated sidebands.


With reference to FIG. 19 there is shown graph 19000 with frequency increasing along its x axis as shown by x axis arrow 19020 and power spectrum increasing logarithmically along its y axis as shown by y axis arrow 19010. Graph 19000 shows carrier frequency harmonics 19030A (which is the first carrier harmonic 18030 at about 80 kHz described above in connection with FIG. 18), 19030B, 19030C, 19030D, 19030E, 19030F, and 19030G. Each carrier harmonic includes protein sidebands, though the wide frequency range of the graph 1900 makes it difficult to see the protein sidebands for all the harmonics. Graph 19000 also demonstrates the noise-floor roll-off for high frequencies associated to the transit time t=w0/v of a point on the disk across the width of the focused laser spot wo. Line 19050 shows the approximate midpoint of the noise floor roll off.


With reference to FIG. 20 there is shown a fluorescence microscope image of portion of an MD-class disk 20000 according to one embodiment of the present invention. Disk 20000 is a half-harmonic differentially encoded MD-class disk which was created using photolithography to immobilize protein on every alternating spoke. During this process half the spokes were covered by photo-patterned photoresist while the other half were exposed to protein. The photoresist was then removed to uncover bare gold spokes. This results in a disk where protein is immobilized on every alternating spoke as shown by lines 20010 (indicating deposition of specific antibody) and 20020 (indicating no deposition of antibody, or deposition of a non-specific antibody). The width of each protein deposit is about 20 microns as indicated by arrows SW. This half-harmonic differential encoding in which every alternating spoke carries protein results in the highest signal-to-noise ratio being attained. This provides for the highest-frequency differencing measurements, and also boosts the total protein signal when the zero-frequency upper sideband and the carrier frequency lower side-band merge into a single sideband half way between DC and the fundamental carrier frequency.


With reference to FIG. 21 there is shown graph 21000 with time increasing along its x axis as shown by x axis arrow 21020 and voltage increasing along its y axis as shown by y axis arrow 21010. When a 512 differential encoded disk is rotated and scanned, the protein modulates the gold spokes with a frequency at half the fundamental carrier frequency. Graph 21000 shows the detected time trace 21030 from a 512 differential encoded disk. Trace 21030 shows an alternating pattern between the bare and protein-carrying spokes as indicated by the minimum points trace 21030 which alternate in amplitude at the rate of a half harmonic signal 21040.


With reference to FIG. 22 there is shown graph 22000 with frequency increasing along its x axis as shown by x axis arrow 22020 and power spectrum increasing logarithmically along its y axis as shown by y axis arrow 22010. Graph 22000 shows the frequency domain side band effect of the disk described above in connection with FIG. 21. The half-frequency harmonic protein signal 22040 is strong and occurs near the frequency of lowest noise between DC signal 22050 and the first carrier signal 22030. As shown in graph 22000 the DC sideband and first carrier sidebands have merged at the half-frequency harmonic protein signal 22040. Furthermore, the protein signal 22050 itself has sidebands 22041 and 22042 caused by slight asymmetries in the protein printing. The signal-to-noise ratio is greatest in this situation where the noise floor is lowest. Thus, detection of protein at signal 22040 represents the optimal performance condition for carrier sideband detection on the MD-class disk described above.


With reference to FIG. 23 there is shown graph 23000 with frequency increasing along its x axis as shown by x axis arrow 23020 and power spectrum increasing logarithmically along its y axis as shown by y axis arrow 23010. Graph 23000 shows the power spectrum for an embodiment of a PC-class disk with a periodic pattern of protein on a dielectric disk with no other disk structure. Graph 23000 shows DC signal 23040 and protein signal 23030 which is caused by and indicates the presence of protein. For this PC-class embodiment, the carrier frequency is attributable entirely to the protein, without any contribution from microstructures or other physical structures on the disk. The detection of periodic patterns of immobilized protein on a flat surface is one example of carrier-wave suppression that was discussed above. Additional embodiments including, for example, suppressing the carrier of the gold spokes on MD-class disks are also discussed above. Analyzer molecule patterns on PC-class disks offer a embodiment of side-band detection and manipulation that significantly improves the sensitivity of the bio-CD because the periodic protein patterns can themselves be modulated to form larger spatial patterns.


