Diffractive lenses and related intraocular lenses for presbyopia treatment

Information

  • Patent Grant
  • 11914229
  • Patent Number
    11,914,229
  • Date Filed
    Friday, February 18, 2022
    2 years ago
  • Date Issued
    Tuesday, February 27, 2024
    2 months ago
Abstract
Apparatuses, systems and methods for providing improved ophthalmic lenses, particularly intraocular lenses (IOLs), include features for reducing dysphotopsia effects, such as straylight, haloes and glare, in diffractive lenses. Exemplary ophthalmic lenses can include a diffractive profile that distributes light among a near focal length, a far focal length, and one or more intermediate focal length. The diffractive profile provides for minimized or zero step heights between one or more pairs of diffractive zones for reducing visual artifacts.
Description
BACKGROUND

Embodiments of the present disclosure relate generally to diffractive ophthalmic lenses, and particular embodiments provide methods, devices, and systems for mitigating or treating vision conditions such as presbyopia, often by determining a desired multifocal power profile and selecting a geometry of the diffractive profile that results in a diffractive multifocal lens shape according to the desired power profile and to various parameters of the patient's eye. Embodiments also relate to vision treatment techniques and in particular embodiments, to ophthalmic lenses such as, for example, contact lenses, corneal inlays or onlays, or intraocular lenses (IOLs) including, for example, phakic IOLs and piggyback IOLs (i.e. IOLs implanted in an eye already having an IOL).


Presbyopia is a condition that affects the accommodation properties of the eye. As objects move closer to a young, properly functioning eye, the effects of ciliary muscle contraction and zonular relaxation allow the lens of the eye to change shape, and thus increase its optical power and ability to focus at near distances. This accommodation can allow the eye to focus and refocus between near and far objects.


Presbyopia normally develops as a person ages, and is associated with a natural progressive loss of accommodation. The presbyopic eye often loses the ability to rapidly and easily refocus on objects at varying distances. The effects of presbyopia usually become noticeable after the age of 45 years. By the age of 65 years, the crystalline lens has often lost almost all elastic properties and has only limited ability to change shape.


Along with reductions in accommodation of the eye, age may also induce clouding of the lens due to the formation of a cataract. A cataract may form in the hard central nucleus of the lens, in the softer peripheral cortical portion of the lens, or at the back of the lens. Cataracts can be treated by the replacement of the cloudy natural lens with an artificial lens. An artificial lens replaces the natural lens in the eye, with the artificial lens often being referred to as an intraocular lens or “IOL”.


Multifocal IOLs may, for example, rely on a diffractive optical surface to direct portions of the light energy toward differing focal distances, thereby allowing the patient to clearly see both near and far objects. Multifocal ophthalmic lenses (including contact lenses or the like) have also been proposed for treatment of presbyopia without removal of the natural crystalline lens. Diffractive optical surfaces, either monofocal or multifocal, may also be configured to provide reduced chromatic aberration.


Diffractive monofocal and multifocal lenses can make use of a material having a given refractive index and a surface curvature which provide a refractive power. Diffractive lenses have a diffractive profile which confers the lens with a diffractive power that contributes to the overall optical power of the lens. The diffractive profile is typically characterized by a number of diffractive zones. When used for ophthalmic lenses these diffractive zones are typically annular lens zones, or echelettes, spaced about the optical axis of the lens. Each echelette may be defined by an optical zone, a transition zone between the optical zone and an optical zone of an adjacent echelette, and echelette geometry. The echelette geometry includes an inner and outer diameter and a shape or slope of the optical zone, a height or step height, and a shape of the transition zone. The surface area or diameter of the echelettes largely determines the diffractive power(s) of the lens and the step height of the transition between echelettes largely determines the light distribution between the different powers. Together, these echelettes form a diffractive profile.


A multifocal diffractive profile of the lens may be used to mitigate presbyopia by providing two or more optical powers; for example, one for near vision and one for far vision. The lenses may also take the form of an intraocular lens placed within the capsular bag of the eye, replacing the original lens, or placed in front of the natural crystalline lens. The lenses may be in the form of a contact lens, most commonly a bifocal contact lens, or in any other form mentioned herein.


Multifocal (e.g. diffractive) intraocular lenses (IOLs) are intended to provide a patient with improved vision at different distances, such as near, intermediate and far. The near vision may generally correspond to vision provided when objects are at a distance of equal or less than 1.5 feet from a subject eye. Intermediate vision may generally correspond to vision for objects at a distance between about 1.5 feet and about 5-6 feet from a subject eye. Far vision may generally correspond to vision for objects at any distance greater than about 5-6 feet from a subject eye. Such characterizations of near, intermediate, and far vision correspond to those addressed in Morlock R, Wirth R J, Tally S R, Garufis C, Heichel C W D, Patient-Reported Spectacle Independence Questionnaire (PRSIQ): Development and Validation. Am J Ophthalmology 2017; 178:101-114.


Since multifocal IOLs provide multiple focal lengths, the focused image on the retina originating from the focal length that corresponds to the particular viewing distance is overlapping with unfocused images originating from the other focal lengths. This can create visual artifacts for the patient. Also, the transitions between echelettes in a diffractive multifocal may cause glare, halo, or similar visual artifacts; and the severity of said artifacts may increase with an increased number of echelettes. Furthermore, conventional approaches typically provide for near and far vision, but achieve unsatisfactory visual performance at intermediate distances. Relatedly, increasing the number of focal lengths in an IOL can exacerbate the aforementioned visual artifacts. Therefore, multifocal conventional ophthalmic approaches may fail to adequately improve visual performance at intermediate distances.


BRIEF SUMMARY

Embodiments herein described include IOLs with a first surface and a second surface disposed about an optical axis, and a diffractive profile imposed on one of the first surface or the second surface. The diffractive profile includes a repetitive pattern of at least two echelettes. At least one of the at least two diffractive echelettes in the repetitive pattern is connected to an adjacent echellete by a step height of zero. The zero-step-height transition between at least one adjacent pair of diffractive echelettes is effective to reduce optical aberrations for a user, particularly straylight at the far vision.


Embodiments herein described also include multifocal ophthalmic lenses that have diffractive echelettes directing light to multiple focal lengths in ascending proportions, such that the least light is directed to the near focal length and/or such that the most light is directed to the far focal length. In some cases, at least 50% of the light that passes through the lens can be directed toward the far focal length; and no more than 20% of the light that passes through the lens can be directed toward the near focal length. One or more intermediate focal lengths may be provided.


Embodiments herein described also include ophthalmic lenses that have an optical surface disposed about an optical axis. A diffractive profile is imposed on the optical surface. The diffractive profile includes a set of at least two echelettes, with at least one of the at least two echelettes of the set being connected to an adjacent echelette with a step height of zero, and the set is repeated on the optical surface.


Embodiments herein described also include manufacturing systems for making an ophthalmic lens. Such manufacturing system can include an input that accepts an ophthalmic lens prescription for a patient eye. A module can generate a diffractive profile including a repetitive pattern of at least two echelettes, and at least one of the echelettes in the repetitive pattern is connected to an adjacent echelette by a step height of zero. A manufacturing assembly may fabricate the ophthalmic lens based on the diffractive profile. A manufacturing system may also include an input that accepts an ophthalmic lens prescription for a patient eye. A module can generate a diffractive profile configured to cause a distribution of light among at least three focal lengths including a near focal length, an intermediate focal length, and a far focal length, such that, a first portion of the distribution is directed to the near focal length, a second portion of the distribution is directed to the far focal length, and a third portion of the distribution is directed to the intermediate focal length, the first portion being less than the second portion and less than the third portion. A manufacturing assembly may fabricate the ophthalmic lens based on the diffractive profile.


Embodiments herein described also include methods of designing an intraocular lens. Such methods can include defining a diffractive profile and generating a diffractive lens surface based on the diffractive profile. The diffractive profile can include a repetitive pattern of at least two echelettes, and at least one of the at least two echelletes in the repetitive pattern is connected to an adjacent echelette by a step height of zero. The diffractive profile may also be configured such that a first portion of the distribution is directed to the near focal length, a second portion of the distribution is directed to the far focal length, and a third portion of the distribution is directed to the intermediate focal length, the first portion being less than the second portion and less than the third portion.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A illustrates a cross-sectional view of an eye with an implanted multifocal refractive intraocular lens;



FIG. 1B illustrates a cross-sectional view of an eye having an implanted multifocal diffractive intraocular lens;



FIG. 2A illustrates a front view of a diffractive multifocal intraocular lens;



FIG. 2B illustrates a cross-sectional view of a diffractive multifocal intraocular lens;



FIG. 3 illustrates a cross-sectional view of an eye having an implanted multifocal diffractive intraocular lens having an intermediate focal length;



FIG. 4 is a graphical representation illustrating aspects of a conventional quadrifocal lens profile;



FIG. 5 is a graphical representation of a generalized multifocal lens profile;



FIG. 6 is a graphical representation illustrating a quadrifocal lens profile according to certain embodiments of this disclosure;



FIG. 7 is a graphical representation of a through-focus point spread function (PSF) according to certain embodiments of this disclosure;



FIG. 8 illustrates a cross-sectional view of a diffractive lens surface having the quadrifocal lens profile of FIG. 6 repeated across the optic;



FIG. 9 is a graphical representation illustrating a quadrifocal lens profile according to certain embodiments of this disclosure;



FIG. 10 is a graphical representation illustrating a trifocal lens profile according to certain embodiments of this disclosure;



FIG. 11 is a simplified block diagram illustrating a system for generating a diffractive lens surface, in accordance with embodiments;



FIG. 12 illustrates an example process for generating a diffractive lens surface; and



FIG. 13 illustrates an example computing environment for facilitating the systems and processes of FIGS. 11 and 12.





