This invention relates to a wearable display device, and more particularly to a wearable display using electrically switchable holographic optical elements.
There is a requirement for a compact see through data display capable of displaying image content ranging from symbols and alphanumeric arrays to high-resolution pixelated images. The display should be highly transparent and the displayed image content should be clearly visible when superimposed over a bright background scene. The display should provide full colour with an enhanced colour gamut for optimal data visibility and impact. A prime requirement is that the display should be as easy to wear, natural and non-distracting as possible with a form factor similar to that of ski goggles or, more desirably, sunglasses. The eye relief and pupil should be big enough to avoid image loss during head movement even for demanding military and sports activities. The image generator should be compact, solid state and have low power consumption.
The above goals are not achieved by current technology. Current wearable displays only manage to deliver see through, adequate pupils, eye relief and field of view and high brightness simultaneously at the expense of cumbersome form factors. In many cases weight is distributed in the worst possible place for a wearable display, in front of the eye. The most common approach to providing see through relies on reflective or diffractive visors illuminated off axis. Microdisplays, which provide high-resolution image generators in tiny flat panels, do not necessarily help with miniaturizing wearable displays because the requirement for very high magnifications inevitably results in large diameter optics. Several ultra low form factor designs offering spectacle-like form factors are currently available but usually require aggressive trade-offs against field of view, eye relief and exit pupil.
The optical design benefits of DOEs are well known including unique and efficient form factors and the ability to encode complex optical functions such as optical power and diffusion into thin layers. Bragg gratings (also commonly termed volume phase grating or holograms), which offer the highest diffraction efficiencies, have been widely used in devices such as Head Up Displays.
An important class of diffractive optical element known as an electrically Switchable Bragg Gratings (SBG) is based on recording Bragg gratings into a polymer dispersed liquid crystal (PDLC) mixture. Typically, SBG devices are fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between parallel glass plates. One or both glass plates support electrodes, typically transparent indium tin oxide films, for applying an electric field across the PDLC layer. A Bragg grating is then recorded by illuminating the liquid material with two mutually coherent laser beams, which interfere to form the desired grating structure. During the recording process, the monomers polymerize and the PDLC mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer. The alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating. The resulting Bragg grating can exhibit very high diffraction efficiency, which may be controlled by the magnitude of the electric field applied across the PDLC layer. In the absence of an applied electric field the SBG remains in its diffracting state. When an electric field is applied to the hologram via the electrodes, the natural orientation of the LC droplets is changed thus reducing the refractive index modulation of the fringes and causing the hologram diffraction efficiency to drop to very low levels. The diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range from essentially zero to near 100%. U.S. Pat. No. 5,942,157 by Sutherland et al. and U.S. Pat. No. 5,751,452 by Tanaka et al. describe monomer and liquid crystal material combinations suitable for fabricating SBG devices.
There is a requirement for a compact, lightweight wearable display providing a high brightness, high contrast information display with a high degree of transparency to external light
The objects of the invention are achieved in one embodiment in which there is provided a wearable display comprising a light-guide forming one transparent substrate of an HPDLC cell and a Diffractive Optical Element (DOE) forming the second transparent substrate. The two substrates together function as a light guide. The inside surfaces of each substrate are patterned with ITO to provide a set of SBGs. Each SBG device contains information encoded in a multiplicity of separately switchable grating regions. Said regions may be information symbols. Alternatively, the SBGs may be configured to provide two dimensional pixelated arrays. In each case the SBGs are confined to symbol or pixel regions, the display being perfectly transparent elsewhere. Guided light hitting a particular SBG region is diffracted towards the viewer and overlaid on the background scene while light missing the symbol undergoes TIR. Applying an electric field across a given symbol erases it from view. Said SBG and said DOE together form a magnified image of the symbols or pixels.
In a one embodiment of the invention the DOE is a transmission element.
In a one embodiment of the invention the DOE is a reflection element.
In one embodiment of the invention there is provided a wearable display comprising a light-guide forming one transparent substrate of an HPDLC cell and a DOE forming the second substrate and further comprising a laser illuminator.
In one embodiment the laser illuminator comprises red, green and blue laser sources, a beam combiner and expander, a means for minimizing laser speckle and a means for coupling illumination to the curved light guide.
In a one embodiment of the invention said second substrate is a curved transparent element with no optical power.
In one embodiment of the invention, the wearable display is configured to provide symbols of different colors by arranging for different symbols to contain SBGs optimized for the required wavelengths and LEDs of appropriate spectral output.
In one embodiment of the invention several SBG panels could be stacked such that by selectively switching different layers it is possible to present a range of different symbols at any specified point in the field of view.
In one embodiment of the invention several SBG panels each design to operate a specific wavelength could be stacked such that by selectively switching different layers it is possible to present different colours at any specified point in the field of view.
In one particular embodiment of the invention there is provided a wearable display comprising first and second substrates sandwiching a HPDLC region. A diffractive lens is applied to a first region of the outer surface of the first substrate. A diffractive mirror is applied to a second region of the outer surface of the first substrate. The two substrates together function as a light guide. The inside surfaces of each substrate are patterned with ITO to provide a set of SBGs. The outer surface of said first substrate faces the eye of the viewer of the display. Each SBG device contains information encoded in a multiplicity of separately switchable grating regions. Said regions may be information symbols. Alternatively, the SBGs may be configured to provide two dimensional pixelated arrays. In each case the SBGs are confined to symbol or pixel regions, the display being perfectly transparent elsewhere. Guided light hitting a particular SBG region is diffracted towards the viewer and overlaid on the background scene while light missing the symbol undergoes TIR. Applying an electric field across a given symbol erases it from view. The SBG and DOE together form a magnified image of the symbols or pixels.
In one embodiment of the invention there is provided a wearable display comprising first and second substrates sandwiching a HPDLC region. The two substrates together function as a light guide. A first holographic mirror is applied to the outer surface of the first substrate. A quarter wave plate is disposed adjacent to the outer surface of the second substrate. A second holographic mirror is disposed adjacent to the quarter wave plate. The inside surfaces of each substrate are patterned with ITO to provide a set of selectively switchable SBG regions. Each SBG device contains information encoded in a multiplicity of separately switchable grating regions. Said regions may be information symbols. Alternatively, the SBGs may be configured to provide two dimensional pixelated arrays. In each case the SBGs are confined to symbol or pixel regions, the display being perfectly transparent elsewhere. Guided light hitting a particular SBG region is diffracted towards the viewer and overlaid on the background scene while light missing the symbol undergoes TIR. Applying an electric field across a given symbol erases it from view. Said SBG and said DOE together form a magnified image of the symbols or pixels.
In any of the above embodiments the substrates sandwiching the HPDLC layer may be planar, curved or formed from a mosaic of planar or curved facets.
In one embodiment of the invention there is provided a pixelated edge lit wearable display in which the SBG regions combine the functions of coupling light from the TIR path and imaging said light onto the retina. The eyeglass display comprises a two-dimensional array of independently addressable SBG regions where each SBG region has a unique optical prescription designed such that input collimated light incident in a first direction is deflected into output collimated light propagating in a second direction towards the eye. The SBG layer is sandwiched between transparent substrates. The substrates and SBG array together form a light guide. ITO layers are applied to the opposing surfaces of the substrates with at least one ITO layer being patterned such that SBG regions may be switched selectively. Input light is scanned and modulated by a laser scanning system and injected into the eyepiece where it performs TIR until diffracted out of the eyepiece towards the eye by one or more active SBG regions. Portions of the field of view are sequentially imaged onto the retina by switching groups of SBG regions in sequence and scanning rays with a predetermined range of incidence angles onto the SBG group while the SBG regions comprising the group are in their active state The region of active SBG regions may comprise a rectangular area.
In one embodiment of the invention said group of SBG regions is provided by a rectangular sub array of SBG regions.
In one embodiment of the invention said group of SBG regions is provided by a sequence of SBG regions disposed along a row or column of SBG regions, said row or column being activated in a scrolling fashion.
A more complete understanding of the invention can be obtained by considering the following detailed description in conjunction with the accompanying drawings, wherein like index numerals indicate like parts. For purposes of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail.
The invention will now be further described by way of example only with reference to the accompanying drawings.
A set of transparent electrodes, which are not shown, is applied to both of the inner surfaces of the substrates. The electrodes are configured such that the applied electric field will be perpendicular to the substrates. Typically, the planar electrode configuration requires low voltages, in the range of 2 to 4 volts per μm. The electrodes would typically be fabricated from Indium Tin Oxide (ITO). The light guide layer and DOE 10 and 40 together form a light guide. The grating region 30 of the SBG contains slanted fringes resulting from alternating liquid crystal rich regions and polymer rich (ie liquid crystal depleted) regions. In the OFF state with no electric field applied, the extraordinary axis of the liquid crystals generally aligns normal to the fringes. The grating thus exhibits high refractive index modulation and high diffraction efficiency for P-polarized light. When an electric field is applied to the SBG, the grating switches to the ON state wherein the extraordinary axes of the liquid crystal molecules align parallel to the applied field and hence perpendicular to the substrate. Note that the electric field due to the planar electrodes is perpendicular to the substrate. Hence in the ON state the grating exhibits lower refractive index modulation and lower diffraction efficiency for both S- and P-polarized light. Thus the grating region 12 no longer diffracts light towards the eye and hence no symbol is displayed. Each symbol is selectively controlled by an independent pair of planar electrodes. Typically, the electrode on one substrate surface is uniform and continuous, while electrodes on the opposing substrate surface are patterned to match the shapes of the said SBG regions. Desirably, the planar electrodes should be exactly aligned with the SBG regions for optimal switching of the SBG regions and the elimination of any image artifacts that may result from unswitched SBG regions.
Turning now to
Referring now to
The DOE is designed to perform two functions. Firstly, the DOE forms a virtual image at infinity in conjunction with the SBG. Secondly the DOE compensates for aberrations and distortions created by the SBG. The SBG and DOE together encode the optical prescription of a diverging aspheric off-axis lens. It should be noted that the DOE is designed to have minimal diffraction efficiency for ambient light transmitted through the display. A DOE can be designed and fabricated for high diffraction efficiency for a single wavelength use using a classical Fresnel lens approach. A DOE may also be designed for operation with a discrete number of wavelengths, in which case the DOE is a multi-order or harmonic DOE. The master DOE element may be fabricated using conventional multilevel lithography to achieve optimum diffraction efficiency and replicated by plastic injection molding for mass production injection molding.
In order to ensure high transparency to external light, high contrast of displayed information (ie high diffraction efficiency) and very low haze due to scatter the following material characteristics are desirable. A low index-modulation residual grating, with a modulation not greater than 0.007, is desirable. This will require a good match between the refractive index of the polymer region and the ordinary index of the liquid crystal. The material should have a high index modulation capability with a refractive index modulation not less than 0.06. The material should exhibit very low haze for HPDLC cell thicknesses in the range 2-6 micron. The HPDLC should have a good index match (to within +0.015) for glass or plastic at 630 nm. One option is 1.515 (for example, 1737F or BK7 glasses). An alternative option would be 1.472 (for example Borofloat or 7740 Pyrex glasses).
Desirably the light sources are solid-state lasers. An exemplary laser is the NECSEL developed by Novalux Inc. (CA). The NECSEL has several advantages including: better directionality than laser diodes; very narrow bandwidths and availability of red, green and blue devices. The low etendue of lasers results in considerable simplification of the optics. LEDs may also be used with the invention. However, LEDs suffer from large etendue, inefficient light collection and complex illuminator and projection optics. A further disadvantage with regard to SBGs is that LEDs are fundamentally unpolarized.
The laser power requirement will depend on the required symbol to background contrast. A typical requirement is around 50:1 contrast. In a typical practical monochromatic display embodiment, we may assume: ambient illumination in bright daylight of 104 lux; a display area of 5 cm2; optical losses of 45%; and a luminous efficacy for green laser light of 680 lumens/W. Such a display would require approximately 850 mW of green laser power.
At step 1 a planar transparent substrate 10 is provided.
At step 2 a second planar transparent substrate 40 comprising a DOE is provided.
At step 3 said first and second substrates are combined in a cell 45 with spacers 46.
At step 4 the cell is mechanically deformed into a curved form 47.
At step 5 the cell 47 is filled with a HPDLC mixture 448
At step 6 an SBG 49 is recorded into the HPDLC mixture using two crossed mutually coherent laser beams.
The optical design of a wearable display according to the principles of the invention will be dictated by basic geometrical considerations well known to those skilled in the art of optical design. The goal is to maximize eye relief, exit pupil and field of view. Since these parameters will impact on geometrical aberrations, dispersion and other factors affecting image quality some performance versus form factor trade-offs are inevitable. The preferred light source is a laser. If broadband sources such as LEDs are used the design will require careful attention to the correction of chromatic dispersion and monochromatic geometrical aberrations. Dispersion is a problem for any DOE illuminated by a broadband source. The degree of defocus or image blur due to dispersion depends on the source spectral bandwidth and the distance from the DOE to the virtual image plane. Typically, the angular blur for a given wavelength and a source spectral bandwidth will be of the order of the bandwidth divided by the wavelength. The effect of monochromatic geometrical aberrations will depend on the field of view and pupil size.
In preferred practical embodiments of the invention the display is configured as a layer that may be attached to a standard pair of glasses or goggles. In such embodiments the display is essentially a long clear strip appliqué running from left to right with a small illumination module containing laser die, light guides and display drive chip tucked into the sidewall of the goggle. Only a standard index matched glue is needed to fix the display to the surface of the goggles.
In a further embodiment of the invention illustrated in
The formation of an image by the eyepiece may be understood by again referring to
Optical power may be encoded into one or both of the diffractive lens and diffractive mirror. Each SBG symbol is designed to diffuse incident light into a cone around the diffracted ray direction. For example, the SBG symbol 32 diffracts light into a cone around the diffracted ray direction 113. In certain embodiments of the invention it may be advantageous to provide said diffusion by first fabricating a computer generated hologram (CGH) having the required diffusion characteristics and then recording a hologram of said CCG into the SBG symbol. The CGH would typically be a surface relief diffractive optical element.
The diffractive mirror may be a Bragg grating, a switchable Bragg grating, a surface relief diffractive optical element, a computer generated hologram or a mirror formed using any other type of diffracting structure.
The diffractive lens may be a Bragg grating, a switchable Bragg grating, a surface relief diffractive optical element, a computer generated hologram or a lens formed using any other type of diffracting structure.
In the embodiment of
In an alternative embodiment of the invention illustrated in the schematic three dimensional view of
A first holographic mirror 14 is applied to the outer surface of the first substrate. A quarter wave plate 42 is disposed in contact with the outer surface of the second substrate. A second holographic mirror 43 is disposed in contact with the quarter plate. At least one of the holographic mirrors has optical power such that a virtual image is formed behind the display ie on the opposite side to the eye.
Referring again to
The embodiment of
In the above-described embodiments the SBG symbol is based on overlaying an ITO pad shaped in the form of a symbol over a correspondingly shaped SBG region into which Bragg grating with diffusing properties is recorded. Other methods of providing an SBG symbol may be used with the invention. For example, the SBG may be of a more complex form comprising a grating formed by a wavefront encoding the characteristics of a symbol. An SBG symbol formed in this way may allow greater control over the characteristics of the viewable symbol. For example, the diffusion characteristics may be controlled. In addition, the SBG encoded optical characteristics that allow the image location, image magnification and image aberrations to be optimized. The SBG may be produced by first designing and fabricating a CGH with the required optical properties and then recording said CGH into the SBG.
In any of the above-described embodiments the SBG could be pixilated in the form of a two dimensional array. Such an SBG configuration would be appropriate for high information content displays.
In the embodiments to be described in the following paragraphs there is provided a pixelated edge lit eyeglass display in which the SBG pixels or regions combine the functions of coupling light from the TIR path and imaging said light onto the retina. The eyeglass display comprises a two-dimensional array of independently addressable SBG regions where each SBG region has a unique optical prescription designed such that input collimated light incident in a first direction is deflected into output collimated light propagating in a second direction towards the eye eliminating the need for a projection lens. The SBG layer is sandwiched between transparent substrates. The substrates and SBG array together form a light guide. ITO layers are applied to the opposing surfaces of the substrates with at least one ITO layer being patterned such that SBG elements may be switched selectively. Input light is scanned and modulated by a laser scanning system and injected into the eyepiece where it performs TIR until diffracted out of the eyepiece towards the eye by a group of active SBG regions. Portions of the field of view are sequentially imaged onto the retina by switching groups of SBGs in sequence and scanning rays with a predetermined range of incidence angles onto the SBG group while the SBG regions comprising the group are in their active state The active SBG regions may cover a rectangular area.
In the embodiment of the invention illustrated in
The invention does not assume any particular type of laser. Desirably the laser comprises red green and blue emitters integrated in a compact module. The scanner is typically a miniature piezoelectric device. However, any other type of compact scanning device may be used with the invention. The invention does assume any particular of modulator. Electronic circuitry for switching the SBG elements and supply power to them is also applied to the substrates. The invention does not rely on any particular method for implementing the electronics circuitry. The invention does not assume any particular method for coupling the scanned laser beam into the eyeglass. The substrates and the SBG layer together provide a light guide. Illumination light from external laser RGB source is coupled into the eyepiece and propagates under TIR in the Y direction as in indicated in the illustration. The input laser light is scanned and amplitude modulated to provide a range of ray angles such as 301,302,303 around a mean launch angle into the guide. It should be noted that the invention does not assume any particular scan pattern.
Turning again to
The SBG array architecture is illustrated in more detail in
In one embodiment of the invention illustrated in
In one embodiment of the invention illustrated in
In one embodiment of the invention the base set may comprise a single SBG region 99A designed to diffract RGB light and diffract light from laser scanning modules 1A and 1B.
In one embodiment of the invention only one RGB laser scanner module is provided.
In one embodiment of the invention only one RGB laser scanner module is provided with light being piped from scanning module 1A to an optical port located at some other edge of the eyepiece.
In one embodiment of the invention separate up/down TIR paths may be to generate upper/lower image fields). The above light paths may be provided by separate external light pipes from the scanner/modulator. Alternatively, the upper and right edges of the eyepiece may incorporate reflectors.
It should be clear that other methods of combining SBG switching and laser scanning based on the principles described above may be used with the present invention.
It will be clear from first order optical consideration that a large number of SBG regions must be active at any instant in order that the exit pupil is filled. To a rough approximation the size of the exit pupil should be of the order of the area of the active SBG region group. Typically, as much as 25% of the total available SBG region population may need to be active at any time to ensure that the exit pupil is filled. At any instant in time all SBGs in a group have identical index modulation. Desirably the exit pupil is of the order of 8-10 mm in diameter. It will be clear that the number of groups, group geometry and the number of groups that can be activated during an image frame depends on the SBG switching time, the beam scanning pattern, TIR path limitations imposed by the range of incidence angles and the number of elements needed to fill the exit pupil. Typical SBG relaxation times are in the region of 500 microseconds. In one embodiment of the invention the array is divided into four quadrants which are switched sequentially during the field time.
It will be clear form consideration of basic diffraction theory that scanning the input light as described above allows greater image resolution than would be possible by simply illuminating an SBG array with a stationary light beam. The diffraction limited angular resolution region size δθ of an SBG element is given by δθ=λ/d where is the wavelength and d is the aperture of a SBG region. The display field of view FOV is given by: FOV=2*a tan (N*d/2*ER) where ER is the eye-relief and N is the number of SBG elements. Hence the number of resolvable pixels n is given by n=FOV/δθ. For the number of resolvable pixels to match the number of SBG regions the value of d should be approximately √(λ. *ER). If we assume WVGA resolution (480×800) and substitute the values ER=20 mm; λ=0.5 microns; and d=100 microns into the above equation the SBG array is: 48 mm×80 mm. This is too large for most practical eyeglass applications.
Another consequence of using a static illumination beam is that the beam cross section diffracted from an SBG region would be far too small to fill the eye pupil. The present invention overcomes this problem by using simultaneously active groups of SBG regions to fill the pupil. In this sense the present invention provide what may be described as a pupil expander.
A second important benefit of combining the SBG array and a scanner is that SBG regions can be made big enough to overcome the above described diffraction limitations while keeping the overall array dimensions within acceptable form factor limits.
A third important benefit which results from being able to use larger SBG regions is that the diffraction efficiency of the region increases with the size of the region due to the larger number of Bragg surfaces that interact with the incident light
The SBG regions may have more sophisticated prescriptions than the basic beam-steering functions described above. For example, SBGs may also encode aspect ratio shaping, focus control and other functions.
In one embodiment of the invention the SBG array could be replaced by an array of switchable thin gratings operating in the Raman Nath regime.
Advantageously, the SBG array fabricated using a diffractive optical mask formed on a transparent sapphire wafer. The SBG region optical prescriptions are defined on a region to region basis. The process of fabricating the SBG array may start with the creation of a multiphase computer generated hologram encoding the desired optical functions which is then holographically recorded into the SBG.
In further embodiments of the invention each SBG region may encode basic beam steering functions required to implement the above described embodiments together with additional optical functions including magnification, trapezoidal correction (that is, keystone correction) and beam shaping. In one embodiment of the invention the SBG array regions encode Fourier type SBG diffusers and beam shapers. In one embodiment of the invention the SBG array regions encode refractive microlenses. In one embodiment of the invention the SBG array regions encode diffractive Fresnel lenses. In one embodiment of the invention the SBG array regions encode orthogonal cylindrical diffractive lenses.
Although image modulation is provided by the laser scanner in certain embodiment of the invention the SBG be used to modulate light in association with the laser scanner.
Any display device using lasers will tend to suffer from speckle. The present invention may incorporate any type of despeckler. Advantageously, the despeckler would be based on electro-optical principles. The present invention may incorporate a despeckler based on the principles disclosed in the PCT Application US2008/001909, with International Filing Date: 22 Jul. 2008, entitled LASER ILLUMINATION DEVICE., which is incorporated herein in its entirety. The need for a despeckler may be eliminated by using a miniature, broadband (4 nm) RGB lasers of the type supplied by Epicrystal Inc.
Another embodiment of the invention directed at providing an eyeglass combining an SBG array with a laser optical scanner within a thin edge illuminated eye-piece will now be described.
In an embodiment of the invention illustrated in
The substrates and the SBG layer together provide a light guide. Illumination light from external laser RGB source is coupled into the eyepiece and propagates in the Y direction illustrated in the figure. The input laser light is scanned and amplitude modulated to provide a range of ray angles such as 401,402,403 around a mean launch angle into the guide. Rows of SBGs are switched sequentially in the Y direction as indicated by 36A,36B,36C.
The principles of the embodiment of
A schematic unfolded plan and side elevation views of the scan optics are provided in
The first-order optical design parameters that apply to the embodiments of
With regard to the scrolling scheme illustrated in
The embodiments of the invention have been described in relation to transmission SBGs. One of the known attributes of transmission SBGs is that the LC molecules tend to align normal to the grating fringe planes. The effect of the LC molecule alignment is that transmission SBGs efficiently diffract P polarized light (ie light with the polarization vector in the plane of incidence) but have nearly zero diffraction efficiency for S polarized light (ie light with the polarization vector normal to the plane of incidence. Transmission SBGs may not be used at near-grazing incidence as the diffraction efficiency of any grating for P polarization falls to zero when the included angle between the incident and reflected light is small. A glass light guide in air will propagate light by total internal reflection if the internal incidence angle is greater than about 42 degrees. Thus the invention may be implemented using transmission SBGs if the internal incidence angles are in the range of 42 to about 70 degrees, in which case the light extracted from the light guide by the gratings will be predominantly P-polarized.
In an alternative embodiment of the invention the display device can be implemented using reflection SBGs. Reflection gratings can be configured to have narrow, sharply defined wavelength bandwidth, and are relatively insensitive to variations in angle of the light incident on the grating. The disadvantage of reflection SBG is high operating voltage. While reflection gratings diffract both polarization states when the included angle between the incident and reflected light is small, the diffraction efficiency of any grating for P polarization falls to zero when the included angle between the incident and diffracted beams is 90 degrees. The light diffracted by a reflection grating will be predominantly S-polarized if the angle between the incident and diffracted beams is greater than 70 degrees. Techniques for recording reflection holograms for use with illumination at near-grazing incidence are known in the art and are described in U.S. Pat. No. 6,151,142. In particular, great care must be taken during the hologram recording process to avoid reflections from the ITO electrodes and other internal surfaces within the ESBG devices. Such undesired reflections change the fringe visibility during the hologram recording and may result in objectionable and uncontrollable variations of the grating diffraction efficiency. In addition, the refractive index of the HPLDC material during the hologram recording process must be essentially equal to that of the glass cell.