With reference to FIG. 24 there is shown a portion of a patterned protein PC-class disk 24000 according to one embodiment of the present invention. The radial direction is in the vertical direction the angular direction around the disk is in the horizontal direction. As shown in FIG. 11, the portion of disk 24000 is in a checkerboard pattern. Substantially rectangular areas of periodic stripes of protein 24010 are alternated with substantially rectangular areas of bare disk 24020. Each substantially rectangular area has a radial distance of approximately 0.5 mm indicated by arrow RD and an angular distance of approximately 45 degrees indicated by arrow AD. The height of the printed protein stripes is approximately 5 nm. The signal resulting from scanning the PC-class disk is differential, showing only the steps up and down from the protein stripes.


With reference to FIG. 25 there is shown a magnified portion 25000 of the PC-class disk 24000 shown in FIG. 24 individual protein bands 24011 of protein regions 24010 are visible in magnified portion 25000. The rectangular spatial patterns of areas 24010 and 4020 of disk 24000 create sidebands on the protein peak in the power spectrum. The long-range spatial patterns can be detected using a sideband demodulation process conceptually similar to the demodulation of FM radio. The long-range protein patterns constitute an envelope that modulates the carrier wave. By demodulation, the envelope is extracted. Because it is more slowly varying, envelope demodulation makes it possible to perform more accurate prescan subtraction.


An exemplary procedure for sideband detection will now be described with reference to FIGS. 26, 27 and 28. FIG. 26 shows an isolated protein peak 26030 in the power spectrum. The horizontal axis 26010 is temporal frequency and the vertical axis 26020 is spatial frequency along the radius of the disk. The sub-peaks 26031 and 26032 represent the long-range envelope pattern. To demodulate the signal and extract the protein envelope, this protein peak is shifted back to DC and then Fourier-transformed back into the space domain. The resulting demodulated image is shown in FIG. 27. Only the long-range checkerboard pattern 27000 corresponding to areas 24010 and 24020 is visible, with the periodicity of the individual protein bands 24011 removed. After demodulation, subtracting a prescan becomes much more accurate.



FIG. 28 shows graph 28000 with distribution probability on the vertical axis and height in nm on the horizontal axis. Graph 28000 shows the results of subtracting a prescan from a postscan before demodulation as distribution 28010 and performing the same subtraction after demodulation as distribution 28020. The error in height reduces from 75 pm for distribution 28010 to 20 pm for distribution 28020 with demodulation. This increased accuracy improves surface mass sensitivity by over a factor of 3 in this example.


While the examples illustrated and described above in connection with FIGS. 14-28 have made reference to particular embodiments, for example, MD-class disks with protein attached using photolithographic techniques and PC-class disks with printed protein, these specific embodiments are merely exemplary and it is contemplated that differential encoding and sideband detection described above could be employed with a variety of other embodiments according to the present invention including those described elsewhere herein.


Various embodiments according to the present invention can include a variety of biosensor platforms including those described above. For example, these platforms include bio-CDs such as micro-diffraction bio-CDs, adaptive-optical bio-CDs, phase-contrast bio-CDs, and others. Details relating to these various classes of bio-CDs can be found, for example, in the aforementioned patents and patent applications. These platforms further include bio-chips, immunological chips, gene chips, DNA arrays, platforms used in connection with fluorescence assays and other platforms and substrates supporting planar arrays including analyzer molecules including, for example, those described herein.


Various embodiments according to the present invention can include a variety of analyzer molecules useful in detecting the presence or absence of a variety of target analytes in a solution to be tested. For example, these analyzer molecules can include antibodies or immunoglobulins, antigens, DNA fragments, cDNA fragments, aptameres, peptides, proteins, and other molecules. Various embodiments according to the present invention can include combinations of one or more of the foregoing and other types of analyzer molecules known to a person of ordinary skill in the art arranged, for example, in a planar array.