DETAILED DESCRIPTION

Contemporary Lens Shapes and Diffractive Profiles



FIGS. 1A, 1B, 2A, and 2B illustrate multifocal IOL lens geometries, aspects of which are described in U.S. Patent Publication No. 2014-0168602 A1, which is hereby incorporated by reference in its entirety.



FIG. 1A is a cross-sectional view of an eye E fit with a multifocal IOL 11. As shown, multifocal IOL 11 may, for example, comprise a bifocal IOL. Multifocal IOL 11 receives light from at least a portion of cornea 12 at the front of eye E and is generally centered about the optical axis of eye E. For ease of reference and clarity, FIGS. 1A and 1B do not disclose the refractive properties of other parts of the eye, such as the corneal surfaces. Only the refractive and/or diffractive properties of the multifocal IOL 11 are illustrated.


Each major face of lens 11, including the anterior (front) surface and posterior (back) surface, generally has a refractive profile, e.g. biconvex, plano-convex, plano-concave, meniscus, etc. The two surfaces together, in relation to the properties of the surrounding aqueous humor, cornea, and other optical components of the overall optical system, define the effects of the lens 11 on the imaging performance by eye E. Conventional, monofocal IOLs have a refractive power based on the refractive index of the material from which the lens is made, and also on the curvature or shape of the front and rear surfaces or faces of the lens. One or more support elements may be configured to secure the lens 11 to a patient's eye.


Multifocal lenses may optionally also make special use of the refractive properties of the lens. Such lenses generally include different powers in different regions of the lens so as to mitigate the effects of presbyopia. For example, as shown in FIG. 1A, a perimeter region of refractive multifocal lens 11 may have a power which is suitable for viewing at far viewing distances. The same refractive multifocal lens 11 may also include an inner region having a higher surface curvature and a generally higher overall power (sometimes referred to as a positive add power) suitable for viewing at near distances.


Rather than relying entirely on the refractive properties of the lens, multifocal diffractive IOLs or contact lenses can also have a diffractive power, as illustrated by the IOL 18 shown in FIG. 1B. The diffractive power can, for example, comprise positive or negative power, and that diffractive power may be a significant (or even the primary) contributor to the overall optical power of the lens. The diffractive power is conferred by a plurality of concentric diffractive zones which form a diffractive profile. The diffractive profile may either be imposed on the anterior face or posterior face or both.


The diffractive profile of a diffractive multifocal lens directs incoming light into a number of diffraction orders. As light enters from the front of the eye, the multifocal lens 18 directs light to form a far field focus 15a on retina for viewing distant objects and a near field focus 15b for viewing objects close to the eye. Depending on the distance from the source of light 13, the focus on retina 16 may be the near field focus 15b instead. Typically, far field focus 15a is associated with 0th diffractive order and near field focus 15b is associated with the 1st diffractive order, although other orders may be used as well.


Bifocal ophthalmic lens 18 typically distributes the majority of light energy into two viewing orders, often with the goal of splitting imaging light energy about evenly (50%:50%), one viewing order corresponding to far vision and one viewing order corresponding to near vision, although typically, some fraction goes to non-viewing orders.


Corrective optics may be provided by phakic IOLs, which can be used to treat patients while leaving the natural lens in place. Phakic IOLs may be angle supported, iris supported, or sulcus supported. The phakic IOL can be placed over the natural crystalline lens or piggy-backed over another IOL. It is also envisioned that the present disclosure may be applied to inlays, onlays, accommodating IOLs, pseudophakic IOLs, other forms of intraocular implants, spectacles, and even laser vision correction.



FIGS. 2A and 2B show aspects of a conventional diffractive multifocal lens 20. Multifocal lens 20 may have certain optical properties that are generally similar to those of multifocal IOLs 11, 18 described above. Multifocal lens 20 has an anterior lens face 21 and a posterior lens face 22 disposed about optical axis 24.


When fitted onto the eye of a subject or patient, the optical axis of lens 20 is generally aligned with the optical axis of eye E. The curvature of lens 20 gives lens 20 an anterior refractive profile and a posterior refractive profile. Although a diffractive profile may also be imposed on either anterior face 21 and posterior face 22 or both, FIG. 2B shows posterior face 22 with a diffractive profile. The diffractive profile is characterized by a plurality of annular diffractive zones or echelettes 23 spaced about optical axis 24. While analytical optics theory generally assumes an infinite number of echelettes, a standard multifocal diffractive IOL typically has at least 9 echelettes, and may have over 30 echelettes. For the sake of clarity, FIG. 2B shows only 4 echelettes. Typically, an IOL is biconvex, or possibly plano-convex, or convex-concave, although an IOL could be plano-plano, or other refractive surface combinations.


Conventional multifocal diffractive lenses typically provide for near and far field vision, neglecting visual performance at intermediate distances. Providing for an additional intermediate focal length by way of additional optical zones, e.g. by providing sets of at least two echelettes, can help to improve the visual performance at intermediate distances. However, as the number of optical zones increases, the risk of visual artifacts also increases. For example, in a quadrifocal diffractive lens having a near focal length, multiple intermediate focal lengths, and a far focal length; visual artifacts such as halos or glare may be visible to a user due to one or more of the boundaries between the optical zones.


Exemplary Multifocal Lens Shapes:



FIG. 3 shows a diffractive multifocal IOL 30 having an intermediate focal length 15c between near and far focal lengths 15b, 15a. The addition of an intermediate focal length 15c can increase the performance of the IOL 30 for users by providing improved visual acuity for viewing objects in the range of about 1.5 feet to about 5-6 feet from the eye. In general, adding a focal length can permit a presbyopic eye to focus more readily on objects at different distances.


The diffractive profile of the diffractive multifocal IOL 30 may provide for the additional focal length beyond the near focal length and far focal lengths described above by employing sets of multiple echelettes. For example, the plurality of concentric diffractive echelettes forming the diffractive profile may be split up into sets of at least two echelettes. The sets are repeating over the optic. The sets of echelettes can direct light 13 toward the near field focus 15b and toward the intermediate field focus 15c. As described above with respect to diffractive multifocal IOLs, the far focus 15a may typically be with a 0th diffractive order, while the near field focus 15b may be associated with a 2nd diffractive order. The intermediate focus 15c may be associated with the 1st diffractive order. However, different configurations are possible. For example, a diffractive multifocal IOL may instead be configured to direct light to the far focal length 15a in the 1st diffractive order, while directing light to the intermediate and near focal lengths 15c and 15b by way of 2nd and 3rd diffractive orders of the echelettes. In other embodiments (a quadrifocal embodiment), an additional intermediate focus (a second intermediate focus) may be provided. Greater or lesser numbers of focuses may be provided as desired in other embodiments.



FIG. 4 shows a graphical representation of a portion of a parabolic diffractive profile 400, according to embodiments encompassing a set of 3 echelettes that may repeat. The figure shows the set of 3 echelettes. In the exemplary diffractive profile 400, echelettes 406, 408, and 410 are shown in the X direction (404) from a first, minimum radius r0 to a maximum radius r32. The height of the surface relief pattern (from a plane bisecting the lens) is shown in the Y direction (402) in terms of the phase shift of the echelette (or Δ), and is plotted against the square of the radial distance (r2) from a central axis of the lens. The phase shift corresponds to a physical height or offset of the echelette from an underlying curve of the lens (Δo), and may be expressed in terms of wavelength. The echelettes 406, 408, 410 are shown arranged in an A, B, C arrangement, which may be repeated. The diffractive powers of the set of echelettes is driven by the specific geometry of the echelettes, including the change in height Δ1, Δ2, over the widths of each echelette 412, 414, 416. The alternating arrangement may be referred to as a saw-tooth profile. Although only three echelettes are shown, it will be understood that any suitable number of echelettes may be positioned on a lens.


Each echelette is connected with each neighboring echelette, where present, by a transition zone. For example, the first echelette 406 connects with the second echelette 408 by a first transition zone 420; and the second echelette 408 connects with the third echelette 410 by a second transition zone 422. The transition zones 420, 422 are step heights Δ1, Δ2 from trailing edges of one echelette to leading edges of the next echelette. The first echelette 406 also transitions from a minimum height by third transition zone 418.


The arrangement of the set of three echelettes 406, 408, 410 in a diffractive profile in FIG. 4 represents a general quadrifocal lens. FIG. 5, however, shows a graphical representation of a generalized set of n echelettes, representing a general profile of a multifocal diffractive lens profile 500 having n add powers, and in total n+1 powers. The profile is shown with the square of the lens radius r2 (or ρ) on the X axis 502, and the height of the profile, or phase shift, on the Y axis (504). The diffractive powers of the set of echelettes is driven by the specific geometry of the echelettes, including the radii (r0, r1, . . . , ri, . . . , rn).