It should be noted that the ray paths shown in
Although the present application addresses wearable displays it will be clear that in any of the above embodiments the eye lens and retina may be replaced by any type of imaging lens and a screen. Any of the above described embodiments of the invention may be used in either directly viewed or virtual image displays. Possible applications range from miniature displays such as those used in viewfinders to large area public information displays. The above described embodiments may be used in applications where a transparent display is required. For example, the invention may be used in applications where the displayed imagery is superimposed on a background scene such as heads up displays and teleprompters. The invention may be used to provide a display device that is located at or near to an internal image plane of an optical system. For example, any of the above described embodiments may be used to provide a symbolic data display for a camera viewfinder in which symbol data is projected at an intermediate image plane and then magnified by a viewfinder eyepiece. It will be clear the invention may be applied in biocular or monocular displays. The invention may also be used in a stereoscopic wearable display. Any of the above described embodiments of the invention may be used in a rear projection television. The invention may be applied in avionic, industrial and medical displays. There are applications in entertainment, simulation, virtual reality, training systems and sport. Any of the above-described embodiments using laser illumination may incorporate a despeckler device for eliminating laser speckle disposed at any point in the illumination path from the laser path to the eyeglass. Advantageously, the despeckler is an electro-optic device. Desirable the despeckler is based on a HPDLC device. In any of the above embodiments the substrates sandwiching the HPDLC layer may be planar, curved or formed from a mosaic of planar or curved facets.
A wearable display based on any of the above-described embodiments may be implemented using plastic substrates. Using sufficiently thin substrates such embodiments could be implemented as a long clear strip appliqué running from the nasal to ear ends of each eyeglass with a small illumination module continuing laser dies, light guides and display drive chip tucked into the sidewall of the eyeglass. A standard index matched glue would be used to fix the display to the surfaces of the eyeglasses. In applications such as DSLR viewfinders the SBG symbol array would typically be recorded using masked exposure processes. However, masked exposure may not be necessary in all applications. An advantage of avoiding masking processes is that the erasure of the SBG when it is not in its active state could be more complete. The inventors have found that the improved erasure results from the SBG being formed over a larger area with a lower degree of modulation of the grating. The method of fabricating the SBG pixel elements and the ITO electrodes used in any of the above-described embodiments of the invention may be based on the process disclosed in the PCT Application No. US2006/043938 with International Filing Date: 13 Nov. 2006, entitled METHOD AND APPARATUS FOR PROVIDING A TRANSPARENT DISPLAY, which is incorporated herein in its entirety. The transparent edge lit displays disclosed in the present application may employ features disclosed in U.S. patent application Ser. No. 10/555,661 filed 4 Nov. 2005, entitled SWITCHABLE VIEWFINDER DISPLAY which is incorporated herein in its entirety. In any of the above embodiment of the invention, the SBG regions could be configured to provide symbols of different colors by arranging for different symbols or pixels to contain SBGs optimized for the required wavelengths and sources of appropriate spectral output. In any of the above embodiment of the invention, of the basic invention several SBG layers could be stacked such that by selectively switching different layers it is possible to present different colours at any specified point in the field of view. In any of the above embodiment of the invention, of the basic invention several SBG layers could be stacked such that by selectively switching different layers it is possible to present a range of different symbols or other types of image information at any specified point in the field of view.
It should be understood by those skilled in the art that while the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. Various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims or the equivalents thereof.
The present patent application is a continuation of a U.S. patent application Ser. No. 14/999,008 filed Mar. 17, 2016, now U.S. Pat. No. 10,678,053 issued Jun. 9, 2020, which is a continuation of U.S. patent application Ser. No. 13/998,799 filed Dec. 11, 2013, now U.S. Pat. No. 9,335,604 issued May 10, 2016, which is a continuation of a U.S. patent application Ser. No. 13/317,468 filed Oct. 19, 2011, now U.S. Pat. No. 8,639,072 issued Jan. 28, 2014, which is a continuation of PCT Application No. PCT/GB2010/000835 filed Apr. 26, 2010, which claims the benefit of U.S. Provisional Application No. 61/202,996 filed Apr. 27, 2009, the disclosures of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1043938 | Huttenlocher | Nov 1912 | A |
2141884 | Sonnefeld | Dec 1938 | A |
3482498 | Becker | Dec 1969 | A |
3620601 | Leonard et al. | Nov 1971 | A |
3741716 | Johne et al. | Jun 1973 | A |
3843231 | Borel et al. | Oct 1974 | A |
3851303 | Muller | Nov 1974 | A |
3885095 | Wolfson et al. | May 1975 | A |
3940204 | Withrington | Feb 1976 | A |
3965029 | Arora | Jun 1976 | A |
3975711 | McMahon | Aug 1976 | A |
4035068 | Rawson | Jul 1977 | A |
4066334 | Fray et al. | Jan 1978 | A |
4082432 | Kirschner | Apr 1978 | A |
4099841 | Ellis | Jul 1978 | A |
4133152 | Penrose | Jan 1979 | A |
4178074 | Heller | Dec 1979 | A |
4218111 | Withrington et al. | Aug 1980 | A |
4232943 | Rogers | Nov 1980 | A |
4248093 | Andersson et al. | Feb 1981 | A |
4251137 | Knop et al. | Feb 1981 | A |
4309070 | St. Leger Searle | Jan 1982 | A |
4322163 | Schiller | Mar 1982 | A |
4386361 | Simmonds | May 1983 | A |
4389612 | Simmonds et al. | Jun 1983 | A |
4403189 | Simmonds | Sep 1983 | A |
4418993 | Lipton | Dec 1983 | A |
4472037 | Lipton | Sep 1984 | A |
4523226 | Lipton et al. | Jun 1985 | A |
4544267 | Schiller | Oct 1985 | A |
4562463 | Lipton | Dec 1985 | A |
4566758 | Bos et al. | Jan 1986 | A |
4583117 | Lipton et al. | Apr 1986 | A |
4643515 | Upatnieks | Feb 1987 | A |
4647967 | Kirschner et al. | Mar 1987 | A |
4688900 | Doane et al. | Aug 1987 | A |
4711512 | Upatnieks | Dec 1987 | A |
4714320 | Banbury | Dec 1987 | A |
4728547 | Vaz et al. | Mar 1988 | A |
4729640 | Sakata et al. | Mar 1988 | A |
4743083 | Schimpe | May 1988 | A |
4749256 | Bell et al. | Jun 1988 | A |
4765703 | Suzuki et al. | Aug 1988 | A |
4775218 | Wood et al. | Oct 1988 | A |
4791788 | Simmonds et al. | Dec 1988 | A |
4792850 | Liptoh et al. | Dec 1988 | A |
4799765 | Ferrer | Jan 1989 | A |
4811414 | Fishbine et al. | Mar 1989 | A |
4848093 | Simmonds et al. | Jul 1989 | A |
4854688 | Hayford et al. | Aug 1989 | A |
4860294 | Winzer et al. | Aug 1989 | A |
4884876 | Lipton et al. | Dec 1989 | A |
4890902 | Doane et al. | Jan 1990 | A |
4928301 | Smoot | May 1990 | A |
4933976 | Fishbine et al. | Jun 1990 | A |
4938568 | Margerum et al. | Jul 1990 | A |
4946245 | Chamberlin et al. | Aug 1990 | A |
4960311 | Moss et al. | Oct 1990 | A |
4964701 | Dorschner et al. | Oct 1990 | A |
4967268 | Lipton et al. | Oct 1990 | A |
4970129 | Ingwall et al. | Nov 1990 | A |
4971719 | Vaz et al. | Nov 1990 | A |
4994204 | Doane et al. | Feb 1991 | A |
5004323 | West | Apr 1991 | A |
5007711 | Wood et al. | Apr 1991 | A |
5009483 | Rockwell et al. | Apr 1991 | A |
5016953 | Moss et al. | May 1991 | A |
5033814 | Brown et al. | Jul 1991 | A |
5035734 | Honkanen et al. | Jul 1991 | A |
5053834 | Simmonds | Oct 1991 | A |
5063441 | Lipton et al. | Nov 1991 | A |
5076664 | Migozzi | Dec 1991 | A |
5079416 | Filipovich | Jan 1992 | A |
5096282 | Margerum et al. | Mar 1992 | A |
5099343 | Margerum et al. | Mar 1992 | A |
5109465 | Klopotek | Apr 1992 | A |
5110034 | Simmonds et al. | May 1992 | A |
5117285 | Nelson et al. | May 1992 | A |
5117302 | Lipton | May 1992 | A |
5119454 | McMahon et al. | Jun 1992 | A |
5124821 | Antier et al. | Jun 1992 | A |
5139192 | Simmonds et al. | Aug 1992 | A |
5142357 | Lipton et al. | Aug 1992 | A |
5142644 | Vansteenkiste et al. | Aug 1992 | A |
5148302 | Nagano et al. | Sep 1992 | A |
5150234 | Takahashi et al. | Sep 1992 | A |
5151958 | Honkanen | Sep 1992 | A |
5153751 | Ishikawa et al. | Oct 1992 | A |
5159445 | Gitlin et al. | Oct 1992 | A |
5160523 | Honkanen et al. | Nov 1992 | A |
5181133 | Lipton | Jan 1993 | A |
5183545 | Branca et al. | Feb 1993 | A |
5187597 | Kato et al. | Feb 1993 | A |
5193000 | Lipton et al. | Mar 1993 | A |
5198912 | Ingwall et al. | Mar 1993 | A |
5200861 | Moskovich et al. | Apr 1993 | A |
5210624 | Matsumoto et al. | May 1993 | A |
5218360 | Goetz et al. | Jun 1993 | A |
5218480 | Moskovich et al. | Jun 1993 | A |
5224198 | Jachimowicz et al. | Jun 1993 | A |
5239372 | Lipton | Aug 1993 | A |
5240636 | Doane et al. | Aug 1993 | A |
5241337 | Betensky et al. | Aug 1993 | A |
5242476 | Bartel et al. | Sep 1993 | A |
5243413 | Gitlin et al. | Sep 1993 | A |
5251048 | Doane et al. | Oct 1993 | A |
5264950 | West et al. | Nov 1993 | A |
5268792 | Kreitzer et al. | Dec 1993 | A |
5284499 | Harvey et al. | Feb 1994 | A |
5289315 | Makita et al. | Feb 1994 | A |
5295208 | Caulfield et al. | Mar 1994 | A |
5296967 | Moskovich et al. | Mar 1994 | A |
5299289 | Omae et al. | Mar 1994 | A |
5303085 | Rallison | Apr 1994 | A |
5309283 | Kreitzer et al. | May 1994 | A |
5313330 | Betensky | May 1994 | A |
5315324 | Kubelik et al. | May 1994 | A |
5315419 | Saupe et al. | May 1994 | A |
5315440 | Betensky et al. | May 1994 | A |
5317405 | Kuriki et al. | May 1994 | A |
5327269 | Tilton et al. | Jul 1994 | A |
5329363 | Moskovich et al. | Jul 1994 | A |
5341230 | Smith | Aug 1994 | A |
5343147 | Sager et al. | Aug 1994 | A |
5351151 | Levy | Sep 1994 | A |
5359362 | Lewis et al. | Oct 1994 | A |
5363220 | Kuwayama et al. | Nov 1994 | A |
5368770 | Saupe et al. | Nov 1994 | A |
5369511 | Amos | Nov 1994 | A |
5371626 | Betensky | Dec 1994 | A |
5400069 | Braun et al. | Mar 1995 | A |
5408346 | Trissei et al. | Apr 1995 | A |
5410370 | Janssen | Apr 1995 | A |
5416510 | Lipton et al. | May 1995 | A |
5416514 | Janssen et al. | May 1995 | A |
5418584 | Larson | May 1995 | A |
5418871 | Revelli et al. | May 1995 | A |
5428480 | Betensky et al. | Jun 1995 | A |
5437811 | Doane et al. | Aug 1995 | A |
5438357 | McNelley | Aug 1995 | A |
5452385 | Izumi et al. | Sep 1995 | A |
5453863 | West et al. | Sep 1995 | A |
5455693 | Wreede et al. | Oct 1995 | A |
5455713 | Kreitzer et al. | Oct 1995 | A |
5463428 | Lipton et al. | Oct 1995 | A |
5465311 | Caulfield et al. | Nov 1995 | A |
5471326 | Hall et al. | Nov 1995 | A |
5473222 | Thoeny et al. | Dec 1995 | A |
5476611 | Nolan et al. | Dec 1995 | A |
5481321 | Lipton | Jan 1996 | A |
5485313 | Betensky | Jan 1996 | A |
5493430 | Lu et al. | Feb 1996 | A |
5493448 | Betensky et al. | Feb 1996 | A |
5496621 | Makita et al. | Mar 1996 | A |
5499140 | Betensky | Mar 1996 | A |
5500671 | Andersson et al. | Mar 1996 | A |
5500769 | Betensky | Mar 1996 | A |
5510913 | Hashimoto et al. | Apr 1996 | A |
5515184 | Caulfield et al. | May 1996 | A |
5516455 | Jacobine et al. | May 1996 | A |
5524272 | Podowski et al. | Jun 1996 | A |
5530566 | Kumar | Jun 1996 | A |
5532736 | Kuriki et al. | Jul 1996 | A |
5532875 | Betemsky | Jul 1996 | A |
5537232 | Biles | Jul 1996 | A |
RE35310 | Moskovich | Aug 1996 | E |
5543950 | Lavrentovich et al. | Aug 1996 | A |
5559637 | Moskovich et al. | Sep 1996 | A |
5572248 | Allen et al. | Nov 1996 | A |
5572250 | Lipton et al. | Nov 1996 | A |
5576888 | Betensky | Nov 1996 | A |
5579026 | Tabata | Nov 1996 | A |
5583795 | Smyth | Dec 1996 | A |
5585035 | Nerad et al. | Dec 1996 | A |
5593615 | Nerad et al. | Jan 1997 | A |
5604611 | Saburi et al. | Feb 1997 | A |
5606433 | Yin et al. | Feb 1997 | A |
5612733 | Flohr | Mar 1997 | A |
5612734 | Nelson et al. | Mar 1997 | A |
5619254 | McNelley | Apr 1997 | A |
5619586 | Sibbald et al. | Apr 1997 | A |
5621529 | Gordon et al. | Apr 1997 | A |
5621552 | Coates et al. | Apr 1997 | A |
5625495 | Moskovich et al. | Apr 1997 | A |
5629259 | Akada et al. | May 1997 | A |
5631107 | Tarumi et al. | May 1997 | A |
5633100 | Mickish et al. | May 1997 | A |
5646785 | Gilboa et al. | Jul 1997 | A |
5648857 | Ando et al. | Jul 1997 | A |
5661577 | Jenkins et al. | Aug 1997 | A |
5661603 | Hanano et al. | Aug 1997 | A |
5665494 | Kawabata et al. | Sep 1997 | A |
5668614 | Chien et al. | Sep 1997 | A |
5668907 | Veligdan | Sep 1997 | A |
5677797 | Betensky et al. | Oct 1997 | A |
5680231 | Grinberg et al. | Oct 1997 | A |
5680411 | Ramdane et al. | Oct 1997 | A |
5682255 | Friesem et al. | Oct 1997 | A |
5686931 | Fuenfschilling et al. | Nov 1997 | A |
5686975 | Lipton | Nov 1997 | A |
5691795 | Doane et al. | Nov 1997 | A |
5694230 | Welch | Dec 1997 | A |
5695682 | Doane et al. | Dec 1997 | A |
5701132 | Kollin et al. | Dec 1997 | A |
5706108 | Ando et al. | Jan 1998 | A |
5706136 | Okuyama et al. | Jan 1998 | A |
5707925 | Akada et al. | Jan 1998 | A |
5710645 | Phillips et al. | Jan 1998 | A |
5724189 | Ferrante | Mar 1998 | A |
5724463 | Deacon et al. | Mar 1998 | A |
5726782 | Kato et al. | Mar 1998 | A |
5727098 | Jacobson | Mar 1998 | A |
5729242 | Margerum et al. | Mar 1998 | A |
5731060 | Hirukawa et al. | Mar 1998 | A |
5731853 | Taketomi et al. | Mar 1998 | A |
5742262 | Tabata et al. | Apr 1998 | A |
5745266 | Smith et al. | Apr 1998 | A |
5745301 | Betensky et al. | Apr 1998 | A |
5748272 | Tanaka et al. | May 1998 | A |
5748277 | Huang et al. | May 1998 | A |
5751452 | Tanaka et al. | May 1998 | A |
5757546 | Lipton et al. | May 1998 | A |
5760931 | Saburi et al. | Jun 1998 | A |
5764414 | King et al. | Jun 1998 | A |
5790288 | Jager et al. | Aug 1998 | A |
5790314 | Duck et al. | Aug 1998 | A |
5798641 | Spagna et al. | Aug 1998 | A |
5808804 | Moskovich | Sep 1998 | A |
5812608 | Valimaki et al. | Sep 1998 | A |
5822089 | Phillips et al. | Oct 1998 | A |
5822127 | Chen et al. | Oct 1998 | A |
5825448 | Bos et al. | Oct 1998 | A |
5831700 | Li et al. | Nov 1998 | A |
5835661 | Tai et al. | Nov 1998 | A |
5841507 | Barnes | Nov 1998 | A |
5841587 | Moskovich et al. | Nov 1998 | A |
5847787 | Fredley et al. | Dec 1998 | A |
5856842 | Tedesco | Jan 1999 | A |
5857043 | Cook et al. | Jan 1999 | A |
5867238 | Miller et al. | Feb 1999 | A |
5867618 | Ito et al. | Feb 1999 | A |
5868951 | Schuck, III et al. | Feb 1999 | A |
5870228 | Kreitzer et al. | Feb 1999 | A |
5875012 | Crawford et al. | Feb 1999 | A |
5877826 | Yang et al. | Mar 1999 | A |
5886822 | Spitzer | Mar 1999 | A |
5892598 | Asakawa et al. | Apr 1999 | A |
5892599 | Bahuguna | Apr 1999 | A |
5898511 | Mizutani et al. | Apr 1999 | A |
5900987 | Kreitzer et al. | May 1999 | A |
5900989 | Kreitzer | May 1999 | A |
5903395 | Rallison et al. | May 1999 | A |
5903396 | Rallison | May 1999 | A |
5907416 | Hegg et al. | May 1999 | A |
5907436 | Perry et al. | May 1999 | A |
5917459 | Son et al. | Jun 1999 | A |
5926147 | Sehm et al. | Jul 1999 | A |
5929946 | Sharp et al. | Jul 1999 | A |
5929960 | West et al. | Jul 1999 | A |
5930433 | Williamson et al. | Jul 1999 | A |
5936776 | Kreitzer | Aug 1999 | A |
5937115 | Domash | Aug 1999 | A |
5942157 | Sutherland et al. | Aug 1999 | A |
5945893 | Plessky et al. | Aug 1999 | A |
5949302 | Sarkka | Sep 1999 | A |
5949508 | Kumar et al. | Sep 1999 | A |
5956113 | Crawford | Sep 1999 | A |
5962147 | Shalhub et al. | Oct 1999 | A |
5963375 | Kreitzer | Oct 1999 | A |
5966223 | Friesem et al. | Oct 1999 | A |
5969874 | Moskovich | Oct 1999 | A |
5969876 | Kreitzer et al. | Oct 1999 | A |
5973727 | McGrew et al. | Oct 1999 | A |
5974162 | Metz et al. | Oct 1999 | A |
5985422 | Krauter | Nov 1999 | A |
5986746 | Metz et al. | Nov 1999 | A |
5991087 | Rallison | Nov 1999 | A |
5999089 | Carlson et al. | Dec 1999 | A |
5999282 | Suzuki et al. | Dec 1999 | A |
5999314 | Asakura et al. | Dec 1999 | A |
6014187 | Taketomi et al. | Jan 2000 | A |
6023375 | Kreitzer | Feb 2000 | A |
6042947 | Asakura et al. | Mar 2000 | A |
6043585 | Plessky et al. | Mar 2000 | A |
6046585 | Simmonds | Apr 2000 | A |
6052540 | Koyama | Apr 2000 | A |
6061107 | Yang | May 2000 | A |
6061463 | Metz et al. | May 2000 | A |
6069728 | Huignard et al. | May 2000 | A |
6075626 | Mizutani et al. | Jun 2000 | A |
6078427 | Fontaine et al. | Jun 2000 | A |
6094311 | Moskovich | Jul 2000 | A |
6097551 | Kreitzer | Aug 2000 | A |
6104448 | Doane et al. | Aug 2000 | A |
6107943 | Schroeder | Aug 2000 | A |
6115152 | Popovich et al. | Sep 2000 | A |
6118908 | Bischel et al. | Sep 2000 | A |
6121899 | Theriault | Sep 2000 | A |
6127066 | Ueda et al. | Oct 2000 | A |
6128058 | Walton et al. | Oct 2000 | A |
6133971 | Silverstein et al. | Oct 2000 | A |
6133975 | Li et al. | Oct 2000 | A |
6137630 | Tsou et al. | Oct 2000 | A |
6141074 | Bos et al. | Oct 2000 | A |
6141154 | Kreitzer et al. | Oct 2000 | A |
6151142 | Phillips et al. | Nov 2000 | A |
6154190 | Yang et al. | Nov 2000 | A |
6156243 | Kosuga et al. | Dec 2000 | A |
6167169 | Brinkman et al. | Dec 2000 | A |
6169594 | Aye et al. | Jan 2001 | B1 |
6169613 | Amitai et al. | Jan 2001 | B1 |
6169636 | Kreitzer et al. | Jan 2001 | B1 |
6176837 | Foxlin | Jan 2001 | B1 |
6185016 | Popovich | Feb 2001 | B1 |
6188462 | Lavrentovich et al. | Feb 2001 | B1 |
6191887 | Michaloski et al. | Feb 2001 | B1 |
6195206 | Yona et al. | Feb 2001 | B1 |
6195209 | Kreitzer et al. | Feb 2001 | B1 |
6204835 | Yang et al. | Mar 2001 | B1 |
6211976 | Popovich et al. | Apr 2001 | B1 |
6222297 | Perdue | Apr 2001 | B1 |
6222675 | Mall et al. | Apr 2001 | B1 |
6222971 | Veligdan et al. | Apr 2001 | B1 |
6249386 | Yona et al. | Jun 2001 | B1 |
6259423 | Tokito et al. | Jul 2001 | B1 |
6259559 | Kobayashi et al. | Jul 2001 | B1 |
6268839 | Yang et al. | Jul 2001 | B1 |
6269203 | Davies et al. | Jul 2001 | B1 |
6275031 | Simmonds et al. | Aug 2001 | B1 |
6278429 | Ruth et al. | Aug 2001 | B1 |
6285813 | Schultz et al. | Sep 2001 | B1 |
6297860 | Moskovich et al. | Oct 2001 | B1 |
6301056 | Kreitzer et al. | Oct 2001 | B1 |
6301057 | Kreitzer et al. | Oct 2001 | B1 |
6317083 | Johnson et al. | Nov 2001 | B1 |
6317227 | Mizutani et al. | Nov 2001 | B1 |
6317228 | Popovich et al. | Nov 2001 | B2 |
6317528 | Gadkaree et al. | Nov 2001 | B1 |
6320563 | Yang et al. | Nov 2001 | B1 |
6321069 | Piirainen | Nov 2001 | B1 |
6323970 | Popovich | Nov 2001 | B1 |
6323989 | Jacobson et al. | Nov 2001 | B1 |