Various embodiments according to the present invention can be used in connection with a variety of scanning and detection techniques. For example, such techniques include interferometry, including surface normal interferometry techniques, and preferably phase quadrature interferometry techniques where one detected optical mode differs in phase from another by about π/2 plus or minus about twenty percent or an odd integer multiple thereof, and/or self referencing interferometry techniques where a reference wave is generated locally with respect to a signal wave so that the reference and signal waves experience common aberrations and path length changes and thus maintain a constant relative phase without the need for active stabilization of different light paths, florescence techniques and platforms, resonance techniques and platforms, and other techniques and platforms.


As used herein terms relating to properties such as geometries, shapes, sizes, physical configurations, speeds, rates, frequencies, periods, amplitudes, include properties that are substantially or about the same or equal to the properties described unless explicitly indicated to the contrary.


While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.

Claims
  • 1. A method of detecting a target analyte in a test sample, the method comprising: providing a substrate for supporting biological analyzer molecules, the substrate including at least one scanning pathway,locating a plurality of scanning targets along the scanning pathway, the plurality of scanning targets alternating periodically between a group of a first set of targets and a group of a second set of targets, the first set of targets including specific biological analyzer molecules adapted to detect the target analyte, and the second set of the targets not including the specific biological analyzer molecules;contacting a test sample to the plurality of scanning targets;scanning the plurality of scanning targets along the at least one scanning pathway at a rate to create a carrier frequency signal and sideband signals, the binding of the target analyte to the specific analyzer molecules of the first set of targets modulating the carrier frequency signal to create the sideband signals;detecting the sideband signals; anddetermining the presence or absence of the target analyte in the test sample based on the sideband signals.
  • 2. The method of claim 1, wherein the detecting step utilizes self referencing phase quadrature interferometric detection.
  • 3. The method of claim 1, wherein the substrate is a bio-CD.
  • 4. The method of claim 1, further comprising suppressing the carrier frequency signal.
  • 5. The method of claim 1, wherein the detecting step utilizes interferometry and the scanning step utilizes a laser beam.
  • 6. The method of claim 1, further comprising detecting the presence or absence of a second target analyte in the test sample, wherein detecting the second target analyte is based at least in part on the sideband signals.
  • 7. The method of claim 1, wherein the detecting step includes detecting a harmonic signal closest to zero frequency.
  • 8. The method of claim 1, wherein the detecting step includes detecting a harmonic signal at a frequency greater than that of a harmonic signal closest to zero frequency.
  • 9. The method of claim 1, wherein the detecting step utilizes fluorescence detection to detect the sideband signals.
RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 11/345,566, filed Feb. 1, 2006 now abandoned, the complete disclosure of which is hereby expressly incorporated herein by this reference. This application also claims the benefit of U.S. Provisional Patent Application Ser. No. 60/648,724 filed Feb. 1, 2005, the complete disclosure of which is hereby expressly incorporated herein by this reference.

GOVERNMENTAL SUPPORT INFORMATION

This invention was made with government support under grant reference number NSF ECS-0200424 awarded by the National Science Foundation. The Government has certain rights in the invention.