In a generalized case, where a profile height is maximum at ρi-1 and minimum at ρi, the initial maximum profile height 510 may be expressed as a sum of a step height Δi-1 and a step offset Δi-1o. The step offset is the height offset of the transition zone from the underlying base curve. The following maximum profile height 512 can be expressed as a sum of the following step height Δi and following step offset Δio. The slope of profile Δpi(ρ) (506) can be expressed in a generalized form as follows.






slope
=



Δ

i

o


-

(


Δ

i
-
1


+

Δ

i
-

1

o




)




ρ
i

-

ρ

i
-
1








A diffractive profile can provide for multiple focal lengths (or foci) by providing different echelette geometries in series. For example, a diffractive profile having four focal lengths, as described above, can be created by providing three different diffractive echelettes in series (forming a set of three different diffractive echelettes). The three different diffractive echelettes can be repeated, leading to repeated sets of the three different diffractive echelettes, and a diffractive profile over a portion or all of a lens surface. In conventional lenses, the diffractive profile is repeated in a saw-tooth configuration, as shown in FIG. 4.


According to certain embodiments of the present disclosure, a diffractive profile can be modified by manipulating the step heights Δi and following step offsets Δio between echelettes of different echelettes in a set of echelettes. For example, FIG. 6 shows a graphical representation illustrating a modified quadrifocal diffractive lens profile 600 in which a step height between two echelettes has been minimized to be essentially zero. By reducing a step height between two echelettes to zero, or about zero, the potential for that step height to generate visual artifacts such as straylight, rings, or halo can be reduced.


In the diffractive lens profile 600 of FIG. 6, the square of the radius (r2 or ρ) is shown on the X axis 602, and the profile height (Δ) is shown on the Y axis 604. The shape of the diffractive lens profile 600 is represented in relation to the square of the radius (r2 or ρ), which is referred to as r-squared space. A first echelette 606 spans a first distance 612; a second echelette 608 spans a second distance 614, and a third echelette 610 spans a third distance 616. Notably, the transition 618 between the first and second echelette 606, 608 has been reduced to a step height of zero by matching an offset of the first echelette 606 with a maximum height of the second echelette 608. A nonzero step height 620 is still shown between the second and third echelettes 608, 610.


A typical transition zone having a nonzero step height can cause unintended redirection or concentration of light behind the lens, which may contribute to various forms of dysphotopsia. For example, nonzero step height transition zones may cause straylight, halos, glare, or other optical aberrations to appear in the far focal length. As any of the transition zones may cause such optical aberrations, reducing the number of nonzero step-height transition zones can cause a significant reduction in the incidence of such optical aberrations.


In some embodiments, the reduction in optical aberrations may be enhanced by increasing the amount of light directed toward the far and intermediate focal lengths compared to the amount of light directed toward the near focal length. For example, a diffractive profile may be configured wherein a nonzero percentage of light is diverted to each of a near focal length, an intermediate focal length, and a far focal length, and the amount of light directed to the near focal length can be smaller than the amount directed to any other focal length. According to some embodiments, the echelettes may be arranged to direct light to the far focal length in the 0th diffraction orders, the intermediate in the 1st diffractive order, and the near focal length receives light via the 2nd diffractive order. In other embodiments, the echelettes may be arranged to direct light to the far focal length in the 1st diffractive order, the intermediate focal length in the 2nd diffractive order, and the near focal length receives light by way of the 3rd diffractive order. In some cases, the amount of light directed to the far focal length can be greater than half of the total distribution of light that passes through the lens. The amount of light directed to the near focal length may generally be no more than 20% of the total distribution of light that passes through the lens. A through-focus point spread function (PSF) of such an embodiment is illustrated in FIG. 7. The horizontal axis 702 illustrates the total power of the lens. In this case the lens power for far vision 704 is 20 diopter. The vertical axis 706 illustrates the PSF, or light intensity. The peaks are shown for far vision 704, for intermediate vision 708, and for near vision 710. The peak for near vision 710 is the lower than the peak for intermediate vision 708, and the peak for intermediate vision 708 is lower than the peak for far vision 704. Providing a light distribution, as discussed in regard to FIG. 7, may be provided for an embodiment with a greater or lesser number of focal lengths, which may include a quadrifocal embodiment. For example, in a quadrifocal embodiment, the amount of light directed to the near focal length can be smaller than the amount directed to any other focal length. The amount of light directed to the far focal length can be greater than half of the total distribution of light that passes through the lens. The amount of light directed to the near focal length may generally be no more than 20% of the total distribution of light that passes through the lens. In these embodiments, a diffractive profile having the aforementioned light distribution may or may not include a minimized or zero step height placed between echelettes. In an embodiment with a minimized or zero step height, the minimized or zero step height may be placed between suitable echelettes, particularly between any two echelettes in a repeating set of echelettes.



FIG. 8 shows a cross-sectional view of diffractive lens surface 800 having the quadrifocal lens profile that is shown in FIG. 6, but here repeated over the optic of the lens.


In the exemplary diffractive lens surface 800, the radius (r) is shown on the X axis 804 and a profile height (Δ) is shown on the Y axis 802.


The diffractive lens surface 800 includes the set 803a of three echelettes 806a, 810a, 814a. The three echelettes 806a, 810a, 814a are the echelettes 606, 608, 610 shown in FIG. 6 (although shown in linear space in FIG. 8, and not in r-squared space as shown in FIG. 6). The set 803a is repeated over the optic to form repeated sets 803b, 803c, and so on, each comprising the same set defined in r2-space, configured to provide different focal lengths at respective diffractive powers. The diffractive profile accordingly includes a repetitive pattern (803a, 803b, 803c) of the echelettes repeated on the optical surface. For example, in first set 803a, a first echelette 806a, second echelette 810a, and third echelette 814a may be provided. The first echelette 806a, second echelette 810a, and third echelette 814a may each have a different profile than each other in r-squared space. The second set 803b may include a first echelette 806b, a second echelette 810b, and a third echelette 814b, each having the same profile in r-squared space as the respective first, second, and third echelettes 806a, 810a, 814a of the first set 803a. The third set 803c may include a first echelette 806c, a second echelette 810c, and a third echelette 814c, each having the same profile in r-squared space as the respective first, second, and third echelettes 806a, 810a, 814a of the first set 803a and the first, second, and third echelettes 806b, 810b, 814b of the second set 803b. The same pattern can repeat for any suitable number of sets.


The echelettes are defined in part by transition zones bounding each respective echelette. For example, regarding the first set 803a, the first echellette 806a is separated from the second echelette 810a by the first transition zone 808a; the second echelette 810a is separated from the third echelette 814a by a second transition zone 812a. The third echelette 814a is separated from the first echelette 806b of the second set 803b by the transition zone 816 between the sets 803a, 803b. Similarly, regarding the second set 803b, the first echellette 806b is separated from the second echelette 810b by the first transition zone 808b; the second echelette 810b is separated from the third echelette 814b by a second transition zone 812b. The third echelette 814b is separated from the first echelette 806c of the third set 803c by the transition zone 818 between the sets 803b, 803c. Regarding the third set 803c, the first echellette 806c is separated from the second echelette 810c by the first transition zone 808c; the second echelette 810c is separated from the third echelette 814c by a second transition zone 812c. The pattern repeats across the additional sets of echelettes.


As with conventional diffractive lenses, some of the transition zones (e.g. zones 812a, 816, 812b, 818) may have a nonzero step height. However, in accordance with embodiments, at least one pair of echelettes (e.g. zones 806a, 810a) is separated by a transition zone 808a having a step height of zero. At least one of the echelettes is connected to an adjacent echelette by a step height of zero. As the echelettes repeat across sets, further adjacent echelettes (e.g. echelettes 806b and 810b; 806c and 810c) may be separated by transition zones having step heights of zero (e.g. transition zones 808b, 808c).


Although the exact number of repeating sets shown in FIG. 8 is about six, any suitable number of repeating sets may be applied to a lens depending on the specific geometry of the echelettes and the width of the lens. For example, in certain embodiments, at least two sets repeating radially outward may be utilized. In some cases, the profile can extend over a total radius of approximately 2.5 millimeters (mm), as shown; but in other cases, the profile may extend from as little as about 1 mm to as much as about 4 mm.



FIG. 9 shows a graphical representation illustrating a second quadrifocal lens profile 900 according to certain embodiments of this disclosure. The quadrifocal lens profile 900 is shown in terms of profile height (or Δ), or phase shift, on the Y axis 904 against the square of the radius (or ρ) on the X axis 902 (in r-squared space). The profile 900 defines a set of three distinct echelettes 906, 910, 914 each spanning a respective portion 916, 918, 920 of the lens. In the quadrifocal lens profile 900, for an A, B, C arrangement of three distinct echelettes, the minimum or zero step height 912 is positioned at the B-C transition between the second echelette 910 and the third echellete 914. In this example, the minimum or zero step height 912 is convex, as the preceding or second echelette 910 is less steep than the subsequent or third echelette 914. A non-zero step height 908 connects the first echelette 906 to the second echelette 910.


As discussed above, the positioning of the minimized or zero step height may be adjusted. The example in FIGS. 6 and 8 shows a configuration wherein, for an A, B, C arrangement of three distinct echelettes, the minimum or zero step height is positioned at the A-B transition. The example in FIG. 9 shows a configuration wherein, for an A, B, C arrangement of three distinct diffractive zones, the minimum or zero step height is positioned at the B-C transition. The transition having minimum or zero step height is convex, as an echelette 910 merged at its respective minimum height with a steeper echelette 914. In FIG. 6, the transition having minimum or zero step height is concave, as a steeper echelette 606 merged at its respective minimum height with a less steep echelette 608.


A concave or convex transition may influence the performance of the profile, and the manufacturability. The size or extent of concave transitions may be minimized if lens is manufactured by molding. In contrast, the size or extent of convex transitions may be minimized if the lens is manufactured by lathe cutting.