6324014 | Moskovich et al. | Nov 2001 | B1 |
6327089 | Hosaki et al. | Dec 2001 | B1 |
6330109 | Ishii et al. | Dec 2001 | B1 |
6333819 | Svedenkrans | Dec 2001 | B1 |
6340540 | Ueda et al. | Jan 2002 | B1 |
6351333 | Araki et al. | Feb 2002 | B2 |
6356172 | Koivisto et al. | Mar 2002 | B1 |
6356674 | Davis et al. | Mar 2002 | B1 |
6359730 | Tervonen | Mar 2002 | B2 |
6359737 | Stringfellow | Mar 2002 | B1 |
6366281 | Lipton et al. | Apr 2002 | B1 |
6366369 | Ichikawa et al. | Apr 2002 | B2 |
6366378 | Tervonen et al. | Apr 2002 | B1 |
6377238 | McPheters | Apr 2002 | B1 |
6377321 | Khan et al. | Apr 2002 | B1 |
6388797 | Lipton et al. | May 2002 | B1 |
6392812 | Howard | May 2002 | B1 |
6407724 | Waldern et al. | Jun 2002 | B2 |
6409687 | Foxlin | Jun 2002 | B1 |
6411444 | Moskovich et al. | Jun 2002 | B1 |
6414760 | Lopez et al. | Jul 2002 | B1 |
6417971 | Moskovich et al. | Jul 2002 | B1 |
6437563 | Simmonds et al. | Aug 2002 | B1 |
6445512 | Moskovich et al. | Sep 2002 | B1 |
6449095 | Ohtaki et al. | Sep 2002 | B1 |
6456584 | Nagata et al. | Sep 2002 | B1 |
6470132 | Nousiainen et al. | Oct 2002 | B1 |
6473209 | Popovich | Oct 2002 | B1 |
6476974 | Kreitzer et al. | Nov 2002 | B1 |
6483303 | Simmonds et al. | Nov 2002 | B2 |
6486997 | Bruzzone et al. | Nov 2002 | B1 |
6504518 | Kuwayama et al. | Jan 2003 | B1 |
6504629 | Popovich et al. | Jan 2003 | B1 |
6509937 | Moskovich et al. | Jan 2003 | B1 |
6518747 | Sager et al. | Feb 2003 | B2 |
6519088 | Lipton | Feb 2003 | B1 |
6522794 | Bischel et al. | Feb 2003 | B1 |
6522795 | Jordan et al. | Feb 2003 | B1 |
6524771 | Maeda et al. | Feb 2003 | B2 |
6529336 | Kreitzer et al. | Mar 2003 | B1 |
6534977 | Duncan et al. | Mar 2003 | B1 |
6545778 | Ono et al. | Apr 2003 | B2 |
6550949 | Bauer et al. | Apr 2003 | B1 |
6552789 | Modro | Apr 2003 | B1 |
6557413 | Nieminen et al. | May 2003 | B2 |
6559813 | DeLuca et al. | May 2003 | B1 |
6563648 | Gleckman et al. | May 2003 | B2 |
6563650 | Moskovich et al. | May 2003 | B2 |
6567014 | Hansen et al. | May 2003 | B1 |
6567573 | Domash et al. | May 2003 | B1 |
6577411 | David et al. | Jun 2003 | B1 |
6577429 | Kurtz et al. | Jun 2003 | B1 |
6580529 | Amitai et al. | Jun 2003 | B1 |
6583838 | Hoke et al. | Jun 2003 | B1 |
6583873 | Goncharov et al. | Jun 2003 | B1 |
6587619 | Kinoshita | Jul 2003 | B1 |
6594090 | Kruschwitz et al. | Jul 2003 | B2 |
6597176 | Simmonds et al. | Jul 2003 | B2 |
6597475 | Shirakura et al. | Jul 2003 | B1 |
6598987 | Parikka | Jul 2003 | B1 |
6600590 | Roddy et al. | Jul 2003 | B2 |
6608720 | Freeman | Aug 2003 | B1 |
6611253 | Cohen | Aug 2003 | B1 |
6618104 | Date et al. | Sep 2003 | B1 |
6625381 | Roddy et al. | Sep 2003 | B2 |
6646772 | Popovich et al. | Nov 2003 | B1 |
6646810 | Harter, Jr. et al. | Nov 2003 | B2 |
6661578 | Hedrick | Dec 2003 | B2 |
6667134 | Sutherland et al. | Dec 2003 | B1 |
6674578 | Sugiyama et al. | Jan 2004 | B2 |
6677086 | Sutehrland et al. | Jan 2004 | B1 |
6686815 | Mirshekarl-Syahkal et al. | Feb 2004 | B1 |
6690516 | Aritake et al. | Feb 2004 | B2 |
6692666 | Sutherland et al. | Feb 2004 | B2 |
6699407 | Sutehrland et al. | Mar 2004 | B1 |
6706086 | Emig et al. | Mar 2004 | B2 |
6706451 | Sutherland et al. | Mar 2004 | B1 |
6721096 | Bruzzone et al. | Apr 2004 | B2 |
6730442 | Sutherland et al. | May 2004 | B1 |
6731434 | Hua et al. | May 2004 | B1 |
6738105 | Hannah et al. | May 2004 | B1 |
6741189 | Gibbons, II et al. | May 2004 | B1 |
6744478 | Asakura et al. | Jun 2004 | B1 |
6747781 | Trisnadi et al. | Jun 2004 | B2 |
6748342 | Dickhaus | Jun 2004 | B1 |
6750941 | Satoh et al. | Jun 2004 | B2 |
6750995 | Dickson | Jun 2004 | B2 |
6757105 | Niv et al. | Jun 2004 | B2 |
6771403 | Endo et al. | Aug 2004 | B1 |
6776339 | Piikivi | Aug 2004 | B2 |
6781701 | Sweetser et al. | Aug 2004 | B1 |
6791629 | Moskovich et al. | Sep 2004 | B2 |
6791739 | Ramanujan et al. | Sep 2004 | B2 |
6804066 | Ha et al. | Oct 2004 | B1 |
6805490 | Levola | Oct 2004 | B2 |
6821457 | Natarajan et al. | Nov 2004 | B1 |
6822713 | Yaroshchuk et al. | Nov 2004 | B1 |
6825987 | Repetto et al. | Nov 2004 | B2 |
6829095 | Amitai | Dec 2004 | B2 |
6830789 | Doane et al. | Dec 2004 | B2 |
6833955 | Niv | Dec 2004 | B2 |
6836369 | Fujikawa et al. | Dec 2004 | B2 |
6844212 | Bond et al. | Jan 2005 | B2 |
6844980 | He et al. | Jan 2005 | B2 |
6844989 | Jo et al. | Jan 2005 | B1 |
6847274 | Salmela et al. | Jan 2005 | B2 |
6847488 | Travis | Jan 2005 | B2 |
6850210 | Lipton et al. | Feb 2005 | B1 |
6853491 | Ruhle et al. | Feb 2005 | B1 |
6853493 | Kreitzer et al. | Feb 2005 | B2 |
6864861 | Schehrer et al. | Mar 2005 | B2 |
6864927 | Cathey | Mar 2005 | B1 |
6867888 | Sutherland et al. | Mar 2005 | B2 |
6873443 | Joubert et al. | Mar 2005 | B1 |
6878494 | Sutehrland et al. | Apr 2005 | B2 |
6885483 | Takada | Apr 2005 | B2 |
6903872 | Schrader | Jun 2005 | B2 |
6909345 | Salmela et al. | Jun 2005 | B1 |
6917375 | Akada et al. | Jul 2005 | B2 |
6919003 | Ikeda et al. | Jul 2005 | B2 |
6922267 | Endo et al. | Jul 2005 | B2 |
6926429 | Barlow et al. | Aug 2005 | B2 |
6927570 | Simmonds et al. | Aug 2005 | B2 |
6927694 | Smith et al. | Aug 2005 | B1 |
6940361 | Jokio et al. | Sep 2005 | B1 |
6943788 | Tomono | Sep 2005 | B2 |
6950173 | Sutherland et al. | Sep 2005 | B1 |
6950227 | Schrader | Sep 2005 | B2 |
6951393 | Koide | Oct 2005 | B2 |
6952312 | Weber et al. | Oct 2005 | B2 |
6952435 | Lai et al. | Oct 2005 | B2 |
6958662 | Salmela et al. | Oct 2005 | B1 |
6958868 | Pender | Oct 2005 | B1 |
6963454 | Martins et al. | Nov 2005 | B1 |
6972788 | Robertson et al. | Dec 2005 | B1 |
6975345 | Lipton et al. | Dec 2005 | B1 |
6980365 | Moskovich | Dec 2005 | B2 |
6985296 | Lipton et al. | Jan 2006 | B2 |
6987908 | Bond et al. | Jan 2006 | B2 |
6999239 | Martins et al. | Feb 2006 | B1 |
7002618 | Lipton et al. | Feb 2006 | B2 |
7002753 | Moskovich et al. | Feb 2006 | B2 |
7003075 | Miyake et al. | Feb 2006 | B2 |
7003187 | Frick et al. | Feb 2006 | B2 |
7006732 | Gunn, III et al. | Feb 2006 | B2 |
7009773 | Chaoulov et al. | Mar 2006 | B2 |
7018563 | Sutherland et al. | Mar 2006 | B1 |
7018686 | Sutehrland et al. | Mar 2006 | B2 |
7018744 | Otaki et al. | Mar 2006 | B2 |
7019793 | Moskovich et al. | Mar 2006 | B2 |
7021777 | Amitai | Apr 2006 | B2 |
7026892 | Kajiya | Apr 2006 | B2 |
7027671 | Huck et al. | Apr 2006 | B2 |
7034748 | Kajiya | Apr 2006 | B2 |
7046439 | Kaminsky et al. | May 2006 | B2 |
7053735 | Salmela et al. | May 2006 | B2 |
7053991 | Sandusky | May 2006 | B2 |
7054045 | McPheters et al. | May 2006 | B2 |
7058434 | Wang et al. | Jun 2006 | B2 |
7068405 | Sutherland et al. | Jun 2006 | B2 |
7068898 | Buretea et al. | Jun 2006 | B2 |
7072020 | Sutherland et al. | Jul 2006 | B1 |
7075273 | O'Gorman et al. | Jul 2006 | B2 |
7077984 | Natarajan et al. | Jul 2006 | B1 |
7081215 | Natarajan et al. | Jul 2006 | B2 |
7088457 | Zou et al. | Aug 2006 | B1 |
7088515 | Lipton | Aug 2006 | B2 |
7095562 | Peng et al. | Aug 2006 | B1 |
7099080 | Lipton et al. | Aug 2006 | B2 |
7101048 | Travis | Sep 2006 | B2 |
7108383 | Mitchell et al. | Sep 2006 | B1 |
7110184 | Yona et al. | Sep 2006 | B1 |
7119965 | Rolland et al. | Oct 2006 | B1 |
7123418 | Weber et al. | Oct 2006 | B2 |
7123421 | Moskovich et al. | Oct 2006 | B1 |
7126418 | Hunton et al. | Oct 2006 | B2 |
7126583 | Breed | Oct 2006 | B1 |
7132200 | Ueda et al. | Nov 2006 | B1 |
7133084 | Moskovich et al. | Nov 2006 | B2 |
7139109 | Mukawa | Nov 2006 | B2 |
RE39424 | Moskovich | Dec 2006 | E |
7145729 | Kreitzer et al. | Dec 2006 | B2 |
7149385 | Parikka et al. | Dec 2006 | B2 |
7151246 | Fein et al. | Dec 2006 | B2 |
7158095 | Jenson et al. | Jan 2007 | B2 |
7167286 | Anderson et al. | Jan 2007 | B2 |
7175780 | Sutherland et al. | Feb 2007 | B1 |
7181105 | Teramura et al. | Feb 2007 | B2 |
7181108 | Levola | Feb 2007 | B2 |
7184002 | Lipton et al. | Feb 2007 | B2 |
7184615 | Levo, I | Feb 2007 | B2 |
7186567 | Sutherland et al. | Mar 2007 | B1 |
7190849 | Katase | Mar 2007 | B2 |
7198737 | Natarajan et al. | Apr 2007 | B2 |
7199934 | Yamasaki | Apr 2007 | B2 |
7205960 | David | Apr 2007 | B2 |
7205964 | Yokoyama et al. | Apr 2007 | B1 |
7206107 | Levo, I | Apr 2007 | B2 |
7212175 | Magee et al. | May 2007 | B1 |
7230767 | Walck et al. | Jun 2007 | B2 |
7230770 | Kreitzer et al. | Jun 2007 | B2 |
7242527 | Spitzer et al. | Jul 2007 | B2 |
7248128 | Mattila et al. | Jul 2007 | B2 |
7256915 | Sutherland et al. | Aug 2007 | B2 |
7259906 | Islam | Aug 2007 | B1 |
7265882 | Sutherland et al. | Sep 2007 | B2 |
7265903 | Sutherland et al. | Sep 2007 | B2 |
7268946 | Wang | Sep 2007 | B2 |
7285903 | Cull et al. | Oct 2007 | B2 |
7286272 | Mukawa | Oct 2007 | B2 |
7289069 | Ranta | Oct 2007 | B2 |
RE39911 | Moskovich | Nov 2007 | E |
7299983 | Piikivi | Nov 2007 | B2 |
7301601 | Lin et al. | Nov 2007 | B2 |
7312906 | Sutherland et al. | Dec 2007 | B2 |
7313291 | Okhotnikov et al. | Dec 2007 | B2 |
7319573 | Nishiyama | Jan 2008 | B2 |
7320534 | Sugikawa et al. | Jan 2008 | B2 |
7323275 | Otaki et al. | Jan 2008 | B2 |
7333685 | Stone et al. | Feb 2008 | B2 |
7336271 | Ozeki et al. | Feb 2008 | B2 |
7339737 | Urey et al. | Mar 2008 | B2 |
7339742 | Amitai et al. | Mar 2008 | B2 |
7369911 | Volant et al. | May 2008 | B1 |
7375870 | Schorpp | May 2008 | B2 |
7375886 | Lipton et al. | May 2008 | B2 |
7376068 | Khoury | May 2008 | B1 |
7376307 | Singh et al. | May 2008 | B2 |
7391573 | Amitai | Jun 2008 | B2 |
7394865 | Borran et al. | Jul 2008 | B2 |
7395181 | Foxlin | Jul 2008 | B2 |
7397606 | Peng et al. | Jul 2008 | B1 |
7401920 | Kranz et al. | Jul 2008 | B1 |
7404644 | Evans et al. | Jul 2008 | B2 |
7410286 | Travis | Aug 2008 | B2 |
7411637 | Weiss | Aug 2008 | B2 |
7413678 | Natarajan et al. | Aug 2008 | B1 |
7413679 | Sutherland et al. | Aug 2008 | B1 |
7415173 | Kassamakov et al. | Aug 2008 | B2 |
7416818 | Sutherland et al. | Aug 2008 | B2 |
7418170 | Mukawa et al. | Aug 2008 | B2 |
7420733 | Natarajan et al. | Sep 2008 | B1 |
7433116 | Islam | Oct 2008 | B1 |
7436568 | Kuykendall, Jr. | Oct 2008 | B1 |
7447967 | Onggosanusi et al. | Nov 2008 | B2 |
7453612 | Mukawa | Nov 2008 | B2 |
7454103 | Parriaux | Nov 2008 | B2 |
7457040 | Amitai | Nov 2008 | B2 |
7466994 | Pihlaja et al. | Dec 2008 | B2 |
7477206 | Cowan et al. | Jan 2009 | B2 |
7479354 | Ueda et al. | Jan 2009 | B2 |
7480215 | Makela et al. | Jan 2009 | B2 |
7482996 | Larson et al. | Jan 2009 | B2 |
7483604 | Levola | Jan 2009 | B2 |
7492512 | Niv et al. | Feb 2009 | B2 |
7496293 | Shamir et al. | Feb 2009 | B2 |
7499217 | Cakmakci et al. | Mar 2009 | B2 |
7500104 | Goland | Mar 2009 | B2 |
7511891 | Messerschmidt | Mar 2009 | B2 |
7513668 | Peng et al. | Apr 2009 | B1 |
7522344 | Curatu et al. | Apr 2009 | B1 |
7525448 | Wilson et al. | Apr 2009 | B1 |
7528385 | Volodin et al. | May 2009 | B2 |
7545429 | Travis | Jun 2009 | B2 |
7550234 | Otaki et al. | Jun 2009 | B2 |
7567372 | Schorpp | Jul 2009 | B2 |
7570322 | Sutherland et al. | Aug 2009 | B1 |
7570405 | Sutherland et al. | Aug 2009 | B1 |
7570429 | Maliah et al. | Aug 2009 | B2 |
7572555 | Takizawa et al. | Aug 2009 | B2 |
7573640 | Nivon et al. | Aug 2009 | B2 |
7576916 | Amitai | Aug 2009 | B2 |
7577326 | Amitai | Aug 2009 | B2 |
7579119 | Ueda et al. | Aug 2009 | B2 |
7583423 | Sutherland et al. | Sep 2009 | B2 |
7587110 | Singh et al. | Sep 2009 | B2 |
7588863 | Takizawa et al. | Sep 2009 | B2 |
7589900 | Powell | Sep 2009 | B1 |
7589901 | DeJong et al. | Sep 2009 | B2 |
7592988 | Katase | Sep 2009 | B2 |
7593575 | Houle et al. | Sep 2009 | B2 |
7597447 | Larson et al. | Oct 2009 | B2 |
7599012 | Nakamura et al. | Oct 2009 | B2 |
7600893 | Laino et al. | Oct 2009 | B2 |
7602552 | Blumenfeld | Oct 2009 | B1 |
7605719 | Wenger et al. | Oct 2009 | B1 |
7605774 | Brandt et al. | Oct 2009 | B1 |
7605882 | Sutherland et al. | Oct 2009 | B1 |
7616270 | Hirabayashi et al. | Nov 2009 | B2 |
7617022 | Wood et al. | Nov 2009 | B1 |
7618750 | Ueda et al. | Nov 2009 | B2 |
7619739 | Sutherland et al. | Nov 2009 | B1 |
7619825 | Peng et al. | Nov 2009 | B1 |
7629086 | Otaki et al. | Dec 2009 | B2 |
7639208 | Ha et al. | Dec 2009 | B1 |
7639911 | Lee et al. | Dec 2009 | B2 |
7643214 | Amitai | Jan 2010 | B2 |
7643225 | Tsai | Jan 2010 | B1 |
7656585 | Powell et al. | Feb 2010 | B1 |
7660047 | Travis et al. | Feb 2010 | B1 |
7672055 | Amitai | Mar 2010 | B2 |
7672549 | Ghosh et al. | Mar 2010 | B2 |
7691248 | Ikeda et al. | Apr 2010 | B2 |
7710622 | Takabayashi et al. | May 2010 | B2 |
7710654 | Ashkenazi et al. | May 2010 | B2 |
7724441 | Amitai | May 2010 | B2 |
7724442 | Amitai | May 2010 | B2 |
7724443 | Amitai | May 2010 | B2 |
7733571 | Li | Jun 2010 | B1 |
7733572 | Brown et al. | Jun 2010 | B1 |
7740387 | Schultz et al. | Jun 2010 | B2 |
7747113 | Mukawa et al. | Jun 2010 | B2 |
7751122 | Amitai | Jul 2010 | B2 |
7751662 | Kleemann et al. | Jul 2010 | B2 |
7764413 | Levola | Jul 2010 | B2 |
7777819 | Simmonds | Aug 2010 | B2 |
7778305 | Parriaux et al. | Aug 2010 | B2 |
7778508 | Hirayama | Aug 2010 | B2 |
7843642 | Shaoulov et al. | Nov 2010 | B2 |
7847235 | Krupkin et al. | Dec 2010 | B2 |
7864427 | Korenaga et al. | Jan 2011 | B2 |
7865080 | Hecker et al. | Jan 2011 | B2 |
7866869 | Karakawa | Jan 2011 | B2 |
7872707 | Sutherland et al. | Jan 2011 | B1 |
7872804 | Moon et al. | Jan 2011 | B2 |
7884593 | Simmonds et al. | Feb 2011 | B2 |
7884985 | Amitai et al. | Feb 2011 | B2 |
7887186 | Watanabe | Feb 2011 | B2 |
7903921 | Ostergard | Mar 2011 | B2 |
7907342 | Simmonds et al. | Mar 2011 | B2 |
7920787 | Gentner et al. | Apr 2011 | B2 |
7928862 | Matthews | Apr 2011 | B1 |
7936519 | Mukawa et al. | May 2011 | B2 |
7944428 | Travis | May 2011 | B2 |
7944616 | Mukawa | May 2011 | B2 |
7949214 | DeJong et al. | May 2011 | B2 |
7961117 | Zimmerman et al. | Jun 2011 | B1 |
7969644 | Tilleman et al. | Jun 2011 | B2 |
7969657 | Cakmakci et al. | Jun 2011 | B2 |
7970246 | Travis et al. | Jun 2011 | B2 |
7976208 | Travis | Jul 2011 | B2 |
7984884 | Iliev | Jul 2011 | B1 |
7999982 | Endo et al. | Aug 2011 | B2 |
8000020 | Amitai et al. | Aug 2011 | B2 |
8000491 | Brodkin et al. | Aug 2011 | B2 |
8004765 | Amitai | Aug 2011 | B2 |
8014050 | McGrew | Sep 2011 | B2 |
8016475 | Travis | Sep 2011 | B2 |
8018579 | Krah | Sep 2011 | B1 |
8022942 | Bathiche et al. | Sep 2011 | B2 |
8023783 | Mukawa et al. | Sep 2011 | B2 |
RE42992 | David | Dec 2011 | E |
8073296 | Mukawa et al. | Dec 2011 | B2 |
8077274 | Sutherland et al. | Dec 2011 | B2 |
8079713 | Ashkenazi | Dec 2011 | B2 |
8082222 | Rangarajan et al. | Dec 2011 | B2 |
8086030 | Gordon et al. | Dec 2011 | B2 |
8089568 | Brown et al. | Jan 2012 | B1 |
8093451 | Spangenberg et al. | Jan 2012 | B2 |
8098439 | Amitai et al. | Jan 2012 | B2 |
8107023 | Simmonds et al. | Jan 2012 | B2 |
8107780 | Simmonds | Jan 2012 | B2 |
8120548 | Barber | Feb 2012 | B1 |
8132948 | Owen et al. | Mar 2012 | B2 |
8132976 | Odell et al. | Mar 2012 | B2 |
8134434 | Diederichs et al. | Mar 2012 | B2 |
8136690 | Fang et al. | Mar 2012 | B2 |
8137981 | Andrew et al. | Mar 2012 | B2 |
8142016 | Legerton et al. | Mar 2012 | B2 |
8149086 | Klein et al. | Apr 2012 | B2 |
8152315 | Travis et al. | Apr 2012 | B2 |
8155489 | Saarikko et al. | Apr 2012 | B2 |
8159752 | Wertheim et al. | Apr 2012 | B2 |
8160409 | Large | Apr 2012 | B2 |
8160411 | Levola et al. | Apr 2012 | B2 |
8167173 | Simmonds et al. | May 2012 | B1 |
8186874 | Sinbar et al. | May 2012 | B2 |
8188925 | DeJean | May 2012 | B2 |
8189263 | Wang et al. | May 2012 | B1 |
8189973 | Travis et al. | May 2012 | B2 |
8194325 | Levola et al. | Jun 2012 | B2 |
8199803 | Hauske et al. | Jun 2012 | B2 |
8213065 | Mukawa | Jul 2012 | B2 |
8213755 | Mukawa et al. | Jul 2012 | B2 |
8220966 | Mukawa | Jul 2012 | B2 |
8224133 | Popovich et al. | Jul 2012 | B2 |
8233204 | Robbins et al. | Jul 2012 | B1 |
8253914 | Kajiya et al. | Aug 2012 | B2 |
8254031 | Levola | Aug 2012 | B2 |
8264498 | Vanderkamp et al. | Sep 2012 | B1 |
8294749 | Cable | Oct 2012 | B2 |
8295710 | Marcus | Oct 2012 | B2 |
8301031 | Gentner et al. | Oct 2012 | B2 |
8305577 | Kivioja et al. | Nov 2012 | B2 |
8306423 | Gottwald et al. | Nov 2012 | B2 |
8310327 | Willers et al. | Nov 2012 | B2 |
8314819 | Kimmel et al. | Nov 2012 | B2 |
8314993 | Levola et al. | Nov 2012 | B2 |
8320032 | Levola | Nov 2012 | B2 |
8321810 | Heintze | Nov 2012 | B2 |
8325166 | Akutsu et al. | Dec 2012 | B2 |
8329773 | Facke et al. | Dec 2012 | B2 |
8335040 | Mukawa et al. | Dec 2012 | B2 |
8351744 | Travis et al. | Jan 2013 | B2 |
8354640 | Hamre et al. | Jan 2013 | B2 |
8354806 | Travis et al. | Jan 2013 | B2 |
8355610 | Simmonds | Jan 2013 | B2 |
8369019 | Baker et al. | Feb 2013 | B2 |
8376548 | Schultz | Feb 2013 | B2 |
8382293 | Phillips, III et al. | Feb 2013 | B2 |
8384504 | Diederichs et al. | Feb 2013 | B2 |
8384694 | Powell et al. | Feb 2013 | B2 |
8384730 | Vanderkamp et al. | Feb 2013 | B1 |
8396339 | Mukawa et al. | Mar 2013 | B2 |
8398242 | Yamamoto et al. | Mar 2013 | B2 |
8403490 | Sugiyama et al. | Mar 2013 | B2 |
8422840 | Large | Apr 2013 | B2 |
8427439 | Larsen et al. | Apr 2013 | B2 |
8432363 | Saarikko et al. | Apr 2013 | B2 |
8432372 | Butler et al. | Apr 2013 | B2 |
8432614 | Amitai | Apr 2013 | B2 |
8441731 | Sprague | May 2013 | B2 |
8447365 | Imanuel | May 2013 | B1 |
8466953 | Levola | Jun 2013 | B2 |
8472119 | Kelly | Jun 2013 | B1 |
8472120 | Border et al. | Jun 2013 | B2 |
8477261 | Travis et al. | Jul 2013 | B2 |
8481130 | Harding et al. | Jul 2013 | B2 |
8482858 | Sprague | Jul 2013 | B2 |
8488246 | Border et al. | Jul 2013 | B2 |
8491121 | Tilleman et al. | Jul 2013 | B2 |
8491136 | Travis et al. | Jul 2013 | B2 |
8493366 | Bathiche et al. | Jul 2013 | B2 |
8493662 | Noui | Jul 2013 | B2 |
8494229 | Jarvenpaa et al. | Jul 2013 | B2 |
8508848 | Saarikko | Aug 2013 | B2 |
8520309 | Sprague | Aug 2013 | B2 |
8547638 | Levola | Oct 2013 | B2 |
8548290 | Travers et al. | Oct 2013 | B2 |
8565560 | Popovich et al. | Oct 2013 | B2 |
8578038 | Kaikuranta et al. | Nov 2013 | B2 |
8581831 | Travis | Nov 2013 | B2 |
8582206 | Travis | Nov 2013 | B2 |
8593734 | Laakkonen | Nov 2013 | B2 |
8611014 | Valera et al. | Dec 2013 | B2 |
8619062 | Powell et al. | Dec 2013 | B2 |
8633786 | Ermolov et al. | Jan 2014 | B2 |
8634120 | Popovich et al. | Jan 2014 | B2 |
8634139 | Brown et al. | Jan 2014 | B1 |
8639072 | Popovich et al. | Jan 2014 | B2 |
8643691 | Rosenfeld et al. | Feb 2014 | B2 |
8643948 | Amitai et al. | Feb 2014 | B2 |
8649099 | Schultz et al. | Feb 2014 | B2 |
8654420 | Simmonds | Feb 2014 | B2 |
8659826 | Brown et al. | Feb 2014 | B1 |
D701206 | Luckey et al. | Mar 2014 | S |
8670029 | McEldowney | Mar 2014 | B2 |
8693087 | Nowatzyk et al. | Apr 2014 | B2 |
8698705 | Burke | Apr 2014 | B2 |
8731350 | Lin et al. | May 2014 | B1 |
8736802 | Kajiya et al. | May 2014 | B2 |
8736963 | Robbins et al. | May 2014 | B2 |
8742952 | Bold | Jun 2014 | B1 |
8746008 | Mauritsen et al. | Jun 2014 | B1 |
8749886 | Gupta | Jun 2014 | B2 |