US Referenced Citations (237)
Number Name Date Kind
3796495 Laub Mar 1974 A
4537861 Elings et al. Aug 1985 A
4741620 Wickramasinghe May 1988 A
4876208 Gustafson et al. Oct 1989 A
4899195 Gotoh Feb 1990 A
4975217 Brown Dec 1990 A
RE33581 Nicoli et al. Apr 1991 E
5122284 Braynin et al. Jun 1992 A
5155549 Dhadwal Oct 1992 A
5413939 Gustafson et al. May 1995 A
5478527 Gustafson et al. Dec 1995 A
5478750 Bernstein et al. Dec 1995 A
5494829 Sandstrom et al. Feb 1996 A
5497007 Uritsky et al. Mar 1996 A
5545531 Rava et al. Aug 1996 A
5581345 Oki et al. Dec 1996 A
5602377 Beller et al. Feb 1997 A
5621532 Ooki et al. Apr 1997 A
5629044 Rubenchik May 1997 A
5631171 Sandstrom et al. May 1997 A
5653939 Hollis et al. Aug 1997 A
5700046 Van Doren et al. Dec 1997 A
5717778 Chu et al. Feb 1998 A
5736257 Conrad et al. Apr 1998 A
5781649 Brezoczky Jul 1998 A
5786226 Bocker et al. Jul 1998 A
5837475 Dorsel et al. Nov 1998 A
5843767 Beattie Dec 1998 A
5844871 Maezawa Dec 1998 A
5874219 Rava et al. Feb 1999 A
5875029 Jann et al. Feb 1999 A
5883717 DiMarzio et al. Mar 1999 A
5892577 Gordon Apr 1999 A
5900935 Klein et al. May 1999 A
5922617 Wang et al. Jul 1999 A
5935785 Reber et al. Aug 1999 A
5945334 Besemer et al. Aug 1999 A
5945344 Hayes et al. Aug 1999 A
5955377 Maul et al. Sep 1999 A
5968728 Perttunen et al. Oct 1999 A
5999262 Dobschal et al. Dec 1999 A
6008892 Kain et al. Dec 1999 A
6030581 Virtanen Feb 2000 A
6048692 Maracas et al. Apr 2000 A
6060237 Nygren et al. May 2000 A
6071748 Modlin et al. Jun 2000 A
6099803 Ackley Aug 2000 A
6110748 Reber et al. Aug 2000 A
6121048 Zaffaroni et al. Sep 2000 A
6140044 Besemer et al. Oct 2000 A
6143247 Sheppard Nov 2000 A
6177990 Kain et al. Jan 2001 B1
6221579 Everhart et al. Apr 2001 B1
6238869 Kris et al. May 2001 B1
6248539 Ghadiri et al. Jun 2001 B1
6249593 Chu et al. Jun 2001 B1
6256088 Gordon Jul 2001 B1
6271924 Ngoi et al. Aug 2001 B1
6287783 Maynard et al. Sep 2001 B1
6287850 Besemer et al. Sep 2001 B1
6312901 Virtanen Nov 2001 B2
6312961 Voirin et al. Nov 2001 B1
6319468 Sheppard, Jr. et al. Nov 2001 B1
6319469 Mian et al. Nov 2001 B1
6320665 Ngoi et al. Nov 2001 B1
6327031 Gordon Dec 2001 B1
6339473 Gordon Jan 2002 B1
6342349 Virtanen Jan 2002 B1
6342395 Hammock et al. Jan 2002 B1
6345115 Ramm et al. Feb 2002 B1
6350413 Reichert et al. Feb 2002 B1
6355429 Nygren et al. Mar 2002 B1
6368795 Hefti Apr 2002 B1
6376258 Hefti Apr 2002 B2
6381025 Bornhop et al. Apr 2002 B1
6387331 Hunter May 2002 B1
6395558 Duveneck et al. May 2002 B1
6395562 Hammock et al. May 2002 B1
6399365 Besemer et al. Jun 2002 B2
6403957 Fodor et al. Jun 2002 B1
6416642 Alajoki et al. Jul 2002 B1
6469787 Meyer et al. Oct 2002 B1
6476907 Gordon Nov 2002 B1
6483585 Yang Nov 2002 B1
6483588 Graefe et al. Nov 2002 B1
6496267 Takaoka Dec 2002 B1
6496309 Bliton et al. Dec 2002 B1
6504618 Morath et al. Jan 2003 B2
6518056 Schembri et al. Feb 2003 B2