FIG. 10 shows a graphical representation illustrating a trifocal lens profile 1000 according to certain embodiments of this disclosure. The trifocal lens profile 1000 is shown in terms of profile height (or Δ), or phase shift, on the Y axis 1004 against the square of the radius (or ρ) on the X axis 1002 (in r-squared space). The profile 1000 defines a set of two distinct echelettes 1006, 1010 each spanning a respective portion 1016, 1018 of the lens. In the trifocal lens profile 1000, for an A, B arrangement of two distinct echelettes, the minimum or zero step height 1012 is positioned at the A-B transition between the first echelette 1006 and the second echelette 1010. In this example, the minimum or zero step height 1012 is convex, as the preceding or first echelette 1006 is less steep than the subsequent or second echelette 1010. The set of echelettes comprising the first echelette 1006 and second echelette 1010 may be repeated over the optic of the lens for any number of repetitions, as desired.


Any of the embodiments of lens profiles discussed herein may be apodized to produce a desired result. The apodization may result in the step heights and step offsets of the repeated sets being varied according to the apodization. The sets, however, are still considered to be repeating sets over the optic of the lens.


The structures and methods discussed herein may be used to produce a lens having any number of focal lengths (monofocal, bifocal, trifocal, quadrifocal, etc.), and the diffractive profiles discussed herein may be used to produce any number of focal points (at least one focal point). The diffractive profiles may be applied to cover an annulus of the first surface or the second surface. The lens may be characterized as a monofocal lens or extended depth of focus lens.


Systems and Methods for Determining Lens Shape:



FIG. 11 is a simplified block diagram illustrating a system 1100 for generating an ophthalmic lens based on a user input.


The system 1100 includes a user input module 1102 configured to receive user input defining aspects of the user of a lens and of the lens itself. Aspects of a lens may include anatomical dimensions like pupil size performance, and lens dimensions, among other attributes, and a diffractive lens prescription, which may be a multifocal prescription. A lens prescription can include, for example, a preferred optical power or optical power profile for correcting far vision and an optical power or optical power profile for near vision. In some cases, a lens prescription can further include an optical power or optical power profile for correcting intermediate vision at two, or in some cases more than two intermediate foci, which may fall between the optical powers or ranges of optical powers described above. A pupil size performance can include a pupil radius of a patient and the visual field to be optimized. These parameters can also be related to patient's life style or profession, so that the design incorporates patient's visual needs as a function of the pupil size. Lens dimensions can include a preferred radius of the total lens, and may further include preferred thickness, or a preferred curvature of one or the other of the anterior surface and posterior surface of the lens.


A diffractive surface modeling module 1104 can receive information about the desired lens from the user input module 1102, and can determine aspects of a multizonal lens. For example, the modeling module 1104 can determine the shape of one or more echelettes of the diffractive profile of a diffractive lens, including the positioning, width, step height, and curvature needed to fulfill the prescription for each set of the echelettes, as well as the positioning of each set of echelettes. The multizonal diffractive surface modeling module 1104 can further determine the shapes of transition steps between echelettes. For example, transition steps may be smoothed or rounded to help mitigate optical aberrations caused by light passing through an abrupt transition. Such transition zone smoothing, which may be referred to as a low scatter profile, can provide for reductions in dysphotopsia by reducing the errant concentration of incident light behind the lens by the transition zones. By way of further example, echelette ordering, echelette offsets, and echelette boundaries may be adjusted to adjust the step heights between some adjacent echelettes. In particular, the multizonal diffractive surface modeling module can determine echelette offsets to set one or more step heights at echelette transitions to zero, or approximately zero, by these or similar methods.


The diffractive surface modeling module 1104 can be configured to generate performance criteria 1112, e.g. via modeling optical properties in a virtual environment. Performance criteria can include the match of the optical power profile of the multizonal lens with the desired optical power profile based on the lens prescription. The performance criteria can also include the severity of diffractive aberrations caused by lens surface. In some cases, the multizonal surface modeling module 1104 can provide a lens surface to a lens fabrication module for facilitating the production of a physical lens, which can be tested via a lens testing module 1110 for empirically determining the performance criteria 1112, so as to identify optical aberrations and imperfections not readily discerned via virtual modeling, and to permit iteration.


A refractive surface modeling module 1106 can receive information from the user input 1102 and multifocal surface modeling modules 1104 in order to determine refractive aspects of the lens. For example, provided with a multifocal prescription and a set of diffractive powers that can be generated by a diffractive profile, the refractive surface modeling module 1106 can provide a refractive geometry configured to provide a base power which, when combined with the diffractive surface, meets the requirements of the lens prescription. The refractive surface modeling module 1106 can also generate performance criteria 1112, and can contribute to providing a lens surface to a lens fabrication module 1108 for facilitating the production of the physical lens.



FIG. 12 is an example process 1200 for generating a diffractive lens surface, in accordance with embodiments. The process 1200 may be implemented in conjunction with, for example, the system 1100 shown in FIG. 11. Some or all of the process 1200 (or any other processes described herein, or variations, and/or combinations thereof) may be performed under the control of one or more computer systems configured with executable instructions and may be implemented as code (e.g., executable instructions, one or more computer programs, or one or more applications) executing collectively on one or more processors, by hardware or combinations thereof. The code may be stored on a computer-readable storage medium, for example, in the form of a computer program comprising a plurality of instructions executable by one or more processors. The computer-readable storage medium may be non-transitory.


The process 1200 includes receiving an input indicative of a diffractive lens prescription (act 1202). The input can include, e.g., a desired optical power profile for correcting impaired distance vision, a desired optical power profile for correcting impaired intermediate distance vision, a desired optical power profile for accommodating near vision, and any suitable combination of the above. Based on a desired optical power profile, a diffractive profile can be generated including a repetitive pattern of at least two echelettes (act 1204). At least one of the at least two echelettes in the repetitive pattern may be connected to an adjacent echelette by a step height of zero (act 1206).


The diffractive lens profile of the multizonal diffractive lens surface may be used in combination with a known refractive base power. To that end, a refractive lens surface may be generated having a base power that, in combination with the diffractive lens surface, meets the diffractive lens prescription (act 1208). A total lens surface can be generated based on both the refractive lens surface and the diffractive lens surface (act 1210). The refractive lens surface can include a refractive lens curvature on the anterior surface of the lens, the posterior surface of the lens, or both. Instructions can be generated to fabricate an intraocular lens based on the generated total lens surface (act 1212).


Computational Methods:



FIG. 13 is a simplified block diagram of an exemplary computing environment 1300 that may be used by systems for generating the continuous progressive lens surfaces of the present disclosure. Computer system 1322 typically includes at least one processor 1352 which may communicate with a number of peripheral devices via a bus subsystem 1354. These peripheral devices may include a storage subsystem 1356 comprising a memory subsystem 1358 and a file storage subsystem 1360, user interface input devices 1362, user interface output devices 1364, and a network interface subsystem 1366. Network interface subsystem 1366 provides an interface to outside networks 1368 and/or other devices, such as the lens fabrication module 1108 or lens testing module 1110 of FIG. 11.


User interface input devices 1362 may include a keyboard, pointing devices such as a mouse, trackball, touch pad, or graphics tablet, a scanner, foot pedals, a joystick, a touchscreen incorporated into the display, audio input devices such as voice recognition systems, microphones, and other types of input devices. User input devices 1362 will often be used to download a computer executable code from a tangible storage media embodying any of the methods of the present disclosure. In general, use of the term “input device” is intended to include a variety of conventional and proprietary devices and ways to input information into computer system 1322.


User interface output devices 1364 may include a display subsystem, a printer, a fax machine, or non-visual displays such as audio output devices. The display subsystem may be a cathode ray tube (CRT), a flat-panel device such as a liquid crystal display (LCD), a projection device, or the like. The display subsystem may also provide a non-visual display such as via audio output devices. In general, use of the term “output device” is intended to include a variety of conventional and proprietary devices and ways to output information from computer system 1322 to a user.


Storage subsystem 1356 can store the basic programming and data constructs that provide the functionality of the various embodiments of the present disclosure. For example, a database and modules implementing the functionality of the methods of the present disclosure, as described herein, may be stored in storage subsystem 1356. These software modules are generally executed by processor 1352. In a distributed environment, the software modules may be stored on a plurality of computer systems and executed by processors of the plurality of computer systems. Storage sub system 1356 typically comprises memory sub system 1358 and file storage sub system 1360. Memory subsystem 1358 typically includes a number of memories including a main random access memory (RAM) 1370 for storage of instructions and data during program execution.


Various computational methods discussed above, e.g. with respect to generating a multizonal lens surface, may be performed in conjunction with or using a computer or other processor having hardware, software, and/or firmware. The various method steps may be performed by modules, and the modules may comprise any of a wide variety of digital and/or analog data processing hardware and/or software arranged to perform the method steps described herein. The modules optionally comprising data processing hardware adapted to perform one or more of these steps by having appropriate machine programming code associated therewith, the modules for two or more steps (or portions of two or more steps) being integrated into a single processor board or separated into different processor boards in any of a wide variety of integrated and/or distributed processing architectures. These methods and systems will often employ a tangible media embodying machine-readable code with instructions for performing the method steps described above. Suitable tangible media may comprise a memory (including a volatile memory and/or a non-volatile memory), a storage media (such as a magnetic recording on a floppy disk, a hard disk, a tape, or the like; on an optical memory such as a CD, a CD-R/W, a CD-ROM, a DVD, or the like; or any other digital or analog storage media), or the like.