8749890 | Wood et al. | Jun 2014 | B1 |
8767294 | Chen et al. | Jul 2014 | B2 |
8786923 | Chuang et al. | Jul 2014 | B2 |
8810600 | Bohn et al. | Aug 2014 | B2 |
8810913 | Simmonds et al. | Aug 2014 | B2 |
8810914 | Amitai | Aug 2014 | B2 |
8814691 | Haddick et al. | Aug 2014 | B2 |
8816578 | Peng et al. | Aug 2014 | B1 |
8817350 | Robbins et al. | Aug 2014 | B1 |
8824836 | Sugiyama | Sep 2014 | B2 |
8830143 | Pitchford et al. | Sep 2014 | B1 |
8830584 | Saarikko et al. | Sep 2014 | B2 |
8830588 | Brown et al. | Sep 2014 | B1 |
8842368 | Simmonds et al. | Sep 2014 | B2 |
8859412 | Jain | Oct 2014 | B2 |
8872435 | Kreitzer et al. | Oct 2014 | B2 |
8873149 | Bohn et al. | Oct 2014 | B2 |
8873150 | Amitai | Oct 2014 | B2 |
8885112 | Popovich et al. | Nov 2014 | B2 |
8885997 | Nguyen et al. | Nov 2014 | B2 |
8903207 | Brown et al. | Dec 2014 | B1 |
8906088 | Pugh et al. | Dec 2014 | B2 |
8913324 | Schrader | Dec 2014 | B2 |
8913865 | Bennett | Dec 2014 | B1 |
8917453 | Bohn | Dec 2014 | B2 |
8933144 | Enomoto et al. | Jan 2015 | B2 |
8937771 | Robbins et al. | Jan 2015 | B2 |
8937772 | Burns et al. | Jan 2015 | B1 |
8938141 | Magnusson | Jan 2015 | B2 |
8950867 | Macnamara | Feb 2015 | B2 |
8964298 | Haddick et al. | Feb 2015 | B2 |
8965152 | Simmonds | Feb 2015 | B2 |
8985803 | Bohn | Mar 2015 | B2 |
8989535 | Robbins | Mar 2015 | B2 |
9019595 | Jain | Apr 2015 | B2 |
9025253 | Hadad et al. | May 2015 | B2 |
9035344 | Jain | May 2015 | B2 |
9075184 | Popovich et al. | Jul 2015 | B2 |
9081178 | Simmonds et al. | Jul 2015 | B2 |
9097890 | Miller et al. | Aug 2015 | B2 |
9128226 | Fattal et al. | Sep 2015 | B2 |
9129295 | Border et al. | Sep 2015 | B2 |
9164290 | Robbins et al. | Oct 2015 | B2 |
9176324 | Scherer et al. | Nov 2015 | B1 |
9201270 | Fattal et al. | Dec 2015 | B2 |
9215293 | Miller | Dec 2015 | B2 |
9244275 | Li | Jan 2016 | B1 |
9244280 | Tiana et al. | Jan 2016 | B1 |
9244281 | Zimmerman et al. | Jan 2016 | B1 |
9253359 | Takahashi | Feb 2016 | B2 |
9269854 | Jain | Feb 2016 | B2 |
9274338 | Robbins et al. | Mar 2016 | B2 |
9274339 | Brown et al. | Mar 2016 | B1 |
9274349 | Popovich et al. | Mar 2016 | B2 |
9310566 | Valera et al. | Apr 2016 | B2 |
9329325 | Simmonds et al. | May 2016 | B2 |
9335604 | Popovich et al. | May 2016 | B2 |
9341846 | Popovich et al. | May 2016 | B2 |
9354366 | Jain | May 2016 | B2 |
9366862 | Haddick et al. | Jun 2016 | B2 |
9366864 | Brown et al. | Jun 2016 | B1 |
9372347 | Levola et al. | Jun 2016 | B1 |
9377623 | Robbins et al. | Jun 2016 | B2 |
9377852 | Shapiro et al. | Jun 2016 | B1 |
9389415 | Fattal et al. | Jul 2016 | B2 |
9400395 | Travers et al. | Jul 2016 | B2 |
9423360 | Kostamo et al. | Aug 2016 | B1 |
9429692 | Saarikko et al. | Aug 2016 | B1 |
9431794 | Jain | Aug 2016 | B2 |
9456744 | Popovich et al. | Oct 2016 | B2 |
9459451 | Saarikko et al. | Oct 2016 | B2 |
9464779 | Popovich et al. | Oct 2016 | B2 |
9465213 | Simmonds | Oct 2016 | B2 |
9465227 | Popovich et al. | Oct 2016 | B2 |
9494799 | Robbins et al. | Nov 2016 | B2 |
9507150 | Stratton et al. | Nov 2016 | B1 |
9513480 | Saarikko et al. | Dec 2016 | B2 |
9516193 | Aramaki | Dec 2016 | B2 |
9519089 | Brown et al. | Dec 2016 | B1 |
9523852 | Brown et al. | Dec 2016 | B1 |
9535253 | Levola et al. | Jan 2017 | B2 |
9541383 | Abovitz et al. | Jan 2017 | B2 |
9541763 | Heberlein et al. | Jan 2017 | B1 |
9547174 | Gao et al. | Jan 2017 | B2 |
9551468 | Jones | Jan 2017 | B2 |
9551874 | Amitai | Jan 2017 | B2 |
9551880 | Amitai | Jan 2017 | B2 |
9599813 | Stratton et al. | Mar 2017 | B1 |
9612403 | Abovitz et al. | Apr 2017 | B2 |
9632226 | Waldern et al. | Apr 2017 | B2 |
9635352 | Henry et al. | Apr 2017 | B1 |
9648313 | Henry et al. | May 2017 | B1 |
9651368 | Abovitz et al. | May 2017 | B2 |
9664824 | Simmonds et al. | May 2017 | B2 |
9664910 | Mansharof et al. | May 2017 | B2 |
9674413 | Tiana et al. | Jun 2017 | B1 |
9678345 | Melzer et al. | Jun 2017 | B1 |
9679367 | Wald | Jun 2017 | B1 |
9715067 | Brown et al. | Jul 2017 | B1 |
9715110 | Brown et al. | Jul 2017 | B1 |
9726540 | Popovich et al. | Aug 2017 | B2 |
9727772 | Popovich et al. | Aug 2017 | B2 |
9733475 | Brown et al. | Aug 2017 | B1 |
9746688 | Popovich et al. | Aug 2017 | B2 |
9754507 | Wenger et al. | Sep 2017 | B1 |
9762895 | Henry et al. | Sep 2017 | B1 |
9766465 | Tiana et al. | Sep 2017 | B1 |
9785231 | Zimmerman | Oct 2017 | B1 |
9791694 | Haverkamp et al. | Oct 2017 | B1 |
9791696 | Woltman et al. | Oct 2017 | B2 |
9804389 | Popovich et al. | Oct 2017 | B2 |
9823423 | Waldern et al. | Nov 2017 | B2 |
9874931 | Koenck et al. | Jan 2018 | B1 |
9933684 | Brown et al. | Apr 2018 | B2 |
9977247 | Brown et al. | May 2018 | B1 |
10089516 | Popovich et al. | Oct 2018 | B2 |
10156681 | Waldern et al. | Dec 2018 | B2 |
10185154 | Popovich et al. | Jan 2019 | B2 |
10209517 | Popovich et al. | Feb 2019 | B2 |
10216061 | Popovich et al. | Feb 2019 | B2 |
10234696 | Popovich et al. | Mar 2019 | B2 |
10241330 | Popovich et al. | Mar 2019 | B2 |
10330777 | Popovich et al. | Jun 2019 | B2 |
10359736 | Popovich et al. | Jul 2019 | B2 |
10409144 | Popovich et al. | Sep 2019 | B2 |
10423813 | Popovich et al. | Sep 2019 | B2 |
10459311 | Popovich et al. | Oct 2019 | B2 |
10527797 | Waldern et al. | Jan 2020 | B2 |
10545346 | Waldern et al. | Jan 2020 | B2 |
10642058 | Popovich et al. | May 2020 | B2 |
10678053 | Waldern et al. | Jun 2020 | B2 |
10690916 | Popovich et al. | Jun 2020 | B2 |
10859768 | Popovich et al. | Dec 2020 | B2 |
10890707 | Waldern et al. | Jan 2021 | B2 |
20010024177 | Popovich | Sep 2001 | A1 |
20010043163 | Waldern et al. | Nov 2001 | A1 |
20010050756 | Lipton et al. | Dec 2001 | A1 |
20020003509 | Lipton et al. | Jan 2002 | A1 |
20020009299 | Lipton | Jan 2002 | A1 |
20020011969 | Lipton et al. | Jan 2002 | A1 |
20020012064 | Yamaguchi | Jan 2002 | A1 |
20020021461 | Ono et al. | Feb 2002 | A1 |
20020036825 | Lipton et al. | Mar 2002 | A1 |
20020047837 | Suyama et al. | Apr 2002 | A1 |
20020075240 | Lieberman et al. | Jun 2002 | A1 |
20020093701 | Zhang et al. | Jul 2002 | A1 |
20020110077 | Drobot et al. | Aug 2002 | A1 |
20020126332 | Popovich | Sep 2002 | A1 |
20020127497 | Brown et al. | Sep 2002 | A1 |
20020131175 | Yagi et al. | Sep 2002 | A1 |
20020150032 | Nishiuchi et al. | Oct 2002 | A1 |
20020196332 | Lipton et al. | Dec 2002 | A1 |
20030007070 | Lipton et al. | Jan 2003 | A1 |
20030030912 | Gleckman et al. | Feb 2003 | A1 |
20030038912 | Broer et al. | Feb 2003 | A1 |
20030039442 | Bond et al. | Feb 2003 | A1 |
20030063042 | Friesem et al. | Apr 2003 | A1 |
20030063884 | Smith et al. | Apr 2003 | A1 |
20030067685 | Niv | Apr 2003 | A1 |
20030086670 | Moridaira et al. | May 2003 | A1 |
20030107809 | Chen et al. | Jun 2003 | A1 |
20030149346 | Arnone et al. | Aug 2003 | A1 |
20030175004 | Garito et al. | Sep 2003 | A1 |
20030197154 | Manabe et al. | Oct 2003 | A1 |
20030197157 | Sutherland et al. | Oct 2003 | A1 |
20030202247 | Niv et al. | Oct 2003 | A1 |
20030206329 | Ikeda et al. | Nov 2003 | A1 |
20030228019 | Eichler et al. | Dec 2003 | A1 |
20040004767 | Song | Jan 2004 | A1 |
20040012833 | Newswanger et al. | Jan 2004 | A1 |
20040047938 | Kosuga et al. | Mar 2004 | A1 |
20040057138 | Tanijiri et al. | Mar 2004 | A1 |
20040075830 | Miyake et al. | Apr 2004 | A1 |
20040089842 | Sutehrland et al. | May 2004 | A1 |
20040109234 | Levola | Jun 2004 | A1 |
20040112862 | Willson et al. | Jun 2004 | A1 |
20040130797 | Leigh | Jul 2004 | A1 |
20040141217 | Endo et al. | Jul 2004 | A1 |
20040156008 | Reznikov et al. | Aug 2004 | A1 |
20040174348 | David | Sep 2004 | A1 |
20040175627 | Sutherland et al. | Sep 2004 | A1 |
20040179764 | Melikechi et al. | Sep 2004 | A1 |
20040184156 | Gunn, III et al. | Sep 2004 | A1 |
20040188617 | Devitt et al. | Sep 2004 | A1 |
20040208446 | Bond et al. | Oct 2004 | A1 |
20040208466 | Mossberg et al. | Oct 2004 | A1 |
20040225025 | Sullivan et al. | Nov 2004 | A1 |
20040263969 | Lipton et al. | Dec 2004 | A1 |
20040263971 | Lipton et al. | Dec 2004 | A1 |
20050018304 | Lipton et al. | Jan 2005 | A1 |
20050079663 | Masutani et al. | Apr 2005 | A1 |
20050083564 | Mallya et al. | Apr 2005 | A1 |
20050105909 | Stone | May 2005 | A1 |
20050122395 | Lipton et al. | Jun 2005 | A1 |
20050134404 | Kajiya et al. | Jun 2005 | A1 |
20050135747 | Greiner et al. | Jun 2005 | A1 |
20050136260 | Garcia | Jun 2005 | A1 |
20050141066 | Ouchi | Jun 2005 | A1 |
20050174321 | Ikeda et al. | Aug 2005 | A1 |
20050180687 | Amitai | Aug 2005 | A1 |
20050195276 | Lipton et al. | Sep 2005 | A1 |
20050218377 | Lawandy | Oct 2005 | A1 |
20050231774 | Hayashi et al. | Oct 2005 | A1 |
20050232530 | Kekas | Oct 2005 | A1 |
20050259217 | Lin et al. | Nov 2005 | A1 |
20050259302 | Metz et al. | Nov 2005 | A9 |
20050259944 | Anderson et al. | Nov 2005 | A1 |
20050265585 | Rowe | Dec 2005 | A1 |
20050269481 | David et al. | Dec 2005 | A1 |
20050271258 | Rowe | Dec 2005 | A1 |
20050286133 | Lipton | Dec 2005 | A1 |
20060002274 | Kihara et al. | Jan 2006 | A1 |
20060012878 | Lipton et al. | Jan 2006 | A1 |
20060013977 | Duke et al. | Jan 2006 | A1 |
20060043938 | O'Gorman et al. | Mar 2006 | A1 |
20060055993 | Kobayashi et al. | Mar 2006 | A1 |
20060093012 | Singh et al. | May 2006 | A1 |
20060093793 | Miyakawa et al. | May 2006 | A1 |
20060114564 | Sutherland et al. | Jun 2006 | A1 |
20060119837 | Raguin et al. | Jun 2006 | A1 |
20060119916 | Sutherland et al. | Jun 2006 | A1 |
20060126179 | Levola | Jun 2006 | A1 |
20060132914 | Weiss | Jun 2006 | A1 |
20060142455 | Agarwal et al. | Jun 2006 | A1 |
20060146422 | Koike | Jul 2006 | A1 |
20060159864 | Natarajan et al. | Jul 2006 | A1 |
20060164593 | Peyghambarian et al. | Jul 2006 | A1 |
20060171647 | Ye et al. | Aug 2006 | A1 |
20060177180 | Tazawa et al. | Aug 2006 | A1 |
20060181683 | Bhowmik et al. | Aug 2006 | A1 |
20060191293 | Kuczma | Aug 2006 | A1 |
20060215244 | Yosha et al. | Sep 2006 | A1 |
20060215976 | Singh et al. | Sep 2006 | A1 |
20060221063 | Ishihara | Oct 2006 | A1 |
20060221448 | Nivon et al. | Oct 2006 | A1 |
20060228073 | Mukawa et al. | Oct 2006 | A1 |
20060268104 | Cowan et al. | Nov 2006 | A1 |
20060268412 | Downing et al. | Nov 2006 | A1 |
20060279662 | Kapellner et al. | Dec 2006 | A1 |
20060284974 | Lipton et al. | Dec 2006 | A1 |
20060285205 | Lipton et al. | Dec 2006 | A1 |
20060291021 | Mukawa | Dec 2006 | A1 |
20060291052 | Lipton et al. | Dec 2006 | A1 |
20060292493 | Shinotsuka et al. | Dec 2006 | A1 |
20070012777 | Tsikos et al. | Jan 2007 | A1 |
20070019152 | Caputo et al. | Jan 2007 | A1 |
20070019297 | Stewart et al. | Jan 2007 | A1 |
20070041684 | Popovich et al. | Feb 2007 | A1 |
20070045596 | King et al. | Mar 2007 | A1 |
20070052929 | Allman et al. | Mar 2007 | A1 |
20070070476 | Yamada et al. | Mar 2007 | A1 |
20070070504 | Akutsu et al. | Mar 2007 | A1 |
20070089625 | Grinberg et al. | Apr 2007 | A1 |
20070097502 | Lipton et al. | May 2007 | A1 |
20070109400 | Woodgate et al. | May 2007 | A1 |
20070109401 | Lipton et al. | May 2007 | A1 |
20070116409 | Bryan et al. | May 2007 | A1 |
20070127348 | Ooi et al. | Jun 2007 | A1 |
20070133089 | Lipton et al. | Jun 2007 | A1 |
20070133920 | Lee et al. | Jun 2007 | A1 |
20070133983 | Traff | Jun 2007 | A1 |
20070146624 | Duston et al. | Jun 2007 | A1 |
20070154153 | Fomitchov et al. | Jul 2007 | A1 |
20070160325 | Son et al. | Jul 2007 | A1 |
20070177007 | Lipton et al. | Aug 2007 | A1 |
20070182915 | Osawa et al. | Aug 2007 | A1 |
20070183650 | Lipton et al. | Aug 2007 | A1 |
20070188602 | Cowan et al. | Aug 2007 | A1 |
20070188837 | Shimizu et al. | Aug 2007 | A1 |
20070195409 | Yun et al. | Aug 2007 | A1 |
20070206155 | Lipton | Sep 2007 | A1 |
20070211164 | Olsen et al. | Sep 2007 | A1 |
20070236560 | Lipton et al. | Oct 2007 | A1 |
20070237456 | Blauvelt et al. | Oct 2007 | A1 |
20070247687 | Handschy et al. | Oct 2007 | A1 |
20070258138 | Cowan et al. | Nov 2007 | A1 |
20070263169 | Lipton | Nov 2007 | A1 |
20080001909 | Lim | Jan 2008 | A1 |
20080018851 | Lipton et al. | Jan 2008 | A1 |
20080024598 | Perlin et al. | Jan 2008 | A1 |
20080043334 | Itzkovitch et al. | Feb 2008 | A1 |
20080049100 | Lipton et al. | Feb 2008 | A1 |
20080062259 | Lipton et al. | Mar 2008 | A1 |
20080089073 | Hikmet | Apr 2008 | A1 |
20080106775 | Amitai et al. | May 2008 | A1 |
20080106779 | Peterson et al. | May 2008 | A1 |
20080117289 | Schowengerdt et al. | May 2008 | A1 |
20080136916 | Wolff | Jun 2008 | A1 |
20080136923 | Inbar et al. | Jun 2008 | A1 |
20080138013 | Parriaux | Jun 2008 | A1 |
20080143964 | Cowan et al. | Jun 2008 | A1 |
20080143965 | Cowan et al. | Jun 2008 | A1 |
20080149517 | Lipton et al. | Jun 2008 | A1 |
20080151370 | Cook et al. | Jun 2008 | A1 |
20080151379 | Amitai | Jun 2008 | A1 |
20080186573 | Lipton | Aug 2008 | A1 |
20080186574 | Robinson et al. | Aug 2008 | A1 |
20080186604 | Amitai | Aug 2008 | A1 |
20080193085 | Singh et al. | Aug 2008 | A1 |
20080198471 | Amitai | Aug 2008 | A1 |
20080225187 | Yamanaka | Sep 2008 | A1 |
20080226281 | Lipton | Sep 2008 | A1 |
20080239067 | Lipton | Oct 2008 | A1 |
20080239068 | Lipton | Oct 2008 | A1 |
20080273081 | Lipton | Nov 2008 | A1 |
20080278812 | Amitai | Nov 2008 | A1 |
20080285137 | Simmonds et al. | Nov 2008 | A1 |
20080285140 | Amitai | Nov 2008 | A1 |
20080297731 | Powell et al. | Dec 2008 | A1 |
20080297807 | Feldman et al. | Dec 2008 | A1 |
20080298649 | Ennis et al. | Dec 2008 | A1 |
20080303895 | Akka et al. | Dec 2008 | A1 |
20080303896 | Lipton et al. | Dec 2008 | A1 |
20080304111 | Queenan et al. | Dec 2008 | A1 |
20080309586 | Vitale | Dec 2008 | A1 |
20080316303 | Chiu et al. | Dec 2008 | A1 |
20080316375 | Lipton et al. | Dec 2008 | A1 |
20090017424 | Yoeli et al. | Jan 2009 | A1 |
20090019222 | Verma et al. | Jan 2009 | A1 |
20090052017 | Sasaki | Feb 2009 | A1 |
20090052046 | Amitai | Feb 2009 | A1 |
20090052047 | Amitai | Feb 2009 | A1 |
20090067774 | Magnusson | Mar 2009 | A1 |
20090074356 | Sanchez et al. | Mar 2009 | A1 |
20090097122 | Niv | Apr 2009 | A1 |
20090097127 | Amitai | Apr 2009 | A1 |
20090121301 | Chang | May 2009 | A1 |
20090122413 | Hoffman et al. | May 2009 | A1 |
20090122414 | Amitai | May 2009 | A1 |
20090128495 | Kong et al. | May 2009 | A1 |
20090128902 | Niv et al. | May 2009 | A1 |
20090128911 | Itzkovitch et al. | May 2009 | A1 |
20090136246 | Murakami | May 2009 | A1 |
20090141324 | Mukawa | Jun 2009 | A1 |
20090153437 | Aharoni | Jun 2009 | A1 |
20090169152 | Oestergard | Jul 2009 | A1 |
20090190222 | Simmonds et al. | Jul 2009 | A1 |
20090213208 | Glatt | Aug 2009 | A1 |
20090237804 | Amitai et al. | Sep 2009 | A1 |
20090242021 | Petkie et al. | Oct 2009 | A1 |
20090296218 | Ryytty | Dec 2009 | A1 |
20090303599 | Levola | Dec 2009 | A1 |
20090316246 | Asai et al. | Dec 2009 | A1 |
20100014312 | Travis et al. | Jan 2010 | A1 |
20100039796 | Mukawa | Feb 2010 | A1 |
20100053565 | Mizushima et al. | Mar 2010 | A1 |
20100060551 | Sugiyama et al. | Mar 2010 | A1 |
20100060990 | Wertheim et al. | Mar 2010 | A1 |
20100065726 | Zhong et al. | Mar 2010 | A1 |
20100079865 | Saarikko et al. | Apr 2010 | A1 |
20100086256 | Bakir et al. | Apr 2010 | A1 |
20100092124 | Magnusson et al. | Apr 2010 | A1 |
20100096562 | Klunder et al. | Apr 2010 | A1 |
20100097674 | Kasazumi et al. | Apr 2010 | A1 |
20100097820 | Owen et al. | Apr 2010 | A1 |
20100103078 | Mukawa et al. | Apr 2010 | A1 |
20100134534 | Seesselberg et al. | Jun 2010 | A1 |
20100135615 | Ho et al. | Jun 2010 | A1 |
20100136319 | Imai et al. | Jun 2010 | A1 |
20100141555 | Rorberg et al. | Jun 2010 | A1 |
20100149073 | Chaum et al. | Jun 2010 | A1 |
20100165465 | Levola | Jul 2010 | A1 |
20100165660 | Weber et al. | Jul 2010 | A1 |
20100171680 | Lapidot et al. | Jul 2010 | A1 |
20100177388 | Cohen et al. | Jul 2010 | A1 |
20100202725 | Popovich et al. | Aug 2010 | A1 |
20100214659 | Levola | Aug 2010 | A1 |
20100220293 | Mizushima et al. | Sep 2010 | A1 |
20100225834 | Li | Sep 2010 | A1 |
20100231532 | Nho et al. | Sep 2010 | A1 |
20100231693 | Levola | Sep 2010 | A1 |
20100231705 | Yahav et al. | Sep 2010 | A1 |
20100232003 | Baldy et al. | Sep 2010 | A1 |
20100246003 | Simmonds et al. | Sep 2010 | A1 |
20100246004 | Simmonds | Sep 2010 | A1 |
20100246993 | Rieger et al. | Sep 2010 | A1 |
20100265117 | Weiss | Oct 2010 | A1 |
20100277803 | Pockett et al. | Nov 2010 | A1 |
20100284085 | Laakkonen | Nov 2010 | A1 |
20100284090 | Simmonds | Nov 2010 | A1 |
20100284180 | Popovich et al. | Nov 2010 | A1 |
20100296163 | Kko | Nov 2010 | A1 |
20100299814 | Celona et al. | Dec 2010 | A1 |
20100315719 | Saarikko et al. | Dec 2010 | A1 |
20100321781 | Levola et al. | Dec 2010 | A1 |
20100322555 | Vermeulen et al. | Dec 2010 | A1 |
20110001895 | Dahl | Jan 2011 | A1 |
20110002143 | Saarikko et al. | Jan 2011 | A1 |
20110013423 | Selbrede et al. | Jan 2011 | A1 |
20110019250 | Aiki et al. | Jan 2011 | A1 |
20110019874 | Jarvenpaa et al. | Jan 2011 | A1 |
20110026128 | Baker et al. | Feb 2011 | A1 |
20110026774 | Flohr et al. | Feb 2011 | A1 |
20110032602 | Rothenberg et al. | Feb 2011 | A1 |
20110032618 | Handerek et al. | Feb 2011 | A1 |
20110032706 | Mukawa | Feb 2011 | A1 |
20110038024 | Wang et al. | Feb 2011 | A1 |
20110050548 | Blumenfeld et al. | Mar 2011 | A1 |
20110063604 | Hamre et al. | Mar 2011 | A1 |
20110096401 | Levola | Apr 2011 | A1 |
20110102711 | Sutherland et al. | May 2011 | A1 |
20110109880 | Nummela | May 2011 | A1 |
20110157707 | Tilleman et al. | Jun 2011 | A1 |
20110164221 | Tilleman et al. | Jul 2011 | A1 |
20110187293 | Travis et al. | Aug 2011 | A1 |
20110211239 | Mukawa et al. | Sep 2011 | A1 |
20110221656 | Haddick et al. | Sep 2011 | A1 |
20110235179 | Simmonds | Sep 2011 | A1 |
20110235365 | McCollum et al. | Sep 2011 | A1 |
20110236803 | Weiser et al. | Sep 2011 | A1 |
20110238399 | Ophir et al. | Sep 2011 | A1 |
20110242349 | Izuha et al. | Oct 2011 | A1 |
20110242661 | Simmonds | Oct 2011 | A1 |
20110242670 | Simmonds | Oct 2011 | A1 |
20110249309 | McPheters et al. | Oct 2011 | A1 |
20110274435 | Fini et al. | Nov 2011 | A1 |
20110299075 | Meade et al. | Dec 2011 | A1 |
20110310356 | Vallius | Dec 2011 | A1 |
20120007979 | Schneider et al. | Jan 2012 | A1 |
20120027347 | Mathal et al. | Feb 2012 | A1 |
20120033306 | Valera et al. | Feb 2012 | A1 |
20120044572 | Simmonds et al. | Feb 2012 | A1 |
20120044573 | Simmonds et al. | Feb 2012 | A1 |
20120062850 | Travis | Mar 2012 | A1 |
20120062998 | Schultz et al. | Mar 2012 | A1 |
20120075168 | Osterhout et al. | Mar 2012 | A1 |
20120081789 | Mukawa et al. | Apr 2012 | A1 |
20120092632 | McLeod et al. | Apr 2012 | A1 |
20120099203 | Boubis et al. | Apr 2012 | A1 |
20120105634 | Meidan et al. | May 2012 | A1 |
20120120493 | Simmonds et al. | May 2012 | A1 |
20120127577 | Desserouer | May 2012 | A1 |
20120162549 | Gao et al. | Jun 2012 | A1 |
20120162764 | Shimizu | Jun 2012 | A1 |
20120176665 | Song et al. | Jul 2012 | A1 |
20120183888 | Oliveira et al. | Jul 2012 | A1 |