6551817 Besemer et al. Apr 2003 B2
6566069 Virtanen May 2003 B2
6584217 Lawless et al. Jun 2003 B1
6591196 Yakhini et al. Jul 2003 B1
6596483 Choong et al. Jul 2003 B1
6602702 McDevitt et al. Aug 2003 B1
6623696 Kim et al. Sep 2003 B1
6624896 Neal et al. Sep 2003 B1
6649403 McDevitt Nov 2003 B1
6653152 Challener Nov 2003 B2
6656428 Clark et al. Dec 2003 B1
6685885 Nolte et al. Feb 2004 B2
6687008 Peale et al. Feb 2004 B1
6709869 Mian et al. Mar 2004 B2
6720177 Ghadiri et al. Apr 2004 B2
6733977 Besemer et al. May 2004 B2
6734000 Bhatia May 2004 B2
6737238 Suzuki May 2004 B2
6743633 Hunter Jun 2004 B1
6760298 Worthington et al. Jul 2004 B2
6766817 da Silva Jul 2004 B2
6770447 Maynard et al. Aug 2004 B2
6783938 Nygren et al. Aug 2004 B2
6787110 Tiefenthaler Sep 2004 B2
6791677 Kawai et al. Sep 2004 B2
6803999 Gordon Oct 2004 B1
6806963 Walti et al. Oct 2004 B1
6819432 Pepper et al. Nov 2004 B2
6836338 Opsal et al. Dec 2004 B2
6844965 Engelhardt Jan 2005 B1
6847452 Hill Jan 2005 B2
6878555 Andersson et al. Apr 2005 B2
6897965 Ghadiri et al. May 2005 B2
6917421 Wihl et al. Jul 2005 B1
6917432 Hill et al. Jul 2005 B2
6918404 da Silva Jul 2005 B2
6937323 Worthington et al. Aug 2005 B2
6955878 Kambara et al. Oct 2005 B2
6958131 Tiefenthaler Oct 2005 B2
6980299 de Boer Dec 2005 B1
6980677 Niles et al. Dec 2005 B2
6987569 Hill Jan 2006 B2
6990221 Shams Jan 2006 B2
6992769 Gordon Jan 2006 B2
6995845 Worthington Feb 2006 B2
7006927 Yakhini et al. Feb 2006 B2
7008794 Goh et al. Mar 2006 B2
7012249 Krutchinsky et al. Mar 2006 B2
7014815 Worthington et al. Mar 2006 B1
7026131 Hurt et al. Apr 2006 B2
7027163 Angeley Apr 2006 B2
7031508 Lawless et al. Apr 2006 B2
7033747 Gordon Apr 2006 B2
7042570 Sailor May 2006 B2
7061594 Worthington et al. Jun 2006 B2
7066586 da Silva Jun 2006 B2
7070987 Cunningham et al. Jul 2006 B2
7077996 Randall et al. Jul 2006 B2
7083920 Werner et al. Aug 2006 B2
7087203 Gordon et al. Aug 2006 B2
7088650 Worthington et al. Aug 2006 B1
7091034 Virtanen Aug 2006 B2
7091049 Boga et al. Aug 2006 B2
7094595 Cunningham et al. Aug 2006 B2
7094609 Demers Aug 2006 B2
7098041 Kaylor et al. Aug 2006 B2
7102752 Kaylor et al. Sep 2006 B2
7106513 Moon et al. Sep 2006 B2
7110094 Gordon Sep 2006 B2
7110345 Worthington et al. Sep 2006 B2
7118855 Cohen et al. Oct 2006 B2
7141378 Miller et al. Nov 2006 B2
7141416 Krutzik Nov 2006 B2
7145645 Blumenfeld et al. Dec 2006 B2
7148970 de Boer Dec 2006 B2
7200088 Worthington et al. Apr 2007 B2
7221632 Worthington et al. May 2007 B2
7312046 Chin Dec 2007 B2
7318903 Link Jan 2008 B2
20010055812 Mian et al. Dec 2001 A1
20020001546 Hunter et al. Jan 2002 A1
20020008871 Poustka et al. Jan 2002 A1
20020045276 Yguerabide et al. Apr 2002 A1
20020051973 Delenstarr et al. May 2002 A1
20020058242 Demers May 2002 A1
20020085202 Gordon Jul 2002 A1
20020097658 Worthington et al. Jul 2002 A1