Claims
  • 1. An ophthalmic lens, comprising: a first surface and a second surface disposed about an optical axis; anda diffractive profile imposed on one of the first surface or the second surface, and configured to cause a distribution of light intensity among at least three focal lengths including a near focal length, an intermediate focal length, and a far focal length, such that: a first portion of the distribution is directed to the near focal length, the first portion of the distribution having a first peak light intensity,a second portion of the distribution is directed to the far focal length, the second portion of the distribution having a second peak light intensity, anda third portion of the distribution is directed to the intermediate focal length, the third portion of the distribution having a third peak light intensity, the first peak light intensity of the first portion being less than the second peak light intensity of the second portion and less than the third peak light intensity of the third portion.
  • 2. The lens of claim 1, wherein the first peak intensity of the first portion of the distribution is smaller than a peak intensity of a respective portion of the distribution directed to any other focal length of the at least three focal lengths.
  • 3. The lens of claim 1, wherein the first peak intensity of the first portion of the distribution of light intensity is no more than 20% of a sum of the peak light intensities within the distribution of light intensity.
  • 4. The lens of claim 1, wherein the second peak of the second portion of the distribution of light intensity is at least 50% of a sum of the peak light intensities within the distribution of light intensity.
  • 5. The lens of claim 1, wherein the first portion of the distribution directed to the near focal length is in a 2nd diffractive order, the second portion of the distribution directed to the far focal length is in a 0th diffractive order, and the third portion of the distribution directed to the intermediate focal length is in a 1st diffractive order.
  • 6. The lens of claim 1, wherein the first portion of the distribution directed to the near focal length is in a 3rd diffractive order, the second portion of the distribution directed to the far focal length is in a 1st diffractive order, and the third portion of the distribution directed to the intermediate focal length is in a 2nd diffractive order.
CROSS-REFERENCE AND RELATED APPLICATIONS

This application is a continuation of and claims priority to Ser. No. 16/020,928, filed Jun. 27, 2018, which claims priority to, and the benefit of, under U.S.C. § 119(e) of U.S. Provisional Appl. No. 62/525,965, filed on Jun. 28, 2017, all of which are incorporated herein by reference in their entirety.