20120194420 | Osterhout et al. | Aug 2012 | A1 |
20120200532 | Powell et al. | Aug 2012 | A1 |
20120206811 | Mukawa et al. | Aug 2012 | A1 |
20120206937 | Travis et al. | Aug 2012 | A1 |
20120207432 | Travis et al. | Aug 2012 | A1 |
20120207434 | Large | Aug 2012 | A1 |
20120214089 | Hönel et al. | Aug 2012 | A1 |
20120214090 | Weiser et al. | Aug 2012 | A1 |
20120218481 | Popovich et al. | Aug 2012 | A1 |
20120224062 | Lacoste et al. | Sep 2012 | A1 |
20120235884 | Miller et al. | Sep 2012 | A1 |
20120235886 | Border et al. | Sep 2012 | A1 |
20120235900 | Border et al. | Sep 2012 | A1 |
20120242661 | Takagi et al. | Sep 2012 | A1 |
20120280956 | Yamamoto et al. | Nov 2012 | A1 |
20120281943 | Popovich et al. | Nov 2012 | A1 |
20120290973 | Robertson et al. | Nov 2012 | A1 |
20120294037 | Holman et al. | Nov 2012 | A1 |
20120300311 | Simmonds et al. | Nov 2012 | A1 |
20120320460 | Levola | Dec 2012 | A1 |
20120326950 | Park et al. | Dec 2012 | A1 |
20130016324 | Travis | Jan 2013 | A1 |
20130016362 | Gong et al. | Jan 2013 | A1 |
20130021392 | Travis | Jan 2013 | A1 |
20130021586 | Lippey | Jan 2013 | A1 |
20130027006 | Holloway et al. | Jan 2013 | A1 |
20130033485 | Kollin et al. | Feb 2013 | A1 |
20130039619 | Laughlin | Feb 2013 | A1 |
20130044376 | Valera et al. | Feb 2013 | A1 |
20130059233 | Askham | Mar 2013 | A1 |
20130069850 | Mukawa et al. | Mar 2013 | A1 |
20130077049 | Bohn | Mar 2013 | A1 |
20130088637 | Duparre | Apr 2013 | A1 |
20130093893 | Schofield et al. | Apr 2013 | A1 |
20130101253 | Popovich et al. | Apr 2013 | A1 |
20130107186 | Ando et al. | May 2013 | A1 |
20130117377 | Miller | May 2013 | A1 |
20130125027 | Abovitz et al. | May 2013 | A1 |
20130128230 | Macnamara | May 2013 | A1 |
20130138275 | Nauman et al. | May 2013 | A1 |
20130141937 | Katsuta et al. | Jun 2013 | A1 |
20130143336 | Jain | Jun 2013 | A1 |
20130163089 | Bohn | Jun 2013 | A1 |
20130170031 | Bohn et al. | Jul 2013 | A1 |
20130176704 | Lanman et al. | Jul 2013 | A1 |
20130184904 | Gadzinski | Jul 2013 | A1 |
20130200710 | Robbins | Aug 2013 | A1 |
20130207887 | Raffle et al. | Aug 2013 | A1 |
20130224634 | Berneth et al. | Aug 2013 | A1 |
20130229717 | Amitai | Sep 2013 | A1 |
20130249895 | Westerinen et al. | Sep 2013 | A1 |
20130250207 | Bohn | Sep 2013 | A1 |
20130250430 | Robbins et al. | Sep 2013 | A1 |
20130250431 | Robbins et al. | Sep 2013 | A1 |
20130257848 | Westerinen et al. | Oct 2013 | A1 |
20130258701 | Westerinen et al. | Oct 2013 | A1 |
20130267309 | Robbins et al. | Oct 2013 | A1 |
20130271731 | Popovich et al. | Oct 2013 | A1 |
20130277890 | Bowman et al. | Oct 2013 | A1 |
20130301014 | DeJong et al. | Nov 2013 | A1 |
20130305437 | Weller et al. | Nov 2013 | A1 |
20130312811 | Aspnes et al. | Nov 2013 | A1 |
20130314789 | Saarikko et al. | Nov 2013 | A1 |
20130314793 | Robbins et al. | Nov 2013 | A1 |
20130322810 | Robbins | Dec 2013 | A1 |
20130328948 | Kunkel et al. | Dec 2013 | A1 |
20130342525 | Benko et al. | Dec 2013 | A1 |
20140003762 | Macnamara | Jan 2014 | A1 |
20140009809 | Pyun et al. | Jan 2014 | A1 |
20140024159 | Jain | Jan 2014 | A1 |
20140027006 | Foley et al. | Jan 2014 | A1 |
20140037242 | Popovich et al. | Feb 2014 | A1 |
20140043672 | Clarke et al. | Feb 2014 | A1 |
20140043689 | Mason | Feb 2014 | A1 |
20140055845 | Jain | Feb 2014 | A1 |
20140063055 | Osterhout et al. | Mar 2014 | A1 |
20140064655 | Nguyen et al. | Mar 2014 | A1 |
20140071538 | Muller | Mar 2014 | A1 |
20140098010 | Travis | Apr 2014 | A1 |
20140104665 | Popovich et al. | Apr 2014 | A1 |
20140104685 | Bohn et al. | Apr 2014 | A1 |
20140118647 | Momonoi et al. | May 2014 | A1 |
20140130132 | Cahill et al. | May 2014 | A1 |
20140140653 | Brown et al. | May 2014 | A1 |
20140140654 | Brown et al. | May 2014 | A1 |
20140146394 | Tout et al. | May 2014 | A1 |
20140152778 | Ihlenburg et al. | Jun 2014 | A1 |
20140160576 | Robbins et al. | Jun 2014 | A1 |
20140168055 | Smith | Jun 2014 | A1 |
20140168260 | O'Brien et al. | Jun 2014 | A1 |
20140168735 | Yuan et al. | Jun 2014 | A1 |
20140168783 | Luebke et al. | Jun 2014 | A1 |
20140172296 | Shtukater | Jun 2014 | A1 |
20140176528 | Robbins | Jun 2014 | A1 |
20140177023 | Gao et al. | Jun 2014 | A1 |
20140185286 | Popovich et al. | Jul 2014 | A1 |
20140198128 | Hong et al. | Jul 2014 | A1 |
20140204455 | Popovich et al. | Jul 2014 | A1 |
20140211322 | Bohn et al. | Jul 2014 | A1 |
20140218468 | Gao et al. | Aug 2014 | A1 |
20140218801 | Simmonds et al. | Aug 2014 | A1 |
20140232759 | Simmonds et al. | Aug 2014 | A1 |
20140240834 | Mason | Aug 2014 | A1 |
20140240842 | Nguyen et al. | Aug 2014 | A1 |
20140255662 | Enomoto et al. | Sep 2014 | A1 |
20140267420 | Schowengerdt et al. | Sep 2014 | A1 |
20140268353 | Fujimura et al. | Sep 2014 | A1 |
20140300947 | Fattal et al. | Oct 2014 | A1 |
20140300960 | Santori et al. | Oct 2014 | A1 |
20140300966 | Travers et al. | Oct 2014 | A1 |
20140327970 | Bohn et al. | Nov 2014 | A1 |
20140330159 | Costa et al. | Nov 2014 | A1 |
20140367719 | Jain | Dec 2014 | A1 |
20140375542 | Robbins et al. | Dec 2014 | A1 |
20140375789 | Lou et al. | Dec 2014 | A1 |
20140375790 | Robbins et al. | Dec 2014 | A1 |
20150001677 | Palumbo et al. | Jan 2015 | A1 |
20150003796 | Bennett | Jan 2015 | A1 |
20150010265 | Popovich et al. | Jan 2015 | A1 |
20150015946 | Muller | Jan 2015 | A1 |
20150016777 | Abovitz et al. | Jan 2015 | A1 |
20150035744 | Robbins et al. | Feb 2015 | A1 |
20150036068 | Fattal et al. | Feb 2015 | A1 |
20150058791 | Robertson et al. | Feb 2015 | A1 |
20150062675 | Ayres et al. | Mar 2015 | A1 |
20150062707 | Simmonds et al. | Mar 2015 | A1 |
20150086163 | Valera et al. | Mar 2015 | A1 |
20150086907 | Mizuta et al. | Mar 2015 | A1 |
20150107671 | Bodan et al. | Apr 2015 | A1 |
20150109763 | Shinkai et al. | Apr 2015 | A1 |
20150125109 | Robbins et al. | May 2015 | A1 |
20150148728 | Sallum et al. | May 2015 | A1 |
20150160529 | Popovich et al. | Jun 2015 | A1 |
20150167868 | Boncha | Jun 2015 | A1 |
20150177686 | Lee et al. | Jun 2015 | A1 |
20150177688 | Popovich et al. | Jun 2015 | A1 |
20150185475 | Saarikko et al. | Jul 2015 | A1 |
20150219834 | Nichol et al. | Aug 2015 | A1 |
20150235447 | Abovitz et al. | Aug 2015 | A1 |
20150235448 | Schowengerdt et al. | Aug 2015 | A1 |
20150243068 | Solomon | Aug 2015 | A1 |
20150247975 | Abovitz et al. | Sep 2015 | A1 |
20150260994 | Akutsu et al. | Sep 2015 | A1 |
20150268415 | Schowengerdt et al. | Sep 2015 | A1 |
20150277375 | Large et al. | Oct 2015 | A1 |
20150285682 | Popovich et al. | Oct 2015 | A1 |
20150288129 | Jain | Oct 2015 | A1 |
20150289762 | Popovich et al. | Oct 2015 | A1 |
20150309264 | Abovitz et al. | Oct 2015 | A1 |
20150316768 | Simmonds | Nov 2015 | A1 |
20150346490 | Tekolste et al. | Dec 2015 | A1 |
20150346495 | Welch et al. | Dec 2015 | A1 |
20150355394 | Leighton et al. | Dec 2015 | A1 |
20160003847 | Ryan et al. | Jan 2016 | A1 |
20160004090 | Popovich et al. | Jan 2016 | A1 |
20160026253 | Bradski et al. | Jan 2016 | A1 |
20160033705 | Fattal | Feb 2016 | A1 |
20160033706 | Fattal et al. | Feb 2016 | A1 |
20160038992 | Arthur et al. | Feb 2016 | A1 |
20160041387 | Valera et al. | Feb 2016 | A1 |
20160077338 | Robbins et al. | Mar 2016 | A1 |
20160085300 | Robbins et al. | Mar 2016 | A1 |
20160097959 | Bruizeman et al. | Apr 2016 | A1 |
20160116739 | TeKolste et al. | Apr 2016 | A1 |
20160124223 | Shinbo et al. | May 2016 | A1 |
20160132025 | Taff et al. | May 2016 | A1 |
20160178901 | Ishikawa | Jun 2016 | A1 |
20160195664 | Fattal et al. | Jul 2016 | A1 |
20160209648 | Haddick et al. | Jul 2016 | A1 |
20160209657 | Popovich et al. | Jul 2016 | A1 |
20160231568 | Saarikko et al. | Aug 2016 | A1 |
20160231570 | Levola et al. | Aug 2016 | A1 |
20160238772 | Waldern et al. | Aug 2016 | A1 |
20160266398 | Poon et al. | Sep 2016 | A1 |
20160274362 | Tinch et al. | Sep 2016 | A1 |
20160283773 | Popovich et al. | Sep 2016 | A1 |
20160291328 | Popovich et al. | Oct 2016 | A1 |
20160299344 | Dobschal et al. | Oct 2016 | A1 |
20160320536 | Simmonds et al. | Nov 2016 | A1 |
20160327705 | Simmonds et al. | Nov 2016 | A1 |
20160336033 | Tanaka | Nov 2016 | A1 |
20160341964 | Amitai | Nov 2016 | A1 |
20170003505 | Vallius et al. | Jan 2017 | A1 |
20170010466 | Klug et al. | Jan 2017 | A1 |
20170010488 | Klug et al. | Jan 2017 | A1 |
20170030550 | Popovich et al. | Feb 2017 | A1 |
20170031160 | Popovich et al. | Feb 2017 | A1 |
20170031171 | Vallius et al. | Feb 2017 | A1 |
20170032166 | Raguin et al. | Feb 2017 | A1 |
20170034435 | Vallius | Feb 2017 | A1 |
20170038579 | Yeoh et al. | Feb 2017 | A1 |
20170052374 | Waldern et al. | Feb 2017 | A1 |
20170052376 | Amitai et al. | Feb 2017 | A1 |
20170059759 | Ayres et al. | Mar 2017 | A1 |
20170059775 | Coles et al. | Mar 2017 | A1 |
20170102543 | Vallius | Apr 2017 | A1 |
20170115487 | Travis et al. | Apr 2017 | A1 |
20170123208 | Vallius | May 2017 | A1 |
20170131460 | Lin et al. | May 2017 | A1 |
20170131545 | Wall et al. | May 2017 | A1 |
20170131546 | Woltman et al. | May 2017 | A1 |
20170131551 | Robbins et al. | May 2017 | A1 |
20170160546 | Bull et al. | Jun 2017 | A1 |
20170180404 | Bersch et al. | Jun 2017 | A1 |
20170180408 | Yu et al. | Jun 2017 | A1 |
20170199333 | Waldern et al. | Jul 2017 | A1 |
20170212295 | Vasylyev | Jul 2017 | A1 |
20170219841 | Popovich et al. | Aug 2017 | A1 |
20170255257 | Tiana et al. | Sep 2017 | A1 |
20170276940 | Popovich et al. | Sep 2017 | A1 |
20170299860 | Wall et al. | Oct 2017 | A1 |
20170356801 | Popovich et al. | Dec 2017 | A1 |
20170357841 | Popovich et al. | Dec 2017 | A1 |
20180011324 | Popovich et al. | Jan 2018 | A1 |
20180059305 | Popovich et al. | Mar 2018 | A1 |
20180074265 | Waldern et al. | Mar 2018 | A1 |
20180074352 | Popovich et al. | Mar 2018 | A1 |
20180113303 | Popovich et al. | Apr 2018 | A1 |
20180120669 | Popovich et al. | May 2018 | A1 |
20180143449 | Popovich et al. | May 2018 | A1 |
20180188542 | Waldern et al. | Jul 2018 | A1 |
20180210198 | Brown et al. | Jul 2018 | A1 |
20180210396 | Popovich et al. | Jul 2018 | A1 |
20180232048 | Popovich et al. | Aug 2018 | A1 |
20180246354 | Popovich et al. | Aug 2018 | A1 |
20180252869 | Ayres et al. | Sep 2018 | A1 |
20180275402 | Popovich et al. | Sep 2018 | A1 |
20180284440 | Popovich et al. | Oct 2018 | A1 |
20180373115 | Brown et al. | Dec 2018 | A1 |
20190042827 | Popovich et al. | Feb 2019 | A1 |
20190064735 | Waldern et al. | Feb 2019 | A1 |
20190072723 | Waldern et al. | Mar 2019 | A1 |
20190094548 | Nicholson et al. | Mar 2019 | A1 |
20190113751 | Waldern et al. | Apr 2019 | A9 |
20190113829 | Waldern et al. | Apr 2019 | A1 |
20190121027 | Popovich et al. | Apr 2019 | A1 |
20190129085 | Waldern et al. | May 2019 | A1 |
20190187538 | Popovich et al. | Jun 2019 | A1 |
20190212195 | Popovich et al. | Jul 2019 | A9 |
20190212588 | Waldern et al. | Jul 2019 | A1 |
20190212589 | Waldern et al. | Jul 2019 | A1 |
20190212596 | Waldern et al. | Jul 2019 | A1 |
20190212597 | Waldern et al. | Jul 2019 | A1 |
20190212698 | Waldern et al. | Jul 2019 | A1 |
20190212699 | Waldern et al. | Jul 2019 | A1 |
20190219822 | Popovich et al. | Jul 2019 | A1 |
20190265486 | Hansotte et al. | Aug 2019 | A1 |
20190278224 | Schlottau et al. | Sep 2019 | A1 |
20190319426 | Lu et al. | Oct 2019 | A1 |
20190339558 | Waldern et al. | Nov 2019 | A1 |
20200026074 | Waldern et al. | Jan 2020 | A1 |
20200033190 | Popovich et al. | Jan 2020 | A1 |
20200033801 | Waldern et al. | Jan 2020 | A1 |
20200033802 | Popovich et al. | Jan 2020 | A1 |
20200057353 | Popovich et al. | Feb 2020 | A1 |
20200081317 | Popovich et al. | Mar 2020 | A1 |
20200142131 | Waldern et al. | May 2020 | A1 |
20200159026 | Waldern et al. | May 2020 | A1 |
20200201051 | Popovich et al. | Jun 2020 | A1 |
20200225471 | Waldern et al. | Jul 2020 | A1 |
20200348519 | Waldern et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
PI0720469 | Jan 2014 | BR |
2889727 | Jun 2014 | CA |
200944140 | Sep 2007 | CN |
101103297 | Jan 2008 | CN |
101151562 | Mar 2008 | CN |
101263412 | Sep 2008 | CN |
100492099 | May 2009 | CN |
101589326 | Nov 2009 | CN |
101688977 | Mar 2010 | CN |
101793555 | Aug 2010 | CN |
101881936 | Nov 2010 | CN |
101945612 | Jan 2011 | CN |
102314092 | Jan 2012 | CN |
102498425 | Jun 2012 | CN |
102782563 | Nov 2012 | CN |
102928981 | Feb 2013 | CN |
103562802 | Feb 2014 | CN |
103777282 | May 2014 | CN |
103823267 | May 2014 | CN |
104040308 | Sep 2014 | CN |
104040410 | Sep 2014 | CN |
104204901 | Dec 2014 | CN |
104956252 | Sep 2015 | CN |
105074537 | Nov 2015 | CN |
105074539 | Nov 2015 | CN |
105190407 | Dec 2015 | CN |
105229514 | Jan 2016 | CN |
105393159 | Mar 2016 | CN |
105408801 | Mar 2016 | CN |
105408802 | Mar 2016 | CN |
105408803 | Mar 2016 | CN |
105531716 | Apr 2016 | CN |
105705981 | Jun 2016 | CN |
107466372 | Dec 2017 | CN |
108474945 | Aug 2018 | CN |
108780224 | Nov 2018 | CN |
109154717 | Jan 2019 | CN |
103823267 | May 2019 | CN |
110383117 | Oct 2019 | CN |
111684362 | Sep 2020 | CN |
107466372 | Jan 2021 | CN |
19751190 | May 1999 | DE |
102006003785 | Jul 2007 | DE |
102012108424 | Mar 2014 | DE |
102013209436 | Nov 2014 | DE |
0795775 | Sep 1997 | EP |
0822441 | Feb 1998 | EP |
1347641 | Sep 2003 | EP |
1413972 | Apr 2004 | EP |
1526709 | Apr 2005 | EP |
1748305 | Jan 2007 | EP |
1938152 | Jul 2008 | EP |
1413972 | Oct 2008 | EP |
2110701 | Oct 2009 | EP |
2225592 | Sep 2010 | EP |
2244114 | Oct 2010 | EP |
2326983 | Jun 2011 | EP |
2381290 | Oct 2011 | EP |
1828832 | May 2013 | EP |
2733517 | May 2014 | EP |
1573369 | Jul 2014 | EP |
2748670 | Jul 2014 | EP |
2929378 | Oct 2015 | EP |
2748670 | Nov 2015 | EP |
2995986 | Mar 2016 | EP |
2995986 | Apr 2017 | EP |
3256888 | Dec 2017 | EP |
3359999 | Aug 2018 | EP |
2494388 | Nov 2018 | EP |
3433658 | Jan 2019 | EP |
3433659 | Jan 2019 | EP |
3548939 | Oct 2019 | EP |
3710894 | Sep 2020 | EP |
2677463 | Dec 1992 | FR |
2115178 | Sep 1983 | GB |
2140935 | Dec 1984 | GB |
2508661 | Jun 2014 | GB |
2509536 | Jul 2014 | GB |
2512077 | Sep 2014 | GB |
2514658 | Dec 2014 | GB |
1204684 | Nov 2015 | HK |
1205563 | Dec 2015 | HK |
1205793 | Dec 2015 | HK |
1206101 | Dec 2015 | HK |
57089722 | Jun 1982 | JP |
02186319 | Jul 1990 | JP |
03239384 | Oct 1991 | JP |
06294952 | Oct 1994 | JP |
07098439 | Apr 1995 | JP |
0990312 | Apr 1997 | JP |
10096903 | Apr 1998 | JP |
11109320 | Apr 1999 | JP |
11142806 | May 1999 | JP |
2953444 | Sep 1999 | JP |
2000056259 | Feb 2000 | JP |
2000511306 | Aug 2000 | JP |
2000261706 | Sep 2000 | JP |
2000267042 | Sep 2000 | JP |
2001027739 | Jan 2001 | JP |
2001296503 | Oct 2001 | JP |
2002090858 | Mar 2002 | JP |
2002122906 | Apr 2002 | JP |
2002162598 | Jun 2002 | JP |
2002523802 | Jul 2002 | JP |
2002529790 | Sep 2002 | JP |
2002311379 | Oct 2002 | JP |
2003066428 | Mar 2003 | JP |
2003270419 | Sep 2003 | JP |
2004157245 | Jun 2004 | JP |
2006350129 | Dec 2006 | JP |
2007011057 | Jan 2007 | JP |
2007094175 | Apr 2007 | JP |
2007219106 | Aug 2007 | JP |
2008112187 | May 2008 | JP |
2009036955 | Feb 2009 | JP |
2009132221 | Jun 2009 | JP |
2009133999 | Jun 2009 | JP |
2009211091 | Sep 2009 | JP |
4367775 | Nov 2009 | JP |
2012137616 | Jul 2012 | JP |
2012533089 | Dec 2012 | JP |
5303928 | Oct 2013 | JP |
2013235256 | Nov 2013 | JP |
2014132328 | Jul 2014 | JP |
2015053163 | Mar 2015 | JP |
2015523586 | Aug 2015 | JP |
2015172713 | Oct 2015 | JP |
2016030503 | Mar 2016 | JP |
2018508037 | Mar 2018 | JP |
2018533069 | Nov 2018 | JP |
2019512745 | May 2019 | JP |
2019520595 | Jul 2019 | JP |
6598269 | Oct 2019 | JP |
6680793 | Mar 2020 | JP |
2020514783 | May 2020 | JP |
6734933 | Jul 2020 | JP |
2021509736 | Apr 2021 | JP |
20060132474 | Dec 2006 | KR |
20100092059 | Aug 2010 | KR |
20140140063 | Dec 2014 | KR |
20140142337 | Dec 2014 | KR |
1020200106932 | Sep 2020 | KR |
200535633 | Nov 2005 | TW |
200801583 | Jan 2008 | TW |
201314263 | Apr 2013 | TW |
201600943 | Jan 2016 | TW |
201604601 | Feb 2016 | TW |
1997001133 | Jan 1997 | WO |
1997027519 | Jul 1997 | WO |
1998004650 | Feb 1998 | WO |
1999009440 | Feb 1999 | WO |
1999052002 | Oct 1999 | WO |
2000016136 | Mar 2000 | WO |
2000023830 | Apr 2000 | WO |
2000023832 | Apr 2000 | WO |
2000023847 | Apr 2000 | WO |
2000028369 | May 2000 | WO |
2000028369 | Oct 2000 | WO |
2001050200 | Jul 2001 | WO |
2001090822 | Nov 2001 | WO |
2002082168 | Oct 2002 | WO |
2003081320 | Oct 2003 | WO |
2004102226 | Nov 2004 | WO |
2004109349 | Dec 2004 | WO |
2005001753 | Jan 2005 | WO |
2005006065 | Jan 2005 | WO |
2005006065 | Feb 2005 | WO |
2005073798 | Aug 2005 | WO |
2006002870 | Jan 2006 | WO |
2006064301 | Jun 2006 | WO |
2006064325 | Jun 2006 | WO |
2006064334 | Jun 2006 | WO |
2006102073 | Sep 2006 | WO |
2006132614 | Dec 2006 | WO |
2006102073 | Jan 2007 | WO |
2007015141 | Feb 2007 | WO |
2007029032 | Mar 2007 | WO |
2007085682 | Aug 2007 | WO |
2007130130 | Nov 2007 | WO |
2007141587 | Dec 2007 | WO |
2007141589 | Dec 2007 | WO |
2008011066 | Jan 2008 | WO |
2008011066 | May 2008 | WO |
2008081070 | Jul 2008 | WO |
2008100545 | Aug 2008 | WO |
2008011066 | Dec 2008 | WO |
2009013597 | Jan 2009 | WO |
2009013597 | Jan 2009 | WO |
2009077802 | Jun 2009 | WO |
2009077803 | Jun 2009 | WO |
2009101238 | Aug 2009 | WO |
2007130130 | Sep 2009 | WO |
2009155437 | Dec 2009 | WO |
2009155437 | Mar 2010 | WO |
2010023444 | Mar 2010 | WO |
2010057219 | May 2010 | WO |
2010067114 | Jun 2010 | WO |
2010067117 | Jun 2010 | WO |
2010078856 | Jul 2010 | WO |
2010104692 | Sep 2010 | WO |
2010122330 | Oct 2010 | WO |
2010125337 | Nov 2010 | WO |
2010125337 | Nov 2010 | WO |
2011012825 | Feb 2011 | WO |
2011032005 | Mar 2011 | WO |
2011042711 | Apr 2011 | WO |
2011051660 | May 2011 | WO |
2011055109 | May 2011 | WO |
2011042711 | Jun 2011 | WO |
2011073673 | Jun 2011 | WO |
2011107831 | Sep 2011 | WO |
2011110821 | Sep 2011 | WO |
2011131978 | Oct 2011 | WO |
2012052352 | Apr 2012 | WO |
2012062658 | May 2012 | WO |
2012158950 | Nov 2012 | WO |
2012172295 | Dec 2012 | WO |
2013027004 | Feb 2013 | WO |
2013027006 | Feb 2013 | WO |
2013033274 | Mar 2013 | WO |
2013034879 | Mar 2013 | WO |
2013049012 | Apr 2013 | WO |
2013102759 | Jul 2013 | WO |
2013163347 | Oct 2013 | WO |
2013167864 | Nov 2013 | WO |
2013190257 | Dec 2013 | WO |
2014064427 | May 2014 | WO |
2014080155 | May 2014 | WO |
2014085734 | Jun 2014 | WO |
2014090379 | Jun 2014 | WO |
2014091200 | Jun 2014 | WO |
2014093601 | Jun 2014 | WO |
2014100182 | Jun 2014 | WO |
2014113506 | Jul 2014 | WO |
2014116615 | Jul 2014 | WO |
2014130383 | Aug 2014 | WO |
2014144526 | Sep 2014 | WO |
2014159621 | Oct 2014 | WO |
2014164901 | Oct 2014 | WO |
2014176695 | Nov 2014 | WO |
2014179632 | Nov 2014 | WO |
2014188149 | Nov 2014 | WO |
2014209733 | Dec 2014 | WO |
2014209819 | Dec 2014 | WO |
2014209820 | Dec 2014 | WO |
2014209821 | Dec 2014 | WO |
2014210349 | Dec 2014 | WO |
2015006784 | Jan 2015 | WO |
2015015138 | Feb 2015 | WO |
2015017291 | Feb 2015 | WO |
2015069553 | May 2015 | WO |