20020106661 Virtanen et al. Aug 2002 A1
20020127565 Cunningham et al. Sep 2002 A1
20020135754 Gordon Sep 2002 A1
20020151043 Gordon Oct 2002 A1
20020177144 Remacle et al. Nov 2002 A1
20020192664 Nygren et al. Dec 2002 A1
20030026735 Nolte et al. Feb 2003 A1
20030035352 Worthington Feb 2003 A1
20030054376 Mullis et al. Mar 2003 A1
20030112446 Miller et al. Jun 2003 A1
20030133640 Tiefenthaler Jul 2003 A1
20030134330 Ravkin et al. Jul 2003 A1
20040002085 Schembri et al. Jan 2004 A1
20040078337 King et al. Apr 2004 A1
20040086929 Weide et al. May 2004 A1
20040106130 Besemer et al. Jun 2004 A1
20040132172 Cunningham et al. Jul 2004 A1
20040150829 Koch et al. Aug 2004 A1
20040155309 Sorin Aug 2004 A1
20040166525 Besemer et al. Aug 2004 A1
20040166593 Nolte et al. Aug 2004 A1
20040223881 Cunningham et al. Nov 2004 A1
20040229254 Clair Nov 2004 A1
20040247486 Tiefenthaler Dec 2004 A1
20040258927 Conzone et al. Dec 2004 A1
20050002827 McIntyre et al. Jan 2005 A1
20050003459 Krutzik Jan 2005 A1
20050019901 Matveeva et al. Jan 2005 A1
20050042628 Rava et al. Feb 2005 A1
20050084422 Kido et al. Apr 2005 A1
20050084895 Besemer et al. Apr 2005 A1
20050106746 Shinn et al. May 2005 A1
20050123907 Rava et al. Jun 2005 A1
20050131745 Keller et al. Jun 2005 A1
20050158819 Besemer et al. Jul 2005 A1
20050176058 Zaffaroni et al. Aug 2005 A1
20050191630 Besemer et al. Sep 2005 A1
20050214950 Roeder et al. Sep 2005 A1
20050226769 Shiga Oct 2005 A1
20050248754 Wang et al. Nov 2005 A1
20050254062 Tan et al. Nov 2005 A1
20050259260 Wakita Nov 2005 A1
20060040380 Besemer et al. Feb 2006 A1
20060078935 Werner et al. Apr 2006 A1
20060204399 Freeman et al. Sep 2006 A1
20060210449 Zoval et al. Sep 2006 A1
20060223172 Bedingham et al. Oct 2006 A1
20060234267 Besemer et al. Oct 2006 A1
20060256350 Nolte et al. Nov 2006 A1
20060256676 Nolte et al. Nov 2006 A1
20060257939 Demers Nov 2006 A1
20060269450 Kim et al. Nov 2006 A1
20060270064 Gordon et al. Nov 2006 A1
20070003436 Nolte et al. Jan 2007 A1
20070003925 Nolte et al. Jan 2007 A1
20070003979 Worthington Jan 2007 A1
20070023643 Nolte et al. Feb 2007 A1
20070070848 Worthington et al. Mar 2007 A1
20070077599 Krutzik Apr 2007 A1
20070077605 Hurt et al. Apr 2007 A1
20070108465 Pacholski May 2007 A1
Foreign Referenced Citations (15)
Number Date Country
1189062 Mar 2002 EP
1424549 Jun 2004 EP
WO 9104489 Apr 1991 WO
WO 9104491 Apr 1991 WO
WO 9113353 Sep 1991 WO
WO 9214136 Aug 1992 WO
WO 9403774 Feb 1994 WO
WO 9837238 Feb 1998 WO
WO 0000265 Jan 2000 WO
WO 0039584 Jul 2000 WO
WO 0111310 Feb 2001 WO
WO 0144441 Jun 2001 WO
WO 03014711 Feb 2003 WO
WO 2006042746 Apr 2006 WO
WO 2006075797 Jul 2006 WO
Related Publications (1)
Number Date Country
20090263913 A1 Oct 2009 US
Provisional Applications (1)
Number Date Country
60648724 Feb 2005 US
Divisions (1)
Number Date Country
Parent 11345566 Feb 2006 US
Child 12466943 US