US Referenced Citations (384)
Number Name Date Kind
3367734 Karl et al. Feb 1968 A
3722986 Tagnon Mar 1973 A
4210391 Cohen et al. Jul 1980 A
4338005 Cohen Jul 1982 A
4340283 Cohen Jul 1982 A
4460275 Spriggs Jul 1984 A
4504892 Zulfilar Mar 1985 A
4504982 Burk Mar 1985 A
4580883 Shinohara Apr 1986 A
4606626 Shinohara Aug 1986 A
4637697 Freeman Jan 1987 A
4640593 Shinohara Feb 1987 A
4641934 Freeman Feb 1987 A
4642112 Freeman Feb 1987 A
4655565 Freeman Apr 1987 A
4710193 Volk Dec 1987 A
4762408 Shinohara Aug 1988 A
4778462 Grendahl Oct 1988 A
4795462 Grendahl Jan 1989 A
4798608 Grendahl Jan 1989 A
4798609 Grendahl Jan 1989 A
4856234 Goins Aug 1989 A
4856889 Guilino et al. Aug 1989 A
4881804 Cohen Nov 1989 A
4881805 Cohen Nov 1989 A
4898461 Portney Feb 1990 A
4932970 Portney Jun 1990 A
4936666 Futhey Jun 1990 A
4957506 Mercier Sep 1990 A
4978211 Cornu et al. Dec 1990 A
4995714 Cohen Feb 1991 A
4995715 Cohen Feb 1991 A
5016977 Baude et al. May 1991 A
5017000 Cohen May 1991 A
5019098 Mercier May 1991 A
5050981 Roffman Sep 1991 A
5054905 Cohen Oct 1991 A
5056908 Cohen Oct 1991 A
5061058 Guilino et al. Oct 1991 A
5066301 Wiley Nov 1991 A
5076684 Simpson et al. Dec 1991 A
5089023 Swanson Feb 1992 A
5089024 Christie et al. Feb 1992 A
5096285 Silberman Mar 1992 A
5100226 Freeman Mar 1992 A
5104212 Taboury et al. Apr 1992 A
5112351 Christie et al. May 1992 A
5114220 Baude et al. May 1992 A
5116111 Simpson et al. May 1992 A
5117306 Cohen May 1992 A
5120120 Cohen Jun 1992 A
5121979 Cohen Jun 1992 A
5121980 Cohen Jun 1992 A
5129718 Futhey et al. Jul 1992 A
5144483 Cohen Sep 1992 A
5148205 Guilino et al. Sep 1992 A
5161057 Johnson Nov 1992 A
5173723 Volk et al. Dec 1992 A
5178636 Silberman Jan 1993 A
5191366 Kashiwagi Mar 1993 A
5220359 Roffman Jun 1993 A
5225858 Portney Jul 1993 A
5229797 Futhey et al. Jul 1993 A
5236970 Christ et al. Aug 1993 A
5257132 Ceglio et al. Oct 1993 A
5260727 Oksman et al. Nov 1993 A
5322649 Rheinish et al. Jun 1994 A
5344447 Swanson Sep 1994 A
5349394 Freeman et al. Sep 1994 A
5349471 Morris et al. Sep 1994 A
5381190 Rehse et al. Jan 1995 A
5384606 Koch et al. Jan 1995 A
5408281 Zhang Apr 1995 A
5443506 Garabet Aug 1995 A
5443507 Jacobi Aug 1995 A
5444106 Zhou et al. Aug 1995 A
5446508 Kitchen Aug 1995 A
5448312 Roffman et al. Sep 1995 A
5485228 Roffman et al. Jan 1996 A
5581405 Meyers et al. Dec 1996 A
5589982 Faklis et al. Dec 1996 A
5629800 Hamblen May 1997 A
5652638 Roffman et al. Jul 1997 A
5674284 Chang et al. Oct 1997 A
5682223 Menezes et al. Oct 1997 A
5683457 Gupta et al. Nov 1997 A
5684560 Roffman et al. Nov 1997 A
5684595 Kato et al. Nov 1997 A
5699142 Lee et al. Dec 1997 A
5715031 Roffman et al. Feb 1998 A
5715091 Meyers Feb 1998 A
5724258 Roffman Mar 1998 A
5728156 Gupta et al. Mar 1998 A
5748282 Freeman May 1998 A
5760871 Kosoburd et al. Jun 1998 A
5777719 Williams et al. Jul 1998 A
5796462 Roffman et al. Aug 1998 A
5800532 Lieberman Sep 1998 A
5805260 Roffman et al. Sep 1998 A
5822091 Baker Oct 1998 A
5838496 Maruyama et al. Nov 1998 A
5847802 Menezes et al. Dec 1998 A
5888122 Gupta et al. Mar 1999 A
5895422 Hauber Apr 1999 A
5895610 Chang et al. Apr 1999 A
5929969 Roffman Jul 1999 A
5968094 Werblin et al. Oct 1999 A
5968095 Norrby Oct 1999 A
5982543 Fiala Nov 1999 A
6007747 Blake et al. Dec 1999 A
6019472 Koester et al. Feb 2000 A
6050687 Bille et al. Apr 2000 A
6070980 Obara et al. Jun 2000 A
6082856 Dunn et al. Jul 2000 A
6086204 Magnante Jul 2000 A
6089711 Blankenbecler et al. Jul 2000 A
6095651 Williams et al. Aug 2000 A
6120148 Fiala et al. Sep 2000 A
6126283 Wen et al. Oct 2000 A
6126286 Portney Oct 2000 A
6139145 Israel Oct 2000 A
6142625 Sawano et al. Nov 2000 A
6145987 Baude et al. Nov 2000 A
6154323 Kamo Nov 2000 A
6199986 Williams et al. Mar 2001 B1
6210005 Portney Apr 2001 B1
6215096 Von Wallfeld et al. Apr 2001 B1
6224211 Gordon May 2001 B1
6231603 Lang et al. May 2001 B1
6270220 Keren Aug 2001 B1
6271915 Frey et al. Aug 2001 B1
6325510 Golub et al. Dec 2001 B1
6338559 Williams et al. Jan 2002 B1
6353503 Spitzer et al. Mar 2002 B1
6413276 Werblin Jul 2002 B1
6429972 Ota et al. Aug 2002 B1
6439720 Graves et al. Aug 2002 B1
6457826 Lett Oct 2002 B1
6462874 Soskind Oct 2002 B1
6464355 Gil Oct 2002 B1
6474814 Griffin Nov 2002 B1
6488708 Sarfarazi Dec 2002 B2
6491721 Freeman et al. Dec 2002 B2
6497483 Frey et al. Dec 2002 B2
6511180 Guirao et al. Jan 2003 B2
6520638 Roffman et al. Feb 2003 B1
6527389 Portney Mar 2003 B2
6533416 Fermigier et al. Mar 2003 B1
6536899 Fiala Mar 2003 B1
6537317 Steinert et al. Mar 2003 B1
6547391 Ross, III et al. Apr 2003 B2
6547822 Lang Apr 2003 B1
6554425 Roffman et al. Apr 2003 B1
6554859 Lang et al. Apr 2003 B1
6557992 Dwyer et al. May 2003 B1
6576012 Lang Jun 2003 B2
6582076 Roffman et al. Jun 2003 B1
6585375 Donitzky et al. Jul 2003 B2
6609673 Johnson Aug 2003 B1
6609793 Norrby et al. Aug 2003 B2
6616275 Dick et al. Sep 2003 B1
6655802 Zimmermann et al. Dec 2003 B2
6685315 De Carle Feb 2004 B1
6705729 Piers et al. Mar 2004 B2
6709103 Roffman et al. Mar 2004 B1
6755524 Rubinstein et al. Jun 2004 B2
6791754 Ogawa Sep 2004 B2
6802605 Cox et al. Oct 2004 B2
6808262 Chapoy et al. Oct 2004 B2
6818158 Pham et al. Nov 2004 B2
6827444 Williams et al. Dec 2004 B2
6830332 Piers et al. Dec 2004 B2
6835204 Stork et al. Dec 2004 B1
6846326 Zadno-Azizi et al. Jan 2005 B2
6848790 Dick et al. Feb 2005 B1
6851803 Wooley et al. Feb 2005 B2
6884261 Zadno-Azizi et al. Apr 2005 B2
6923539 Simpson et al. Aug 2005 B2
6923540 Ye et al. Aug 2005 B2
6951391 Morris et al. Oct 2005 B2
6957891 Fiala Oct 2005 B2
6972032 Aharoni et al. Dec 2005 B2
6986578 Jones Jan 2006 B2
7025456 Morris et al. Apr 2006 B2
7036931 Lindacher et al. May 2006 B2
7048759 Bogaert et al. May 2006 B2
7048760 Cumming May 2006 B2
7061693 Zalevsky Jun 2006 B2
7073906 Portney Jul 2006 B1
7093938 Morris et al. Aug 2006 B2
7111938 Andino et al. Sep 2006 B2
7137702 Piers et al. Nov 2006 B2
7156516 Morris et al. Jan 2007 B2
7159983 Menezes et al. Jan 2007 B2
7188949 Bandhauer et al. Mar 2007 B2
7198640 Nguyen Apr 2007 B2
7217375 Lai May 2007 B2
7221513 Cho et al. May 2007 B2
7232218 Morris et al. Jun 2007 B2
7287852 Fiala Oct 2007 B2
7293873 Dai et al. Nov 2007 B2
7365917 Zalevsky Apr 2008 B2
7377640 Piers et al. May 2008 B2
7377641 Piers et al. May 2008 B2
7441894 Zhang et al. Oct 2008 B2
7455404 Bandhauer et al. Nov 2008 B2
7475986 Dai et al. Jan 2009 B2
7481532 Hong et al. Jan 2009 B2
7543937 Piers et al. Jun 2009 B2
7572007 Simpson Aug 2009 B2
7604350 Dursteler et al. Oct 2009 B2
7615073 Deacon et al. Nov 2009 B2
7654667 Blum et al. Feb 2010 B2
7670371 Piers et al. Mar 2010 B2
7677725 Piers et al. Mar 2010 B2
7717558 Hong et al. May 2010 B2
7753521 Wooley et al. Jul 2010 B2
7871162 Weeber Jan 2011 B2
7883207 Iyer et al. Feb 2011 B2
7896916 Piers et al. Mar 2011 B2
7922326 Bandhauer et al. Apr 2011 B2
7984990 Bandhauer et al. Jul 2011 B2
7998198 Angelopoulos et al. Aug 2011 B2
8128222 Portney Mar 2012 B2
8157374 Bandhauer et al. Apr 2012 B2
8192022 Zalevsky Jun 2012 B2
8197063 Iyer et al. Jun 2012 B2
8216307 Schaper, Jr. Jul 2012 B2
8231219 Weeber Jul 2012 B2
8231673 Sacharoff et al. Jul 2012 B2
8235525 Lesage et al. Aug 2012 B2
8240850 Apter et al. Aug 2012 B2
8262728 Zhang et al. Sep 2012 B2
8292953 Weeber et al. Oct 2012 B2
8382281 Weeber Feb 2013 B2
8388137 Dreher et al. Mar 2013 B2
8430508 Weeber Apr 2013 B2
8444267 Weeber et al. May 2013 B2
8480228 Weeber Jul 2013 B2
8500805 Kobayashi et al. Aug 2013 B2
8506075 Bandhauer et al. Aug 2013 B2
8529623 Piers et al. Sep 2013 B2
8556416 Lawu Oct 2013 B2
8556417 Das et al. Oct 2013 B2
8573775 Weeber Nov 2013 B2
8619362 Portney Dec 2013 B2
8636796 Houbrechts et al. Jan 2014 B2
8652205 Hong et al. Feb 2014 B2
8678583 Cohen Mar 2014 B2
8709079 Zhang et al. Apr 2014 B2
8734511 Weeber et al. May 2014 B2
8740978 Weeber et al. Jun 2014 B2
8747466 Weeber et al. Jun 2014 B2
8755117 Kobayashi et al. Jun 2014 B2
8771348 Zhao Jul 2014 B2
8827446 Iyer et al. Sep 2014 B2
8906089 Piers et al. Dec 2014 B2
9069185 Zhao Jun 2015 B2
9078745 Zhang et al. Jul 2015 B2
9122074 Piers et al. Sep 2015 B2
9164201 Fermigier et al. Oct 2015 B2
9223148 Fiala et al. Dec 2015 B2
9304329 Zhao Apr 2016 B2
9310624 Argal et al. Apr 2016 B2
9320594 Schwiegerling Apr 2016 B2
9329309 Van Heugten May 2016 B2
9335563 Weeber May 2016 B2
9335564 Choi et al. May 2016 B2
9370416 Argal et al. Jun 2016 B2
9518864 Grossinger et al. Dec 2016 B2
9563070 Ando et al. Feb 2017 B2
9622856 Weeber et al. Apr 2017 B2
9869580 Grossinger et al. Jan 2018 B2