2015081313 | Jun 2015 | WO |
2015117039 | Aug 2015 | WO |
2015145119 | Oct 2015 | WO |
2016010289 | Jan 2016 | WO |
2016020643 | Feb 2016 | WO |
2016025350 | Feb 2016 | WO |
2016042283 | Mar 2016 | WO |
2016044193 | Mar 2016 | WO |
2016046514 | Mar 2016 | WO |
2016103263 | Jun 2016 | WO |
2016111706 | Jul 2016 | WO |
2016111707 | Jul 2016 | WO |
2016111708 | Jul 2016 | WO |
2016111709 | Jul 2016 | WO |
2016113534 | Jul 2016 | WO |
2016116733 | Jul 2016 | WO |
2016118107 | Jul 2016 | WO |
2016122679 | Aug 2016 | WO |
2016130509 | Aug 2016 | WO |
2016135434 | Sep 2016 | WO |
2016156776 | Oct 2016 | WO |
2016181108 | Nov 2016 | WO |
2016046514 | Apr 2017 | WO |
2017060665 | Apr 2017 | WO |
2017094129 | Jun 2017 | WO |
2017120320 | Jul 2017 | WO |
2017162999 | Sep 2017 | WO |
2017162999 | Sep 2017 | WO |
2017178781 | Oct 2017 | WO |
2017180403 | Oct 2017 | WO |
2017182771 | Oct 2017 | WO |
2017203200 | Nov 2017 | WO |
2017203201 | Nov 2017 | WO |
2017207987 | Dec 2017 | WO |
2018102834 | Jun 2018 | WO |
2018102834 | Jun 2018 | WO |
2018096359 | Jul 2018 | WO |
2018129398 | Jul 2018 | WO |
2018150163 | Aug 2018 | WO |
2019046649 | Mar 2019 | WO |
2019077307 | Apr 2019 | WO |
2019079350 | Apr 2019 | WO |
2019079350 | Apr 2019 | WO |
2019046649 | May 2019 | WO |
2019122806 | Jun 2019 | WO |
2019135784 | Jul 2019 | WO |
2019135796 | Jul 2019 | WO |
2019135837 | Jul 2019 | WO |
2019136470 | Jul 2019 | WO |
2019136471 | Jul 2019 | WO |
2019136473 | Jul 2019 | WO |
2019171038 | Sep 2019 | WO |
2019217453 | Nov 2019 | WO |
2020023779 | Jan 2020 | WO |
2020149956 | Jul 2020 | WO |
2020212682 | Oct 2020 | WO |
2020227236 | Nov 2020 | WO |
2021032982 | Feb 2021 | WO |
2021032983 | Feb 2021 | WO |
2021044121 | Mar 2021 | WO |
Entry |
---|
Extended European Search Report for EP Application No. 13192383.1, dated Apr. 2, 2014, 7 pgs. |
Extended European Search Report for European Application No. 13765610.4 dated Feb. 16, 2016, 6 pgs. |
Extended European Search Report for European Application No. 15187491.4, search completed Jan. 15, 2016, dated Jan. 28, 2016, 5 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2010/000835, issued Nov. 1, 2011, dated Nov. 10, 2011, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001920, issued Apr. 11, 2012, dated Apr. 19, 2012, 10 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001982, report issued May 1, 2012, dated May 10, 2012, 7 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2013/000273, issued Dec. 23, 2014, dated Dec. 31, 2014, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2015/000203, issued Mar. 21, 2017, dated Mar. 30, 2017, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000036, issued Aug. 29, 2017, dated Sep. 8, 2017, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000051, Report issued Sep. 19, 2017, dated Sep. 28, 2017, 7 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000065, issued Octobers, 2017, dated Oct. 12, 2017, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2018/012227, Report issued Jul. 30, 2019, dated Aug. 8, 2019, 7 pgs. |
International Preliminary Report on Patentability for International Application PCT /US2018/015553, Report issued Jun. 4, 2019, dated Jun. 13, 2019, 6 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2009/051676, issued Jun. 14, 2011, dated Jun. 23, 2011, 6 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2011/000349, issued Sep. 18, 2012, dated Sep. 27, 2012, 10 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2012/000331, issued Oct. 8, 2013, dated Oct. 17, 2013, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2012/000677, issued Feb. 25, 2014, dated Mar. 6, 2014, 5 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2013/000005, issued Jul. 8, 2014, dated Jul. 17, 2014, 12 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2014/000295, issued Feb. 2, 2016, dated Feb. 11, 2016, 4 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2015/000225, issued Feb. 14, 2017, dated Feb. 23, 2017, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2015/000228, issued Feb. 14, 2017, dated Feb. 23, 2017, 11 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2015/000274, Issued Mar. 28, 2017, dated Apr. 6, 2017, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2016/000014, issued Jul. 25, 2017, dated Aug. 3, 2017, 7 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2017/000055, issued Oct. 16, 2018, dated Oct. 25, 2018, 9 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/011736, issued Jul. 21, 2015, dated Jul. 30, 2015, 9 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2016/017091, issued Aug. 15, 2017, dated Aug. 24, 2017, 5 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2018/012691, issued Jul. 9, 2019, dated Jul. 18, 2019, 10 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2017/000040, Report issued Sep. 25, 2018, dated Oct. 4, 2018, 7 pgs. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/038070, dated Oct. 28, 2014, 6 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2019/031163, Search completed Jul. 9, 2019, dated Jul. 29, 2019, 11 pgs. |
International Search Report and Written Opinion for International Application No. PCT/GB2010/000835, completed Oct. 26, 2010, dated Nov. 8, 2010, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/GB2010/001920, completed Mar. 29, 2011, dated Apr. 6, 2011, 15 pgs. |
International Search Report and Written Opinion for International Application No. PCT/GB2015/000228, Search completed May 4, 2011, dated Jul. 15, 2011, 15 pgs. |
International Search Report and Written Opinion for International Application No. PCT/GB2016/000036, completed Jul. 4, 2016, dated Jul. 13, 2016, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/GB2016/000065, completed Jul. 14, 2016, dated Jul. 27, 2016, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/GB2017/000055, Search completed Jul. 19, 2017, dated Jul. 26, 2017, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/038070, completed Aug. 12, 2013, dated Aug. 14, 2013, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2014/011736, completed Apr. 18, 2014, dated May 8, 2014, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/012227, Search completed Feb. 28, 2018, dated Mar. 14, 2018, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/012691, completed Mar. 10, 2018, dated Mar. 28, 2018, 16 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/015553, completed Aug. 6, 2018, dated Sep. 19, 2018, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/037410, Search completed Aug. 16, 2018, dated Aug. 30, 2018, 11 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/048636, Search completed Nov. 1, 2018, dated Nov. 15, 2018, 16 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/056150, Search completed Dec. 4, 2018, dated Dec. 26, 2018, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/062835, Search completed Jan. 14, 2019, dated Jan. 31, 2019, 14 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2019/012758, completed Mar. 12, 2019, dated Mar. 27, 2019, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2019/012764, completed Mar. 1, 2019, dated Mar. 18, 2019, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2019/064765, Search completed Feb. 3, 2020, dated Mar. 18, 2020, 11 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/048960, Search completed Dec. 14, 2018, dated Jan. 8, 2019, 14 pgs. |
International Search Report and Written Opinion for International Application PCT/GB2009/051676, completed May 10, 2010, dated May 18, 2010, 7 pgs. |
International Search Report and Written Opinion for International Application PCT/GB2016/000181, completed Dec. 21, 2016, dated Feb. 27, 2017, 21 pgs. |
International Search Report and Written Opinion for International Application PCT/US2016/017091, completed by the European Patent Office on Apr. 20, 2016, 7 pgs. |
International Search Report and Written Opinion for International Application PCT/US2019/012759, completed Mar. 14, 2019, dated Apr. 15, 2019, 12 pgs. |
International Search Report for International Application No. PCT/GB2014/000295, completed Nov. 18, 2014, dated Jan. 5, 2015, 4 pgs. |
International Search Report for International Application PCT/GB2017/000040, mailed Jul. 18, 2017, completed Jul. 10, 2017, 3 pgs. |
International Search Report for PCT/GB2010/001982, completed by the European Patent Office on Feb. 24, 2011,4 pgs. |
International Search Report for PCT/GB2011/000349, completed by the European Patent Office on Aug. 17, 2011,4 pgs. |
International Search Report for PCT/GB2012/000331, completed by the European Patent Office on Aug. 29, 2012, 4 pgs. |
International Search Report for PCT/GB2012/000677, completed by the European Patent Office on Dec. 10, 2012, 4 pgs. |
International Search Report for PCT/GB2013/000005, completed by the European Patent Office on Jul. 16, 2013, 3 pgs. |
International Search Report for PCT/GB2013/000273, completed by the European Patent Office on Aug. 30, 2013, 4 pgs. |
International Search Report for PCT/GB2015/000203, completed by the European Patent Office on Oct. 9, 2015, 4 pgs. |
International Search Report for PCT/GB2015/000225, completed by the European Patent Office on Nov. 10, 2015, dated Dec. 2, 2016, 5 pgs. |
International Search Report for PCT/GB2015/000274, completed by the European Patent Office on Jan. 7, 2016, 4 pgs. |
International Search Report for PCT/GB2016/000014, completed by the European Patent Office on Jun. 27, 2016, 4 pgs. |
International Search Report for PCT/GB2016/000051, Completed Aug. 11, 2016, 3 Pgs. |
Written Opinion for International Application No. PCT/GB2010/001982, search completed Feb. 24, 2011, dated Mar. 8, 2011, 6 pgs. |
Written Opinion for International Application No. PCT/GB2011/000349, completed Aug. 17, 2011, dated Aug. 25, 2011, 9 pgs. |
Written Opinion for International Application No. PCT/GB2012/000331, completed Aug. 29, 2012, dated Sep. 6, 2012, 7 pgs. |
Written Opinion for International Application No. PCT/GB2012/000677, completed Dec. 10, 2012, dated Dec. 17, 2012, 4 pgs. |
Written Opinion for International Application No. PCT/GB2013/000005, search completed Jul. 16, 2013, dated Jul. 24, 2013, 11 pgs. |
Written Opinion for International Application No. PCT/GB2013/000273, completed Aug. 30, 2013, dated Sep. 9, 2013, 7 pgs. |
Written Opinion for International Application No. PCT/GB2014/000295, search completed Nov. 18, 2014, dated Jan. 5, 2015, 3 pgs. |
Written Opinion for International Application No. PCT/GB2015/000203, completed Oct. 29, 2015, dated Nov. 16, 2015, 7 pgs. |
Written Opinion for International Application No. PCT/GB2015/000225, search completed Nov. 10, 2015, dated Feb. 4, 2016, 7 pgs. |
Written Opinion for International Application No. PCT/GB2015/000274, search completed Jan. 7, 2016, dated Jan. 19, 2016, 7 pgs. |
Written Opinion for International Application No. PCT/GB2016/000014, search completed Jun. 27, 2016, dated Jul. 7, 2016, 6 pgs. |
Written Opinion for International Application No. PCT/GB2016/000051, Search completed Aug. 11, 2016 , dated Aug. 22, 2016, 6 pgs. |
Written Opinion for International Application No. PCT/GB2017/000040, search completed Jul. 10, 2017, dated Jul. 18, 2017, 6 pgs. |
Written Opinion for International Application PCT/GB2016/000003, completed May 31, 2016, dated Aug. 12, 2016, 10 pgs. |
“Agilent ADNS-2051 Optical Mouse Sensor: Data Sheet”, Agilent Technologies, Jan. 9, 2002, 40 pgs. |
“Application Note—MOXTEK ProFlux Polarizer use with LCOS displays”, CRL Opto Limited, http://www.crlopto.com, 2003, 6 pgs. |
“Application Note AN 16: Optical Considerations for Bridgelux LED Arrays”, BridgeLux, Jul. 31, 2010, 23 pgs. |
“Application Note: Variable Attenuator for Lasers”, Technology and Applications Center, Newport Corporation, www.newport.com, 2006, DS-08067, 6 pgs. |
“Bae Systems to Unveil Q-Sight Family of Helmet-Mounted Display at AUSA Symposium”, Released on Tuesday, Oct. 9, 2007, 1 pg. |
“Beam Steering Using Liquid Crystals”, Boulder Nonlinear Systems, Inc., info@bnonlinear.com, May 8, 2001,4 pgs. |
“BragGrate—Deflector: Transmitting Volume Bragg Grating for angular selection and magnification”, 2015, www.OptiGrate.com. |
“Cree XLamp XP-E LEDs”, Cree, Inc., Retrieved from www.cree.com/Xlamp, CLD-DS18 Rev 17, 2013, 17 pgs. |
“Desmodur N 3900”, Bayer Materialscience AG, Mar. 18, 2013, www.bayercoatings.com, 4 pgs. |
“Digilens—Innovative Augmented Reality Display and Sensor Solutions for OEMs”, Jun. 6, 2017, 31 pgs. |
“Exotic Optical Components”, Building Electro-Optical Systems, Making It All Work, Chapter 7, John Wiley & Sons, Inc., pp. 233-261. |
“FHS Lenses Series”, Fraen Corporation, www.fraen.com, Jun. 16, 2003, 10 pgs. |
“FLP Lens Series for LUXEONTM Rebel and Rebel ES LEDs”, Fraen Corporation, www.fraensrl.com, Aug. 7, 2015, 8 pgs. |
“Head-up Displays, See-through display for military aviation”, BAE Systems, 2016, 3 pgs. |
“Holder for LUXEON Rebel - Part No. 180”, Polymer Optics Ltd., 2008, 12 pgs. |
“LED 7-Segment Displays”, Lumex, uk.digikey.com, 2003, UK031, 36 pgs. |
“LED325W Uvtop Uv Led with Window”, Thorlabs, Specifications and Documentation, 21978-S01 Rev. A, Apr. 8, 2011, 5 pgs. |
“Liquid Crystal Phases”, Phases of Liquid Crystals, http://plc.cwru.edu/tutorial/enhanced/files/lc/phase, Retrieved on Sep. 21, 2004, 6 pgs. |
“LiteHUD Head-up display”, BAE Systems, 2016, 2 pgs. |
“LiteHUD Head-up display infographic”, BAE Systems, 2017, 2 pgs. |
“Luxeon C: Power Light Source”, Philips Lumileds, www.philipslumileds.com, 2012, 18 pgs. |
“Luxeon Rebel ES: Leading efficacy and light output, maximum design flexibility”, LUXEON Rebel ES Datasheet DS61 20130221, www.philipslumileds.com, 2013, 33 pgs. |
“Mobile Display Report”, Insight Media, LLC, Apr. 2012, vol. 7, No. 4, 72 pgs. |
“Molecular Imprints Imprio 55”, Engineering at Illinois, Micro + Nanotechnology Lab, Retrieved from https://mntl.illinois.edu/facilities/cleanrooms/equipment/Nano-lmprint.asp, Dec. 28, 2015, 2 pgs. |
“Navy awards SGB Labs a contract for HMDs for simulation and training”, Press releases, DigiLens, Oct. 2012, pp. 1-2. |
“Optical measurements of retinal flow”, Industrial Research Limited, Feb. 2012, 18 pgs. |
“Osterhout Design Group Develops Next-Generation, Fully-integrated Smart Glasses Using Qualcomm Technologies”, ODG, www.osterhoutgroup.com, Sep. 18, 2014, 2 pgs. |
“Plastic has replaced glass in photochromic lens”, www.plastemart.com, 2003, 1 page. |
“Range Finding Using Pulse Lasers”, OSRAM, Opto Semiconductors, Sep. 10, 2004, 7 pgs. |
“Response time in Liquid-Crystal Variable Retarders”, Meadowlark Optics, Inc., 2005, 4 pgs. |
“Secondary Optics Design Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-5, Sep. 2002, 23 pgs. |
“Solid-State Optical Mouse Sensor with Quadrature Outputs”, IC Datasheet, UniquelCs, Jul. 15, 2004, 11 pgs. |
“SVGA TransparentVLSITM Microdisplay Evaluation Kit”, Radiant Images, Inc., Product Data Sheet, 2003, 3 pgs. |
“Technical Data Sheet LPR1”, Luminus Devices, Inc., Luminus Projection Chipset, Release 1, Preliminary, Revision B, Sep. 21, 2004, 9 pgs. |
“The Next Generation of Tv”, SID Information Display, Nov/Dec. 2014, vol. 30, No. 6, 56 pgs. |
“Thermal Management Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-4, Sep. 2002, 14 pgs. |
“USAF Awards SBG Labs an SBIR Contract for Wide Field of View HUD”, Press Release ,SBG Labs DigiLens, Apr. 2014, 2 pgs. |
“UVTOP240”, Roithner LaserTechnik GmbH, v 2.0, Jun. 24, 2013, 6 pgs. |
“UVTOP310”, Roithner LaserTechnik GmbH, v 2.0, Jun. 24, 2013, 6 pgs. |
“Velodyne's HDL-64E: A High Definition Lidar Sensor for 3-D Applications”, High Definition Lidar, white paper, Oct. 2007, 7 pgs. |
“VerLASE Gets Patent for Breakthrough Color Conversion Technology That Enables Full Color MicroLED Arrays for Near Eye Displays”, Cision PRweb, Apr. 28, 2015, Retrieved from the Internet http://www.prweb.com/releases/2015/04/prweb12681038.htm, 3 pgs. |
“Webster's Third New International Dictionary 433”, (1986), 3 pages. |
“X-Cubes—Revisited for Lcos”, BASID, RAF Electronics Corp. Rawson Optics, Inc., Oct. 24, 2002, 16 pgs. |
Aachen, “Design of plastic optics for LED applications”, Optics Colloquium 2009, Mar. 19, 2009, 30 pgs. |
Abbate et al., “Characterization of LC-polymer composites for optoelectronic application”, Proceedings ofOPTOEL'03, Leganes-Madrid, Spain, Jul. 14-16, 2003, 4 pgs. |
Al-Kalbani et al., “Ocular Microtremor laser speckle metrology”, Proc, of SPIE, 2009, vol. 7176 717606-1, 12 pgs. |
Almanza-Workman et al., “Planarization coating for polyimide substrates used in roll-to-roll fabrication of active matrix backplanes for flexible displays”, HP Laboratories, HPL-2012-23, Feb. 6, 2012, 12 pgs. |
Amitai et al., “Visor-display design based on planar holographic optics”, Applied Optics, vol. 34, No. 8, Mar. 10, 1995, pp. 1352-1356. |
Amundson et al., “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films”, Physical Review E, Feb. 1997, vol. 55. No. 2, pp. 1646-1654. |
An et al., “Speckle suppression in laser display using several partially coherent beams”, Optics Express, Jan. 5, 2009, vol. 17, No. 1, pp. 92-103. |
Apter et al., “Electrooptical Wide-Angle Beam Deflector Based on Fringing-Field-lnduced Refractive Inhomogeneity in a Liquid Crystal Layer”, 23rd IEEE Convention of Electrical and Electronics Engineers in Israel, Sep. 6-7, 2004, pp. 240-243. |
Arnold et al., “52.3: An Improved Polarizing Beamsplitter LCOS Projection Display Based on Wire-Grid Polarizers”, Society for Information Display, Jun. 2001, pp. 1282-1285. |
Ayras et al., “Exit pupil expander with a large field of view based on diffractive optics”, Journal of the SID, May 18, 2009, 17/8, pp. 659-664. |
Baets et al., “Resonant-Cavity Light-Emitting Diodes: a review”, Proceedings of SPIE, 2003, vol. 4996, pp. 74-86. |
Bayer et al., “Introduction to Helmet-Mounted Displays”, 2016, pp. 47-108. |
Beckel et al., “Electro-optic properties of thiol-ene polymer stabilized ferroelectric liquid crystals”, Liquid Crystals, vol. 30, No. 11, Nov. 2003, pp. 1343-1350, DOI: 10.1080/02678290310001605910. |
Bergkvist, “Biospeckle-based Study of the Line Profile of Light Scattered in Strawberries”, Master Thesis, Lund Reports on Atomic Physics, LRAP-220, Lund 1997, pp. 1-62. |
Bernards et al., “Nanoscale porosity in polymer films: fabrication and therapeutic applications”, Soft Matter, Jan. 1, 2010, vol. 6, No. 8, pp. 1621-1631, doi:10.1039/B922303G. |
Bleha et al., “Binocular Holographic Waveguide Visor Display”, SID Symposium Digest of Technical Papers, Holoeye Systems Inc., Jun. 2014, San Diego, CA, 4 pgs. |
Bleha et al., “D-ILA Technology For High Resolution Projection Displays”, Sep. 10, 2003, Proceedings, vol. 5080, doi: 10.1117/12.497532, 11 pgs. |
Bone, “Design Obstacles for LCOS Displays in Projection Applications ”Optics architectures for LCOS are still evolving“”, Aurora Systems Inc., Bay Area SID Seminar, Mar. 27, 2001, 22 pgs. |
Born et al., “Optics of Crystals”, Principles of Optics 5th Edition 1975, pp. 705-707. |
Bourzac, “Magic Leap Needs to Engineer a Miracle”, Intelligent Machines, Jun. 11, 2015, 7 pgs. |
Bowen et al., “Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites”, J Electroceram, Jul. 2006, vol. 16, pp. 263-269, DOI 10.1007/s10832-006-9862-8. |
Bowley et al., “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals”, Applied Physics Letters, Jul. 2, 2001, vol. 79, No. 1, pp. 9-11. |
Bronnikov et al., “Polymer-Dispersed Liquid Crystals: Progress in Preparation, Investigation and Application”, Journal of Macromolecular Science Part B, published online Sep. 30, 2013, vol. 52, pp. 1718-1738. |
Brown, “Waveguide Displays”, Rockwell Collins, 2015, 11 pgs. |
Bruzzone et al., “Compact, high-brightness LED illumination for projection systems”, Journal of the SID 17/12, Dec. 2009, pp. 1043-1049. |
Buckley, “Colour holographic laser projection technology for heads-up and instrument cluster displays”, Conference: Proc. SID Conference 14th Annual Symposium on Vehicle Displays, Jan. 2007, 5 pgs. |
Buckley, “Pixtronix DMS technology for head-up displays”, Pixtronix, Inc., Jan. 2011, 4 pgs. |
Buckley et al., “Full colour holographic laser projector HUD”, Light Blue Optics Ltd., Aug. 10, 2015, 5 pgs. |
Buckley et al., “Rear-view virtual image displays”, in Proc. SID Conference 16th Annual Symposium on Vehicle Displays, Jan. 2009, 5 pgs. |
Bunning et al., “Effect of gel-point versus conversion on the real-time dynamics of holographic polymer-dispersed liquid crystal (HPDLC) formation”, Proceedings of SPIE -- vol. 5213, Liquid Crystals VII, lam-Choon Khoo, Editor, Dec. 2003, pp. 123-129. |
Bunning et al., “Electro-optical photonic crystals formed in H-PDLCs by thiol-ene photopolymerization”, American Physical Society, Annual APS, Mar. 3-7, 2003, abstract #R 1.135. |
Bunning et al., “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs)1”, Annu. Rev. Mater. Sci., 2000, vol. 30, pp. 83-115.. |
Bunning et al., “Morphology of Anisotropic Polymer Dispersed Liquid Crystals and the Effect of Monomer Functionality”, Polymer Science: Part B Polymer Physics, Jul. 30, 1997, vol. 35, pp. 2825-2833. |
Busbee et al., “Si02 Nanoparticle Sequestration via Reactive Functionalization in Holographic Polymer-Dispersed Liquid Crystals”, Advanced Materials, Sep. 2009, vol. 21, pp. 3659-3662. |
Butler et al., “Diffractive Properties of Highly Birefringent vol. Gratings: Investigation”, Journal of Optical Society of America, Feb. 2002, vol. 19, No. 2, pp. 183-189. |
Cai et al., “Recent advances in antireflective surfaces based on nanostructure arrays”, Mater. Horiz., 2015, vol. 2, pp. 37-53. |
Cameron, “Optical Waveguide Technology & Its Application In Head Mounted Displays”, Proc, of SPIE, May 22, 2012, vol. 8383, p. 83830E-1 -83830E-11. |
Cameron, “The Application of Holographic Optical Waveguide Technology to Q-Sight™ Family of Helmet Mounted Displays”, Proc, of SPIE, 2009, vol. 7326, 11 pages, doi:10.1117/12.818581. |
Caputo et al., “POLICRYPS Composite Materials: Features and Applications”, Advances in Composite Materials - Analysis of Natural and Man-Made Materials, www.intechopen.com, Sep. 2011, pp. 93-118. |
Caputo et al., “POLICRYPS Switchable Holographic Grating: A Promising Grating Electro-Optical Pixel for High Resolution Display Application”, Journal of Display Technology, Mar. 2006, vol. 2, No. 1, pp. 38-51. |
Carclo Optics, “Guide to choosing secondary optics”, Carclo Optics, Dec. 15, 2014, www.carclo-optics.com, 48 pgs. |
Chen et al., “Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly(N-vinyl carbazole) films”, Optics Express, Apr. 11, 2011, vol. 19, No. 8, pp. 7553-7558. |
Cheng et al., “Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics”, Optics Express, Aug. 2014, 16 pgs. |
Chi et al., “Ultralow-refractive-index optical thin films through nanoscale etching of ordered mesoporous silica films”, Optic Letters, May 1, 2012, vol. 37, No. 9, pp. 1406-1408. |
Chigrinov et al., “Photo-aligning by azo-dyes: Physics and applications”, Liquid Crystals Today, Sep. 6, 2006, http://www.tandfonline.com/action/journallnformation?journalCode=tlcy20, 15 pgs. |
Cho et al., “Electro-optic Properties of C02 Fixed Polymer/Nematic LC Composite Films”, Journal of Applied Polymer Science, Novembers, 2000, vol. 81, Issue 11, pp. 2744-2753. |
Cho et al., “Optimization of Holographic Polymer Dispersed Liquid Crystals for Ternary Monomers”, Polymer International, Nov. 1999, vol. 48, pp. 1085-1090. |
Colegrove et al., “P-59: Technology of Stacking HPDLC for Higher Reflectance”, SID 00 DIGEST, May 2000, pp. 770-773. |
Crawford, “Electrically Switchable Bragg Gratings”, Optics & Photonics News, Apr. 2003, pp. 54-59. |
Cruz-Arreola et al., “Diffraction of beams by infinite or finite amplitudephase gratings”, Investigacio' N Revista Mexicana De Fl'SICA, Feb. 2011, vol. 57, No. 1, pp. 6-16. |
Dabrowski, “High Birefringence Liquid Crystals”, Crystals, Septembers, 2013, vol. 3, No. 3, pp. 443-482. |
Dainty, “Some statistical properties of random speckle patterns in coherent and partially coherent illumination”, Optica Acta, Mar. 12, 1970, vol. 17, No. 10, pp. 761-772. |
Date, “Alignment Control in Holographic Polymer Dispersed Liquid Crystal”, Journal of Photopolymer Science and Technology, Nov. 2, 2000, vol. 13, pp. 289-284. |
Date et al., “52.3: Direct-viewing Display Using Alignment-controlled PDLC and Holographic PDLC”, Society for Information Display Digest, May 2000, pp. 1184-1187, DOI: 10.1889/1.1832877. |
Date et al., “Full-color reflective display device using holographically fabricated polymer-dispersed liquid crystal (HPDLC)”, Journal of the SID, 1999, vol. 7, No. 1, pp. 17-22. |
De Bitetto, “White light viewing of surface holograms by simple dispersion compensation”, Applied Physics Letters, Dec. 15, 1966, vol. 9, No. 12, pp. 417-418. |
Developer World, “Create customized augmented reality solutions”, printed Oct. 19, 2017, LMX-001 holographic waveguide display, Sony Developer World, 3 pgs. |
Dhar et al., “Recording media that exhibit high dynamic range for digital holographic data storage”, Optics Letters, Apr. 1, 1999, vol. 24, No. 7, pp. 487-489. |
Domash et al., “Applications of switchable Polaroid holograms”, SPIE Proceedings, vol. 2152, Diffractive and Holographic Optics Technology, Jan. 23-29, 1994, Los Angeles, CA, pp. 127-138, ISBN: 0-8194-1447-6. |
Drake et al., “Waveguide Hologram Fingerprint Entry Device”, Optical Engineering, Sep. 1996, vol. 35, No. 9, pp. 2499-2505. |
Drevensek-Olenik et al., “In-Plane Switching of Holographic Polymer-Dispersed Liquid Crystal Transmission Gratings”, Mol. Cryst. Liq. Cryst., 2008, vol. 495, p. 177/[529]-185/[537],. |
Drevensek-Olenik et al., “Optical diffraction gratings from polymer-dispersed liquid crystals switched by interdigitated electrodes”, Journal of Applied Physics, Dec. 1, 2004, vol. 96, No. 11, pp. 6207-6212. |
Ducharme, “Microlens diffusers for efficient laser speckle generation”, Optics Express, Oct. 29, 2007, vol. 15, No. 22, p. 14573-14579. |
Duong et al., “Centrifugal Deposition of Iron Oxide Magnetic Nanorods for Hyperthermia Application”, Journal of Thermal Engineering, Yildiz Technical University Press, Istanbul, Turkey, Apr. 2015, vol. 1, No. 2, pp. 99-103. |
Fattal et al., “A multi directional backlight for a wide-angle glasses-free three-dimensional display”, Nature, Mar. 21, 2012, vol. 495, pp. 348-351. |
Fontecchio et al., “Spatially Pixelated Reflective Arrays from Holographic Polymer Dispersed Liquid Crystals”, SID 00 Digest, May 2000, pp. 774-776. |
Forman et al., “Materials development for PhotolNhibited SuperResolution KPINSR) lithography”, Proc, of SPIE, 2012, vol. 8249, 824904, doi 10.1117/12.908512, p. 824904-1 -824904-9. |
Forman et al., “Radical diffusion limits to photoinhibited superresolution Tithography”, Phys.Chern. Chern. Phys., May 31, 2013, vol. 15, p. 14862-14867. |
Friedrich-Schiller, “Spatial Noise and Speckle”, Version 1.12.2011, Dec. 2011, Abbe School of Photonics, Jena, Germany, 27 pgs. |
Fujii et al., “Nanoparticle-polymer-composite vol. gratings incorporating chain-transfer agents for holography and slow-neutron optics”, Optics Letters, Apr. 25, 2014, vol. 39, Issue 12, 5 pgs. |
Funayama et al., “Proposal of a new type thin film light-waveguide display device using”, The International Conference on Electrical Engineering, 2008, No. P-044, 5 pgs. |
Gabor, “Laser Speckle and its Elimination”, BM Research and Development, Eliminating Speckle Noise, Sep. 1970, vol. 14, No. 5, pp. 509-514. |
Gardiner et al., “Bistable liquid-crystals reduce power consumption for high-efficiency smart glazing”, SPIE, 2009, 10.1117/2.1200904.1596, 2 pgs. |
Giancola, “Holographic Diffuser, Makes Light Work of Screen Tests”, Photonics Spectra, 1996, vol. 30, No. 8, pp. 121-122. |
Goodman, “Some fundamental properties of speckle”, J. Opt. Soc. Am., Nov. 1976, vol. 66, No. 11, pp. 1145-1150. |
Goodman, “Statistical Properties of Laser Speckle Patterns”, Applied Physics, 1975, vol. 9, Chapter 2, Laser Speckle and Related Phenomena, pp. 9-75. |
Goodman et al., “Speckle Reduction by a Moving Diffuser in Laser Projection Displays”, The Optical Society of America, 2000, 15 pgs. |
Guldin et al., “Self-Cleaning Antireflective Optical Coatings”, Nano Letters, Oct. 14, 2013, vol. 13, pp. 5329-5335. |
Guo et al., “Review Article: A Review of the Optimisation of Photopolymer Materials for Holographic Data Storage”, Physics Research International, vol. 2012, Article ID 803439, Academic Editor: Sergi Gallego, 16 pages, http://dx.doi.org/10.1155/2012/803439, May 4, 2012. |
Han et al., “Study of Holographic Waveguide Display System”, Advanced Photonics for Communications, 2014, 4 pgs. |
Harbers et al., “1-15.3: LED Backlighting for LCD-HDTV”, Journal of the Society for Information Display, 2002, vol. 10, No. 4, pp. 347-350. |
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds Lighting, 2007, 4 pgs. |
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds, Aug. 7, 2001, 11 pgs. |
Harbers et al., “Performance of High-Power LED illuminators in Projection Displays”, Proc. Int. Disp. Workshops, Japan. Vol. 10, pp. 1585-1588, 2003. |
Harding et al., “Reactive Liquid Crystal Materials for Optically Anisotropic Patterned Retarders”, Merck, licrivue, 2008, ME-GR-RH-08-010, 20 pgs. |
Harding et al., “Reactive Liquid Crystal Materials for Optically Anisotropic Patterned Retarders”, SPIE Lithography Asia - Taiwan, 2008, Proceedings vol. 7140, Lithography Asia 2008; 71402J, doi: 10.1117/12.805378. |
Hariharan, “Optical Holography: Principles, techniques and applications”, Cambridge University Press, 1996, pp. 231-233. |
Harris, “Photonic Devices”, EE 216 Principals and Models of Semiconductor Devices, Autumn 2002, 20 pgs. |
Harrold et al., “3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update”, Sharp Laboratories of Europe, Ltd., Yeceived May 21, 1999, 7 pgs. |
Harthong et al., “Speckle phase averaging in high-resolution color holography”, J. Opt. Soc. Am. A, Feb. 1997, vol. 14, No. 2, pp. 405-409. |
Hasan et al., “Tunable-focus lens for adaptive eyeglasses”, Optics Express, Jan. 23, 2017, vol. 25, No. 2, 1221, 13 pgs. |
Hasman et al., “Diffractive Optics: Design, Realization, and Applications”, Fiber and Integrated Optics, vol. 16, pp. 1-25, 1997. |
Hata et al., “Holographic nanoparticle-polymer composites based on stepgrowth thiol-ene photopolymerization”, Optical Materials Express, Jun. 1, 2011, vol. 1,No. 2, pp. 207-222. |
He et al., “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal”, Liquid Crystals, Mar. 26, 2014, vol. 41, No. 5, pp. 673-684. |
He et al., “Holographic 3D display based on polymer-dispersed liquid-crystal thin films”, Proceedings of China Display/Asia Display 2011, pp. 158-160. |
He et al., “Properties of vol. Holograms Recording in Photopolymer Films with Various Pulse Exposures Repetition Frequencies”, Proceedings of SPIE vol. 5636, Bellingham, WA, 2005, doi: 10.1117/12.580978, pp. 842-848. |
Herman et al., “Production and Uses of Diffractionless Beams”, J. Opt. Soc. Am. A., Jun. 1991, vol. 8, No. 6, pp. 932-942. |
Hisano, “Alignment layer-free molecular ordering induced by masked photopolymerization with nonpolarized light”, Appl. Phys. Express 9, Jun. 6, 2016, p. 072601-1 - 072601-4. |
Hoepfner et al., “LED Front Projection Goes Mainstream”, Luminus Devices, Inc., Projection Summit, 2008, 18 pgs. |
Holmes et al., “Controlling the Anisotropy of Holographic Polymer-Dispersed Liquid-Crystal Gratings”, Physical Review E, Jun. 11, 2002, vol. 65, 066603-1 - 066603-4. |
Hoyle et al., “Advances in the Polymerization of Thiol-Ene Formulations”, Heraeus Noblelight Fusion UV Inc., 2003 Conference, 6 pgs. |
Hua, “Sunglass-like displays become a reality with free-form optical technology”, Illumination & Displays 3D Visualization and Imaging Systems Laboratory (3DVIS) College of Optical Sciences University of Arizona Tucson, AZ. 2014, 3 pgs. |
Huang et al., “Diffraction properties of substrate guided-wave holograms”, Optical Engineering, Oct. 1995, vol. 34, No. 10, pp. 2891-2899. |
Huang et al., “Theory and characteristics of holographic polymer dispersed Tiquid crystal transmission grating with scaffolding morphology”, Applied Optics, Jun. 20, 2012, vol. 51, No. 18, pp. 4013-4020. |
Iannacchione et al., “Deuterium NMR and morphology study of copolymer-dispersed liquid-crystal Bragg gratings”, Europhysics Letters, 1996, vol. 36, No. 6, pp. 425-430. |
Irie, “Photochromic diarylethenes for photonic devices”, Pure and Applied Chemistry, 1996, pp. 1367-1371, vol. 68, No. 7, IUPAC. |
Jeng et al., “Aligning liquid crystal molecules”, SPIE, 2012, 10.1117/2.1201203.004148, 2 pgs. |
Jo et al., “Control of Liquid Crystal Pretilt Angle using Polymerization of Reactive Mesogen”, IMID 2009 Digest, P1-25, 2009, pp. 604-606. |
Juhl, “Interference Lithography for Optical Devices and Coatings”, Dissertation, University of Illinois at Urbana-Champaign, 2010. |
Juhl et al., “Holographically Directed Assembly of Polymer Nanocomposites”, ACS Nano, Oct. 7, 2010, vol. 4, No. 10, pp. 5953-5961. |
Jurbergs et al., “New recording materials for the holographic industry”, Proc, of SPIE, 2009 Vol. 7233, p. 72330K-1 - 72330L-10, doi 10.1117/12.809579. |
Kahn et al., “Private Line Reporton Large Area Display”, Kahn International, Jan. 7, 2003, vol. 8, No. 10, 9 pgs. |
Karasawa et al., “Effects of Material Systems on the Polarization Behavior of Holographic Polymer Dispersed Liquid Crystal Gratings”, Japanese Journal of Applied Physics, Oct. 1997, vol. 36, No. 10, pp. 6388-6392. |
Karp et al., “Planar micro-optic solar concentration using multiple imaging Tenses into a common slab waveguide”, Proc, of SPIE vol. 7407, 2009 Spie, Ccc code: 0277-786X/09, doi: 10.1117/12.826531, p. 74070D-1 - 74070D-11. |
Karp et al., “Planar micro-optic solar concentrator”, Optics Express, Jan. 18, 2010, vol. 18, No. 2, pp. 1122-1133. |
Kato et al., “Alignment-Controlled Holographic Polymer Dispersed Liquid Crystal (HPDLC) for Reflective Display Devices”, SPIE,1998, vol. 3297, pp. 52-57. |
Kessler, “Optics of Near to Eye Displays (NEDs)”, Oasis 2013, Tel Aviv, Feb. 19, 2013, 37 pgs. |
Keuper et al., “26.1: Rgb Led Illuminator for Pocket-Sized Projectors”, SID 04 DIGEST, 2004, ISSN/0004-0966X/04/3502, pp. 943-945. |
Keuper et al., “p. 126: Ultra-Compact LED based Image Projector for Portable Applications”, SID 03 DIGEST, 2003, ISSN/0003-0966X/03/3401-0713, pp. 713-715. |
Kim et al., “Effect of Polymer Structure on the Morphology and Electro optic Properties of UV Curable PNLCs”, Polymer, Feb. 2000, vol. 41, pp. 1325-1335. |
Kim et al., “Enhancement of electro-optical properties in holographic polymer-dispersed liquid crystal films by incorporation of multiwalled carbon nanotubes into a polyurethane acrylate matrix”, Polym. Int., Jun. 16, 2010, vol. 59, pp. 1289-1295. |
Kim et al., “Fabrication of Reflective Holographic PDLC for Blue”, Molecular Crystals and Liquid Crystals Science, 2001, vol. 368, pp. 3845-3853. |
Kim et al., “Optimization of Holographic PDLC for Green”, Mol. Cryst. Liq. Cryst, vol. 368, pp. 3855-3864, 2001. |
Klein, “Optical Efficiency for Different Liquid Crystal Colour Displays”, Digital Media Department, HPL-2000-83, Jun. 29, 2000, 18 pgs. |
Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings”, The Bell System Technical Journal, vol. 48, No. 9, pp. 2909-2945, Nov. 1969. |
Kotakonda et al., “Electro-optical Switching of the Holographic Polymer-dispersed Liquid Crystal Diffraction Gratings”, Journal of Optics A: Pure and Applied Optics, Jan. 1, 2009, vol. 11, No. 2, 11 pgs. |
Kress et al., “Diffractive and Holographic Optics as Optical Combiners in Head Mounted Displays”, UbiComp '13, Sep. 9-12, 2013, Session Wearable Systems for Industrial Augmented Reality Applications, pp. 1479-1482. |
Lauret et al., “Solving the Optics Equation for Effective LED Applications”, Gaggione North America, LLFY System Design Workshop 2010, Oct. 28, 2010, 26 pgs. |
Lee, “Patents Shows Widespread Augmented Reality Innovation”, PatentVue, May 26, 2015, 5 pgs. |
Levola, “Diffractive optics for virtual reality displays”, Journal of the SID, 2006, 14/5, pp. 467-475. |
Levola et al., “Near-to-eye display with diffractive exit pupil expander having chevron design”, Journal of the SID, 2008, 16/8, pp. 857-862. |
Levola et al., “Replicated slanted gratings with a high refractive index material for in and outcoupling of light”, Optics Express, vol. 15, Issue 5, pp. 2067-2074 (2007). |
Li et al., “Design and Optimization of Tapered Light Pipes”, Proceedings vol. 5529, Nonimaging Optics and Efficient Illumination Systems, Sep. 29, 2004, doi: 10.1117/12.559844, 10 pgs. |
Li et al., “Dual Paraboloid Reflector and Polarization Recycling Systems for Projection Display”, Proceedings vol. 5002, Projection Displays IX, Mar. 28, 2003, doi: 10.1117/12.479585, 12 pgs. |
Li et al., “Light Pipe Based Optical Train and its Applications”, Proceedings vol. 5524, Novel Optical Systems Design and Optimization VII, Oct. 24, 2004, doi: 10.1117/12.559833, 10 pgs. |
Li et al., “Novel Projection Engine with Dual Paraboloid Reflector and Polarization Recovery Systems”, Wavien Inc., SPIE EI 5289-38, Jan. 21, 2004, 49 pgs. |
Li et al., “Polymer crystallization/melting induced thermal switching in a series of holographically patterned Bragg reflectors”, Soft Matter, Jul. 11, 2005, vol. 1, pp. 238-242. |
Lin et al., “Ionic Liquids in Photopolymerizable Holographic Materials”, in book: Holograms - Recording Materials and Applications, Nov. 9, 2011, 21 pgs. |
Liu et al., “Holographic Polymer Dispersed Liquid Crystals Materials, Formation and Applications”, Advances in OptoElectronics, Nov. 30, 2008, vol. 2008, Article ID 684349, 52 pgs. |
Lorek, “Experts Say Mass Adoption of augmented and Virtual Reality is Many Years Away”, Siliconhills, Sep. 9, 2017, 4 pgs. |