9925041 Gerlach et al. Mar 2018 B2
9931200 Van Der Mooren et al. Apr 2018 B2
10698234 Zhao Jun 2020 B2
20010018612 Carson et al. Aug 2001 A1
20020082690 Sarbadhikari Jun 2002 A1
20020093701 Zhang et al. Jul 2002 A1
20020118337 Perrott et al. Aug 2002 A1
20030014107 Reynard Jan 2003 A1
20030076478 Cox Apr 2003 A1
20030169491 Bender et al. Sep 2003 A1
20030171808 Phillips Sep 2003 A1
20040085515 Roffman et al. May 2004 A1
20040088050 Norrby et al. May 2004 A1
20040106992 Lang et al. Jun 2004 A1
20040111153 Woods et al. Jun 2004 A1
20040189981 Ross et al. Sep 2004 A1
20050096226 Stock et al. May 2005 A1
20050099589 Ishak May 2005 A1
20050128432 Altmann Jun 2005 A1
20050203619 Altmann Sep 2005 A1
20050259222 Kelch et al. Nov 2005 A1
20050267575 Nguyen et al. Dec 2005 A1
20060004446 Aharoni et al. Jan 2006 A1
20060009816 Fang et al. Jan 2006 A1
20060030938 Altmann Feb 2006 A1
20060066808 Blum et al. Mar 2006 A1
20060109421 Ye et al. May 2006 A1
20060116763 Simpson Jun 2006 A1
20060116764 Simpson Jun 2006 A1
20060139570 Blum et al. Jun 2006 A1
20060238702 Glick et al. Oct 2006 A1
20060244904 Hong et al. Nov 2006 A1
20070052920 Stewart et al. Mar 2007 A1
20070129803 Cumming et al. Jun 2007 A1
20070171362 Simpson et al. Jul 2007 A1
20070258143 Portney Nov 2007 A1
20070268451 Raghuprasad Nov 2007 A1
20070282438 Hong et al. Dec 2007 A1
20080147185 Hong et al. Jun 2008 A1
20080161913 Brady et al. Jul 2008 A1
20080161914 Brady et al. Jul 2008 A1
20080269891 Hong et al. Oct 2008 A1
20080273169 Blum et al. Nov 2008 A1
20080300679 Altmann Dec 2008 A1
20090062911 Bogaert Mar 2009 A1
20090088840 Simpson et al. Apr 2009 A1
20090164008 Hong et al. Jun 2009 A1
20090210054 Weeber et al. Aug 2009 A1
20090240328 Treushnikov et al. Sep 2009 A1
20090295295 Shannon et al. Dec 2009 A1
20090323020 Zhao et al. Dec 2009 A1
20100016961 Hong et al. Jan 2010 A1
20100057202 Bogaert Mar 2010 A1
20100087921 Simpson Apr 2010 A1
20100131060 Simpson et al. May 2010 A1
20100161051 Hong Jun 2010 A1
20100274233 Dick et al. Oct 2010 A1
20100281021 Weeber et al. Nov 2010 A1
20100312336 Hong et al. Dec 2010 A1
20110022170 Simpson et al. Jan 2011 A1
20110109874 Piers et al. May 2011 A1
20110125261 Portney May 2011 A1
20110166652 Bogaert et al. Jul 2011 A1
20110270596 Weeber Nov 2011 A1
20110313522 Hayes Dec 2011 A1
20110313523 Hayes Dec 2011 A1
20110313525 Cumming Dec 2011 A1
20120059464 Zhao Mar 2012 A1
20120140166 Zhao Jun 2012 A1
20120143326 Canovas et al. Jun 2012 A1
20120154740 Bradley et al. Jun 2012 A1
20120170121 Okada et al. Jul 2012 A1
20120320335 Weeber et al. Dec 2012 A1
20120323321 Simonov et al. Dec 2012 A1
20130035760 Portney Feb 2013 A1
20130046381 Zalevsky et al. Feb 2013 A1
20130060330 Weeber et al. Mar 2013 A1
20130107202 Liang May 2013 A1
20140172088 Carson et al. Jun 2014 A1
20150022775 Ando et al. Jan 2015 A1
20150029460 Bradley et al. Jan 2015 A1
20150094807 Piers et al. Apr 2015 A1
20150359625 Argal et al. Dec 2015 A1
20160216535 Zhao Jul 2016 A1
20160220350 Gerlach Aug 2016 A1
20160220352 Choi et al. Aug 2016 A1
20160320633 Weeber et al. Nov 2016 A1
20160334640 De, Jr. et al. Nov 2016 A1
20160341978 Schwiegerling Nov 2016 A1
20170209259 Choi et al. Jul 2017 A1
20170216020 Weeber et al. Aug 2017 A1
20170219846 Ando Aug 2017 A1
20170227789 Ando et al. Aug 2017 A1
20170239038 Choi et al. Aug 2017 A1
20170245985 Canovas et al. Aug 2017 A1
20170245986 Canovas Vidal et al. Aug 2017 A1
20170245987 Canovas Vidal et al. Aug 2017 A1
20170252151 MacKool Sep 2017 A1
20180092739 Pagnoulle et al. Apr 2018 A1
20180132996 Tiwari et al. May 2018 A1
20180147050 Choi et al. May 2018 A1
20180147052 Hong et al. May 2018 A1
20180275428 Ando Sep 2018 A1
20180368972 Rosen et al. Dec 2018 A1
20180373060 Knox et al. Dec 2018 A1
20190004335 Weeber et al. Jan 2019 A1
20190224000 Choi et al. Jul 2019 A1
20190254810 Tiwari et al. Aug 2019 A1
20190307557 De Carvalho et al. Oct 2019 A1
20190314148 Liu Oct 2019 A1
20200038172 Hussain et al. Feb 2020 A1
Foreign Referenced Citations (139)
Number Date Country
2005230194 Dec 2010 AU
2501217 Apr 2004 CA
2507659 Jun 2004 CA
2590085 Jun 2006 CA
1951340 Apr 2007 CN
101181171 Apr 2011 CN
102665611 Sep 2012 CN
69715830 Aug 2003 DE
335731 Oct 1989 EP
342895 Nov 1989 EP
0343067 Nov 1989 EP
0369561 May 1990 EP
375291 Jun 1990 EP
0393639 Oct 1990 EP
412751 Feb 1991 EP
0457553 Nov 1991 EP
470811 Feb 1992 EP
605841 Jul 1994 EP
0316162 Oct 1995 EP
355230 Oct 1995 EP
681198 Nov 1995 EP
0537643 Mar 1997 EP
0926531 Jun 1999 EP
949529 Oct 1999 EP
1376203 Jan 2004 EP
1862148 Dec 2007 EP
1310267 Jan 2008 EP
1891912 Feb 2008 EP
2043558 Apr 2009 EP
2045648 Apr 2009 EP
1402308 May 2009 EP
1424049 Jun 2009 EP
2103279 Sep 2009 EP
2113226 Nov 2009 EP
2365379 Sep 2011 EP
2377493 Oct 2011 EP
2378319 Oct 2011 EP
2290411 May 2012 EP
2363097 Sep 2012 EP
2812882 Dec 2014 EP
2813881 Dec 2014 EP
2349093 Oct 2015 EP
3150170 Dec 2017 EP
2527908 Mar 2019 EP
1215851 Feb 1990 IT
H01154119 Jun 1989 JP
H0228615 Jan 1990 JP
H0279815 Mar 1990 JP
H02137814 May 1990 JP
H02249631 Oct 1990 JP
3011315 Jan 1991 JP
2000511299 Aug 2000 JP
2003532157 Oct 2003 JP
2010158315 Jul 2010 JP
2013101323 May 2013 JP
101154066 Jun 2012 KR
9831299 Jul 1998 NO
06060477 Jun 2006 NO
2011154235 Jul 2013 RU
2011154238 Jul 2013 RU
9002963 Mar 1990 WO
9222264 Dec 1992 WO
9303409 Feb 1993 WO
9413225 Jun 1994 WO
9417435 Aug 1994 WO
9724639 Jul 1997 WO
9744689 Nov 1997 WO
9907309 Feb 1999 WO
9923526 May 1999 WO
0019906 Apr 2000 WO
0076426 Dec 2000 WO
0121061 Mar 2001 WO
0163344 Aug 2001 WO
0182839 Nov 2001 WO
0189424 Nov 2001 WO
0221194 Mar 2002 WO
0234158 May 2002 WO
02084381 Oct 2002 WO
02088830 Nov 2002 WO
03009053 Jan 2003 WO
2004013680 Feb 2004 WO
2004034129 Apr 2004 WO
2004049979 Jun 2004 WO
2004090611 Oct 2004 WO
2004096014 Nov 2004 WO
2004113959 Dec 2004 WO
05019906 Mar 2005 WO
06025726 Mar 2006 WO
2006047698 May 2006 WO
2006060480 Jun 2006 WO
2006067255 Jun 2006 WO
2007092948 Aug 2007 WO
2007133384 Nov 2007 WO
2008045847 Apr 2008 WO
2008150982 Dec 2008 WO
2009017403 Feb 2009 WO
2009027438 Mar 2009 WO
2009043985 Apr 2009 WO
2009058755 May 2009 WO
2009076670 Jun 2009 WO
2009130610 Oct 2009 WO
2009148454 Dec 2009 WO
2010046356 Apr 2010 WO
2010054255 May 2010 WO
2010059764 May 2010 WO
2010079528 Jul 2010 WO
2010093975 Aug 2010 WO
2010100523 Sep 2010 WO
2010104530 Sep 2010 WO
2010144315 Dec 2010 WO
2011024125 Mar 2011 WO
2011055228 May 2011 WO
2011075641 Jun 2011 WO
2011075668 Jun 2011 WO
2012004746 Jan 2012 WO
2012031211 Mar 2012 WO
2012070313 May 2012 WO
2012078763 Jun 2012 WO
2012085917 Jun 2012 WO
2012122411 Sep 2012 WO
2012140389 Oct 2012 WO
2013018379 Feb 2013 WO
2013028992 Feb 2013 WO
2013093916 Jun 2013 WO
2013114209 Aug 2013 WO
2013116133 Aug 2013 WO
2013118177 Aug 2013 WO
2013118499 Aug 2013 WO
2014008343 Jan 2014 WO
2014033543 Mar 2014 WO
2014091528 Jun 2014 WO
2014111831 Jul 2014 WO
2014189049 Nov 2014 WO
2017137841 Aug 2017 WO
2017149403 Sep 2017 WO
2018093873 May 2018 WO
2018150236 Aug 2018 WO
2019130030 Jul 2019 WO
2020115104 Jun 2020 WO
Non-Patent Literature Citations (66)
Entry
Albert D.M., “(Book Review) Intraocular Lenses: Evolution, Designs, Complications, and Pathology, by David Apple et al.,” Archieves of Opthalmology, 1990, vol. 108, pp. 650.
Alfonso J.F., et al., “Prospective Study of the Acri.LISA Bifocal Intraocular Lens,” Journal of Cataract Refractive Surgery, Nov. 2007, vol. 33 (11), pp. 1930-1935.
Alvarez S. L., et al., “Spectral threshold: measurement and clinical applications,” British Journal of Ophthalmology, 1983, vol. 67, pp. 504-507.
Apple D.J., et al., Eds., “Intraocular Lenses: Evolution, Designs, Complications and Pathology,” in: New Concepts in Intraocular Lens Implantation, Williams & Wilkins publisher, Jan. 1989, vol. 36 (1), pp. 21-36.
Apple D.J., et al., “Intraocular Lenses: Evolution, Designs, Complications and Pathology,” New Concepts in Intraocular Lens Implantation, Williams & Wilkins publisher, Jan. 1989, vol. 22 (36), pp. 205-221.
Artal P., et al., “Contributions of the Cornea and the Lens to the Aberrations of the Human Eye,” Optics Letters, 1998, vol. 23 (21), pp. 1713-1715.
Atchinson D.A., “Design of Aspheric Intraocular Lens,” Ophthamic & Physiological Optics, 1991, vol. 11 (2), pp. 137-146.
Atchinson D.A., et al., “Optical Design of Intraocular Lenses. II. Off-Axis performance,” Optometry & Vision Science, 1989, vol. 66 (9), pp. 579-590.
Atchinson D.A., et al., “Third-Order Aberrations of Pseudophakic Eyes,” Ophthalmic and Physiological Optics , 1989, vol. 9, pp. 205-211.
Atchinson D.A., “Optical Design of Intraocular Lenses. I. On-Axis Performance,” American Academy of Optometry, 1989, vol. 66 (8), pp. 492-506.
Atchinson D.A., “Optical design of intraocular lenses III. On-Axis Performance in the Presence of Lens Displacement,” American Academy of Optometry, 1989, vol. 66 (10), pp. 671-681.
Atchinson, “Refractive errors induced by displacement of intraocular lenses within the pseudophakic eye,” Optometry & Vision Science, 1989, 66 (3), 146-152.
Bonnet R., et al., “New Method of Topographical Ophthalmometry—Its Theoretical And Clinical Applications,” American Journal of Optometry, 1962, vol. 39 (5), pp. 227-251.
Bradley A. et al., “Achromatizing the Human Eye” Optometry & Vision Science, 1991, vol. 68 (8), pp. 608-616.
Buralli D.A., et al., “Optical Performance of Holographic Kinoforms,” Applied Optics, Mar. 1989, vol. 28 (5), pp. 976-983.
Canovas C., et al., “Hybrid Adaptive-Optics Visual Simulator,” Optical Letters, Jan. 15, 2010, vol. 35 (2), pp. 196-198.
Castignoles F., et al., “Comparison of the Efficiency, MTF and Chromatic Properties of Four Diffractive Bifocal Intraocular Lens Designs, ” Optics Express, Mar. 2010, vol. 18 (5), pp. 5245-5256.
Cohen A.L., “Diffractive Bifocal Lens Design,” Optometry and Vision Science, Jun. 1993, vol. 70 (6), pp. 461-468.
Cohen A.L., “Practical Design of a Bifocal Hologram Contact Lens or Intraocular Lens,” Applied Optics, Jul. 1, 1992, vol. 31 (19), pp. 3750-3754.
Diffractive Lenses for Extended Depth of Focus and Presbyopic Correction, Presentation from Wavefront Congress held on Feb. 15, 2008, Rochester, New York.
Doskolovich L.L., et al., “Special Diffractive Lenses,” Lens and Optical Systems Design, Apr. 1992, vol. 1780, pp. 393-402.
Dwyer W. O. et al., “Racial Differences in Color Vision: Do They Exist”, American Journal of Optometry & Physiological Optics, 1975, 52, 224-229.
El Hage S.G., et al., “Contribution of the Crystalline Lens to the Spherical Aberration of the Eye,” 1973, vol. 63 (2), pp. 205-211.
Futhey J.A., “Diffractive Bifocal Intraocular Lens,” SPIE, 1989, vol. 1052, pp. 142-148.
Geun Y., et al., “Visual Performance after Correcting the Monchromatic and Chromatic Aberrations of the Eye,” Journal of the Optical Society of America, 2002, vol. 19 (2), pp. 266-275.
Glasser A. et al., “Presbyopia and the optical changes in the human crystalline lens with age, ” Vision Res, 1998, 38(2), 209-229.
Greivenkamp J.E., et al., “Visual Acuity Modeling Using Optical Raytracing of Schematic Eyes,” American Journal of Ophthalmology, 1995, vol. 120 (2), pp. 227-240.
Griswold Scott et al., “Scotopic Spectral Sensitivity of Phakic and Aphakic Observers Extending into the Near Ultraviolet,” Vision res, 1992, 32 (9), 1739-1743.
Guirao A., et al., “Corneal Wave Aberration from Videokeratography: Accuracy And Limitations of the Procedure,” Journal of the Optical Society of America, 2000, vol. 17 (6), pp. 955-965.
Iovs, 1999, 40 (4), S535.
Kiely et al., “The mean shape of the human cornea,” Optica ACTA, 1982, 29 (8), 1027-1040.
Kokoschka S., et al., “Influence of Field Size on the Spectral Sensitivity of the Eye in the Photopic and Mesopic Range,” American Journal of Optometry and Physiological Optics, 1985, vol. 62 (2), pp. 119-126.
Liang J., et al., “Objective Measurement of Wave Aberrations of the Human Eye With the Use of a Hartmann-Shack Wave-Front Sensor,” Journal of the Optical Society of America, 1994, vol. 11 (7), pp. 1949-1957.
Lindsay R., et al., “Descriptors of Corneal Shape,” Optometry and Vision Science, 1998, vol. 75 (2), pp. 156-158.
Liou H.L., et al., “Anatomically Accurate, Finite Model Eye for Optical Modeling,” Journal of Optical Society of America, Aug. 1997, vol. 14 (8), pp. 1684-1695.
Lotmar, “Theoretical eye model with aspherics,” Journal of the Optical Society of America, 1971, 61 (11), 1522-1529.
Malacara D., et al., “Wavefront Fitting With Discrete Orthogonal Polynomials In a Unit Radius Circle,” Optical Engineering, 1990, vol. 29 (6), pp. 672-675.
Mandell R.B., et al., “Mathematical Model of the Corneal Contour,” 1965, School of Optometry, University of California, Berkeley, pp. 183-197.
Marcos S., et al., “A New Approach to the Study of Ocular Chromatic Aberrations,” Vision Research, 1999, vol. 39 (26), pp. 4309-4323.
Marsack J.D., et al., “Metrics of Optical Quality Derived from Wave Aberrations Predict Visual Performance,” Journal of Vision, Apr. 2004, vol. 4 (4), pp. 322-328.
Monsoriu J.A., et al., “Devil's Lenses,” Optics Express, Oct. 17, 2007, vol. 15 (21), pp. 13858-13864.
Mordi J.A., et al., “Influence of Age of Chromatic Aberration of the Human Eye,” American Journal of Optometry & Physiological Optics, 1985, vol. 62 (12), pp. 864-869.
Morlock, R., et al., “Patient-Reported Spectacle Independence Questionnaire (PRSIQ): Development and Validation, ” American Journal of Ophthalmology, Jun. 2017, vol. 178, pp. 101-114.
Navarro R., et al., “Accommodation-Dependent Model of the Human Eye with Aspherics,” Journal of the Optical Society of America, Aug. 1985, vol. 2 (8), pp. 1273-1281.
Norrby S., et al., “Model Eyes for Evaluation of Intraocular Lenses,” Applied Optics, Sep. 7, 2007, vol. 46 (26), pp. 6595-6605.
“Optical Design,” Military Standardization Handbook, 1962, Chapter 4, U.S. Department of Defense MIL-HDBK-141, 4-1-4-19.
Oshika T., et al., “Changes in Corneal Wavefront Aberrations with Aging, ” Investigative Ophthalmology & Visual Science, 1999, vol. 40 (7), pp. 1351-1355.
Patel S., et al., “Shape and Radius of Posterior Corneal Surface,” Refractive and Corneal Surgery, 1993, vol. 9 (3), pp. 173-181.
Piers P.A., et al., “Eye Models for the Prediction of Contrast Vision in Patients with New Intraocular Lens Designs,” Optics Letters, Apr. 1, 2004, vol. 29 (7), pp. 733-735.
Piers P.A., et al., “Theoretical Comparison of Aberration-Correcting Customized and Aspheric Intraocular Lenses,” Journal of Refractive Surgery, Apr. 2007, vol. 23 (4), pp. 374-384.
Said et al., “The Variation with Age of the Spectral Transmissivity of the Living Human Crystalline Lens,” Gerontologia, 1959, 213-231.
Schwiegerling et al., “Representation of videokeratoscopic height data with Zernike polynomials,” Journal of the Optical Society of America, 1995, 12 (10), 2105-2113.
Seitz B., et al., “Corneal Topography,” Current Opinion in Ophthalmolgy, 1997, vol. 8 (4), pp. 8-24.
Siedlecki D., et al., “Radial Gradient index Intraocular Lens: a Theoretical Model,” Journal of Modern Optics, Feb. 20-Mar. 10, 2008, vol. 55 (4-5), pp. 639-647.
Smith G., et al., “The Spherical Aberration of the Crystalline Lens of the Human Eye,” Vision Res., 2001, vol. 41 (2), pp. 235-243.
Smith Kinney, “Sensitivity of the eye to spectral radiation at scotopic and mesopic intensity levels,” Journal of the Optical Society of America, 1955, 45 (7), 507-514.
Sokołowski M., et al. “Hybrid Heptafocal Intraocular Lenses,” Optica Applicata, Dec. 2015, vol. 45 (3), pp. 285-298.
Terwee T., et al., “Visualization of the Retinal Image in an Eye Model With Spherical and Aspheric, Diffractive, and Refractive Multifocal Intraocular Lenses,” Journal of Refractive Surgery, Mar. 2008, vol. 24 (3), pp. 223-232.
Thibos L. N. et al., “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Applied Optics, 1992, 31 (19), 3594-3600.
Thibos L. N. et al., “Theork and measurement of ocular chromatic aberration,” Vision Res, 1988, 30 (1), 33-49.
Townsley, “New Knowledge of the corneal contour,” Contacto, 1970, pp. 38-43.
Van Den Berg T.J., “Analysis of Intraocular Straylight, Especially in Relation to Age,” Optometry and Vision Science, Feb. 1995, vol. 72 (2), pp. 52-59.
Van Meeteren A., “Calculations on the Optical Modulation Transfer Function of the Human Eye for White Light,” Optica Acta, May 1974, vol. 21 (5), pp. 395-412.
Verriest G., “The Spectral Curve of Relative Luminous Efficiency in Different Age Groups of Aphakic Eyes,” Mod Probl Ophthalmol., 1974, 13, 314-317.
Villegas E.A., et al., “Correlation between Optical and Psychophy, Sical Parameters as a Function of Defocus,” Optometry and Vision Science, Jan. 1, 2002, vol. 79 (1), pp. 60-67.
Wang J.Y., et al., “Wave-Front Interpretation With Zernike Polynomials,” Applied Optics, 1980, vol. 19 (9), pp. 1510-1518.
Related Publications (1)
Number Date Country
20220171214 A1 Jun 2022 US
Provisional Applications (1)
Number Date Country
62525965 Jun 2017 US
Continuations (1)
Number Date Country
Parent 16020928 Jun 2018 US
Child 17651779 US