Lowenthal et al., “Speckle Removal by a Slowly Moving Diffuser Associated with a Motionless Diffuser”, Journal of the Optical Society of America, Jul. 1971, vol. 61, No. 7, pp. 847-851. |
Lu et al., “Polarization switch using thick holographic polymer-dispersed Tiquid crystal grating”, Journal of Applied Physics, Feb. 1, 2004, vol. 95, No. 3, pp. 810-815. |
Lu et al., “The Mechanism of electric-field-induced segregation of additives in a liquid-crystal host”, Phys Rev E Stat Nonlin Soft Matter Phys., Nov. 27, 2012, 14 pgs. |
Ma et al., “Holographic Reversed-Mode Polymer-Stabilized Liquid Crystal Grating”, Chinese Phys. Lett., 2005, vol. 22, No. 1, pp. 103-106. |
Mach et al., “Switchable Bragg diffraction from liquid crystal in colloid-templated structures”, Europhysics Letters, Jun. 1, 2002, vol. 58, No. 5, pp. 679-685. |
Magarinos et al., “Wide Angle Color Holographic infinity optics display”, Air Force Systems Command, Brooks Air Force Base, Texas, AFHRL-TR-80-53, Mar. 1981, 100 pgs. |
Marino et al., “Dynamical Behaviour of Policryps Gratings”, Electronic-Liquid Crystal Communications, Feb. 5, 2004, 10 pgs. |
Massenot et al., “Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies”, Applied Optics, 2005, vol. 44, Issue 25, pp. 5273-5280. |
Matay et al., “Planarization of Microelectronic Structures by Using Polyimides”, Journal of Electrical Engineering, 2002, vol. 53, No. 3-4, pp. 86-90. |
Mathews, “The LED FAQ Pages”, Jan. 31, 2002, 23 pgs. |
Matic, “Blazed phase liquid crystal beam steering”, Proc, of the SPIE, 1994, vol. 2120, pp. 194-205. |
McLeod, “Axicons and Their Uses”, Journal of the Optical Society of America, Feb. 1960, vol. 50, No. 2, pp. 166-169. |
McManamon et al., “A Review of Phased Array Steering for Narrow-Band Electrooptical Systems”, Proceedings of the IEEE, Jun. 2009, vol. 97, No. 6, pp. 1078-1096. |
McManamon et al., “Optical Phased Array Technology”, Proceedings of the IEEE, Feb. 1996, vol. 84, Issue 2, pp. 268-298. |
Miller, “Coupled Wave Theory and Waveguide Applications”, The Bell System Technical Journal, Short Hills, NJ, Feb. 2, 1954, 166 pgs. |
Moffitt, “Head-Mounted Display Image Configurations”, retrieved from the internet on Dec. 19, 2014, dated May 2008, 25 pgs. |
Nair et al., “Enhanced Two-Stage Reactive Polymer Network Forming Systems”, Polymer (Guildf). May 25, 2012, vol. 53, No. 12, pp. 2429-2434, doi:10.1016/j.polymer.2012.04.007. |
Nair et al., “Two-Stage Reactive Polymer Network Forming Systems”, Advanced Functional Materials, 2012, pp. 1-9, DOI: 10.1002/adfm.201102742. |
Naqvi et al., “Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress”, International Journal of Nanomedicine, Dovepress, Nov. 13, 2010, vol. 5, pp. 983-989. |
Natarajan et al., “Electro Optical Switching Characteristics of vol. Holograms in Polymer Dispersed Liquid Crystals”, Journal of Nonlinear Optical Physics and Materials, 1997, vol. 5, No. 1, pp. 666-668. |
Natarajan et al., “Electro-Optical Switching Characteristics of vol. Holograms in Polymer Dispersed Liquid Crystals”, J. of Nonlinear Optical Physics Materials, Jan. 1996, vol. 5, No. 1, pp. 89-98. |
Natarajan et al., “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization”, Polymer, vol. 47, May 8, 2006, pp. 4411-4420. |
Naydenova et al., “Low-scattering vol. Holographic Material”, DIT PhD Project, http://www.dit.ie/ieo/, Oct. 2017, 2 pgs. |
Neipp et al., “Non-local polymerization driven diffusion based model general dependence of the polymerization rate to the exposure intensity”, Optics Express, Aug. 11, 2003, vol. 11, No. 16, pp. 1876-1886. |
Nishikawa et al., “Mechanically and Light Induced Anchoring of Liquid Crystal on Polyimide Film”, Mol. Cryst. Liq. Cryst., Aug. 1999, vol. 329, 8 pgs. |
Nishikawa et al., “Mechanism of Unidirectional Liquid-Crystal Alignment on Polyimides with Linearly Polarized Ultraviolet Light Exposure”, Applied Physics Letters, May 11, 1998, vol. 72, No. 19, 4 pgs. |
Nordin et al., “Diffraction Properties of Stratified vol. Holographic Optical Elements”, Journal of the Optical Society of America A., vol. 9, No. 12, Dec. 1992, pp. 2206-2217. |
Oh et al., “Achromatic diffraction from polarization gratings with high efficiency”, Optic Letters, Oct. 15, 2008, vol. 33, No. 20, pp. 2287-2289. |
Olson et al., “Templating Nanoporous Polymers with Ordered Block Copolymers”, Chemistry of Materials, Web publication Nov. 27, 2007, vol. 20, pp. 869-890. |
Ondax, Inc., “vol. Holographic Gratings (VHG)”, 2005, 7 pgs. |
Orcutt, “Coming Soon: Smart Glasses That Look Like Regular Spectacles”, Intelligent Machines, Jan. 9, 2014, 4 pgs. |
Osredkar, “A study of the limits of spin-on-glass planarization process”, Informacije MIDEM, 2001, vol. 31, 2, ISSN0352-9045, pp. 102-105. |
Osredkar et al., “Planarization methods in IC fabrication technologies”, Informacije MIDEM, 2002, vol. 32, 3, ISSN0352-9045, 5 pgs. |
Ou et al., “A Simple LCOS Optical System (Late News)”, Industrial Technology Research Institute/OES Lab. Q100/0200, SID 2002, Boston, USA, 2 pgs. |
Paolini et al., “High-Power LED Illuminators in Projection Displays”, Lumileds, Aug. 7, 2001, 19 pgs. |
Park et al., “Aligned Single-Wall Carbon Nanotube Polymer Composites Using an Electric Field”, Journal of Polymer Science: Part B: Polymer Physics, Mar. 24, 2006, DOI 10.1002/polb.20823, pp. 1751-1762. |
Park et al., “Fabrication of Reflective Holographic Gratings with Polyurethane Acrylates (PUA)”, Current Applied Physics, Jun. 2002, vol. 2, pp. 249-252. |
Plawsky et al., “Engineered nanoporous and nanostructured films”, MaterialsToday, Jun. 2009, vol. 12, No. 6, pp. 36-45. |
Potenza, “These smart glasses automatically focus on what you're looking at”, The Verge, Voc Media, Inc., Jan. 29, 2017, https://www.theverge.com/2017/1/29/14403924/smart-glasses-automatic-focus-presbyopia-ces-2017, 6 pgs. |
Presnyakov et al., “Electrically tunable polymer stabilized liquid-crystal Tens”, Journal of Applied Physics, Apr. 29, 2005, vol. 97, p. 103101-1 -103101-6. |
Qi et al., “P-111: Reflective Display Based on Total Internal Reflection and Grating-Grating Coupling”, Society for Information Display Digest, May 2003, pp. 648-651, DOI: 10.1889/1.1832359. |
Ramón, “Formation of 3D micro- and nanostructures using liquid crystals as a template”, Technische Universiteit Eindhoven, Apr. 17, 2008, Thesis, DOI:http://dx.doi.org/10.6100/IR634422, 117 pgs. |
Ramsey, “Holographic Patterning of Polymer Dispersed Liquid Crystal Materials for Diffractive Optical Elements”, Thesis, The University of Texas at Arlington, Dec. 2006, 166 pgs. |
Ramsey et al., “Holographically recorded reverse-mode transmission gratings in polymer-dispersed liquid crystal cells”, Applied Physics B: Laser and Optics, Sep. 10, 2008, vol. 93, Nos. 2-3, pp. 481-489. |
Reid, “Thin film silica nanocomposites for anti-reflection coatings”, Oxford Advance Surfaces, www.oxfordsurfaces.com, Oct. 18, 2012, 23 pgs. |
Riechert, “Speckle Reduction in Projection Systems”, Dissertation, University Karlsruhe, 2009, 178 pgs. |
Rossi et al., “Diffractive Optical Elements for Passive Infrared Detectors”, Submitted to OSA Topical Meeting “Diffractive Optics and Micro-Optics”, Quebec, Jun. 18-22, 2000, 3 pgs. |
Sagan et al., “Electrically Switchable Bragg Grating Technology for Projection Displays”, Proc. SPIE. Vol 4294, Jan. 24, 2001, pp. 75-83. |
Saleh et al., “Fourier Optics: 4.1 Propagation of light in free space, 4.2 Optical Fourier Transform, 4.3 Diffraction of Light, 4.4 Image Formation, 4.5 Holography”, Fundamentals of Photonics 1991, Chapter 4, pp. 108-143. |
Saraswat, “Deposition & Planarization”, EE 311 Notes, Aug. 29, 2017, 28 pgs. |
Schechter et al., “Compact beam expander with lineargratings”, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, pp. 1236-1240. |
Schreiber et al., “Laser display with single-mirror MEMS scanner”, Journal of the SID 17/7, 2009, pp. 591-595. |
Seiberle et al., “Photo-aligned anisotropic optical thin films”, Journal of the SID 12/1,2004, 6 pgs. |
Serebriakov et al., “Correction of the phase retardation caused by intrinsic birefringence in deep UV lithography”, Proc. of SPIE, May 21, 2010, vol. 5754, pp. 1780-1791. |
Shi et al., “Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light”, Applied Optics, vol. 49, No. 3, Jan. 20, 2010, pp. 409-421. |
Shriyan et al., “Analysis of effects of oxidized multiwalled carbon nanotubes on electro-optic polymer/liquid crystal thin film gratings”, Optics Express, Nov. 12, 2010, vol. 18, No. 24, p. 24842-24852. |
Simonite, “How Magic Leap's Augmented Reality Works”, Intelligent Machines, Oct. 23, 2014, 7 pgs. |
Smith et al., “RM-PLUS—Overview”, Licrivue, Nov. 5, 2013, 16 pgs. |
Sony Global, “Sony Releases the Transparent Lens Eyewear ‘SmartEyeglass Developer Edition’”, printed Oct. 19, 2017, Sony Global -News Releases, 5 pgs. |
Steranka et al., “High-Power LEDs - Technology Status and Market Applications”, Lumileds, Jul. 2002, 23 pgs. |
Stumpe et al., “Active and Passive LC Based Polarization Elements”, Mol. Cryst. Liq. Cryst., 2014, vol. 594: pp. 140-149. |
Stumpe et al., “New type of polymer-LC electrically switchable diffractive devices—POLIPHEM”, May 19, 2015, p. 97. |
Subbarayappa et al., “Bistable Nematic Liquid Crystal Device”, Jul. 30, 2009, 14 pgs. |
Sun et al., “Effects of multiwalled carbon nanotube on holographic polymer dispersed liquid crystal”, Polymers Advanced Technologies, Feb. 19, 2010, DOI: 10.1002/pat.1708, 8 pgs. |
Sun et al., “Low-birefringence lens design for polarization sensitive optical systems”, Proceedings of SPIE, 2006, vol. 6289, doi: 10.1117/12.679416, p. 6289DH-1 -6289DH-10. |
Sun et al., “Transflective multiplexing of holographic polymer dispersed Tiquid crystal using Si additives”, eXPRESS Polymer Letters, 2011, vol. 5, No. 1, pp. 73-81. |
Sutherland et al., “Bragg Gratings in an Acrylate Polymer Consisting of Periodic Polymer- Dispersed Liquid-Crystal Planes”, Chem. Mater., 1993, vol. 5, pp. 1533-1538. |
Sutherland et al., “Electrically switchable vol. gratings in polymer-dispersed liquid crystals”, Applied Physics Letters, Feb. 28, 1994, vol. 64, No. 9, pp. 1074-1076. |
Sutherland et al., “Enhancing the electro-optical properties of liquid crystal nanodroplets for switchable Bragg gratings”, Proc. of SPIE, 2008, vol. 7050, pp. 705003-1-705003-9, doi: 10.1117/12.792629. |
Sutherland et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Hardened Materials Branch, AFRL-ML-WP-TP-2007-514, Jan. 2007, Wright-Patterson Air Force Base, OH, 18 pgs. |
Sutherland et al., “The physics of photopolymer liquid crystal composite holographic gratings”, presented at SPIE: Diffractive and Holographic Optics Technology San Jose, CA,1996, Spie, vol. 2689, pp. 158-169. |
Sweatt, “Achromatic triplet using holographic optical elements”, Applied Optics, May 1977, vol. 16, No. 5, pp. 1390-1391. |
Talukdar, “Technology Forecast: Augmented reality”, Changing the economics of Smartglasses, Issue 2, 2016, 5 pgs. |
Tao et al., “Ti02 nanocomposites with high refractive index and transparency”, J. Mater. Chern., Oct. 4, 2011, vol. 21, p. 18623-18629. |
Titus et al., “Efficient, Accurate Liquid Crystal Digital Light Deflector”, Proc. SPIE 3633, Diffractive and Holographic Technologies, Systems, and Spatial Light Modulators VI, 1 Jun. 1, 1999, doi: 10.1117/12.349334, 10 pgs. |
Tiziani, “Physical Properties of Speckles”, Speckle Metrology, Chapter 2, Academic Press, Inc., 1978, pp. 5-9. |
Tominaga et al., “Fabrication of holographic polymer dispersed liquid crystals doped with gold nanoparticles”, 2010 Japanese Liquid Crystal Society Annual Meeting, 2 pgs. |
Tomita, “Holographic assembly of nanoparticles in photopolymers for photonic applications”, The International Society for Optical Engineering, SPIE Newsroom, 2006, 10.1117/2.1200612.0475, 3 pgs. |
Trisnadi, “Hadamard Speckle Contrast Reduction”, Optics Letters, Jan. 1, 2004, vol. 29, No. 1,pp. 11-13. |
Trisnadi, “Speckle contrast reduction in laser projection displays”, Proc. SPIE 4657, 2002, 7 pgs. |
Tzeng et al., “Axially symmetric polarization converters based on photoaligned liquid crystal films”, Optics Express, Mar. 17, 2008, vol. 16, No. 6, pp. 3768-3775. |
Upatnieks et al., “Color Holograms for white light reconstruction”, Applied Physics Letters, Jun. 1, 1996, vol. 8, No. 11, pp. 286-287. |
Urey, “Diffractive exit pupil expander for display applications”, Applied Optics, vol. 40, Issue 32, pp. 5840-5851 (2001). |
Ushenko, “The Vector Structure of Laser Biospeckle Fields and Polarization Diagnostics of Collagen Skin Structures”, Laser Physics, 2000, vol. 10, No. 5, pp. 1143-1149. |
Valoriani, “Mixed Reality: Dalle demo a un prodotto”, Disruptive Technologies Conference, Sep. 23, 2016, 67 pgs. |
Van Gerwen et al., “Nanoscaled interdigitated electrode arrays for biochemical sensors”, Sensors and Actuators, Mar. 3, 1998, vol. B 49, pp. 73-80. |
Vecchi, “Studi Esr Di Sistemi Complessi Basati Su Cristalli Liquidi”, Thesis, University of Bologna, Department of Physical and Inorganic Chemistry, 2004-2006, 110 pgs. |
Veltri et al., “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials”, Applied Physics Letters, May 3, 2004, vol. 84, No. 18, pp. 3492-3494. |
Vita, “Switchable Bragg Gratings”, Thesis, Universita degli Studi di Napoli Federico II, Nov. 2005, 103 pgs. |
Vuzix, “M3000 Smart Glasses, Advanced Waveguide Optics”, brochure, Jan. 1, 2017, 2 pgs. |
Wang et al., “Liquid-crystal blazed-grating beam deflector”, Applied Optics, Dec. 10, 2000, vol. 39, No. 35, pp. 6545-6555. |
Wang et al., “Optical Design of Waveguide Holographic Binocular Display for Machine Vision”, Applied Mechanics and Materials, Sep. 27, 2013, vols. 427-429, pp. 763-769. |
Wang et al., “Speckle reduction in laser projection systems by diffractive optical elements”, Applied Optics, Apr. 1, 1998, vol. 37, No. 10, pp. 1770-1775. |
Weber et al., “Giant Birefringent Optics in Multilayer Polymer Mirrors”, Science, Mar. 31, 2000, vol. 287, pp. 2451-2456. |
Wei An, “Industrial Applications of Speckle Techniques”, Doctoral Thesis, Royal Institute of Technology, Department of Production Engineering, Chair of Industrial Metrology & Optics, Stockholm, Sweden 2002, 76 pgs. |
Welde et al., “Investigation of methods for speckle contrast reduction”, Master of Science in Electronics, Jul. 2010, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 127 pgs. |
White, “Influence of thiol-ene polymer evolution on the formation and performance of holographic polymer dispersed liquid crystals”, The 232nd ACS National Meeting, San Francisco, CA, Sep. 10-14, 2006, 1 pg. |
Wight et al., “Nanoporous Films with Low Refractive Index for Large-Surface Broad-Band Anti-Reflection Coatings”, Macromol. Mater. Eng., 2010, 295, DOI: 10.1002/mame.201000045, 9 pgs. |
Wilderbeek et al., “Photoinitiated Bulk Polymerization of Liquid Crystalline Thiolene Monomers”, Macromolecules, 2002, vol. 35, pp. 8962-8969. |
Wilderbeek et al., “Photo-Initiated Polymerization of Liquid Crystalline Thiol-Ene Monomers in Isotropic and Anisotropic Solvents”, J. Phys. Chem. B, 2002, vol. 106, No. 50, p. 12874-12883. |
Wisely, “Head up and head mounted display performance improvements through advanced techniques in the manipulation of light”, Proc. of SPIE, 2009, 10 pages, vol. 7327. |
Wofford et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Survivability and Sensor Materials Division, AFRL-ML-WP-TP-2007-551, Air Force Research Laboratory, Jan. 2007, Wright-Patterson Air Force Base, OH, 17 pgs. |
Yang et al., “Robust and Accurate Surface Measurement Using Structured Light”, IEEE, Apr. 30, 2008, vol. 57, Issue 6, pp. 1275-1280, DOI:10.1109/TIM.2007.915103. |
Yaqoob et al., “High-speed two-dimensional laser scanner based on Bragg grating stored in photothermorefractive glass”, Applied Optics, Sep. 10, 2003, vol. 42, No. 26, pp. 5251-5262. |
Yaroshchuk et al., “Stabilization of liquid crystal photoaligning layers by Yeactive mesogens”, Applied Physics Letters, Jul. 14, 2009, vol. 95, p. 021902-1-021902-3. |
Ye, “Three-dimensional Gradient Index Optics Fabricated in Diffusive Photopolymers”, Thesis, Department of Electrical, Computer and Energy Engineering, University of Colorado, 2012, 224 pgs. |
Yemtsova et al., “Determination of liquid crystal orientation in holographic polymer dispersed liquid crystals by linear and nonlinear optics”, Journal of Applied Physics, Oct. 13, 2008, vol. 104, p. 073115-1 - 073115-4. |
Yeralan et al., “Switchable Bragg grating devices for telecommunications applications”, Opt. Eng., Aug. 2012, vol. 41, No. 8, pp. 1774-1779. |
Yoshida et al., “Nanoparticle-Dispersed Liquid Crystals Fabricated by Sputter Doping”, Adv. Mater., 2010, vol. 22, pp. 622-626. |
Zhang et al., “Dynamic Holographic Gratings Recorded by Photopolymerization of Liquid Crystalline Monomers”, J. Am. Chem. Soc., 1994, vol. 116, pp. 7055-7063. |
Zhang et al., “Switchable Liquid Crystalline Photopolymer Media for Holography”, J. Am. Chern. Soc., 1992, vol. 114, pp. 1506-1507. |
Zhao et al., “Designing Nanostructures by Glancing Angle Deposition”, Proc, of SPIE, Oct. 27, 2003, vol. 5219, pp. 59-73. |
Zlȩacz, “Dynamics of nano and micro objects in complex liquids”, Ph.D. dissertation, Institute of Physical Chemistry of the Polish Academy of Sciences, Warsaw 2011, 133 pgs. |
Zou et al., “Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement”, Sensors and Actuators A, Jan. 16, 2007, vol. 136, pp. 518-526. |
Zyga, “Liquid crystals controlled by magnetic fields may lead to new optical applications”, Nanotechnology, Nanophysics, Retrieved from http://phys.org/news/2014-07-liquid-crystals-magnetic-fields-optical.html, Jul. 9, 2014, 3 pgs. |
Extended European Search Report for European Application No. 18727645.6, Search completed Oct. 14, 2020, Mailed Oct. 23, 2020, 13 Pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/012758, Report issued Jul. 14, 2020, dated Jul. 23, 2020, 4 Pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/012759, Report issued Jul. 14, 2020, dated Jul. 23, 2020, 6 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2018/048960, Report issued on Mar. 3, 2020, dated Mar. 12, 2020, 7 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2019/012764, Report issued Jul. 14, 2020, dated Jul. 23, 2020, 5 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2019/064765, Report issued Oct. 19, 2020, dated Oct. 28, 2020, 27 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2019/043496, Search completed Sep. 28, 2019, dated Nov. 14, 2019, 12 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2020/031363, completed May 28, 2020, dated Jun. 10, 2020, 8 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2019/065478, Search completed Jan. 29, 2020, dated Feb. 11.2020, 14 pgs. |
Supplementary Partial European Search Report for European Application No. 18727645.6, Search completed Jul. 2, 2020, dated Jul. 13, 2020, 13 Pgs. |
Fuh et al., “Thermally and Electrically Switchable Gratings Based Upon the Polymer-Balls Type Polymer-Dispersed Liquid Crystal Films”, Appl. Phys. Vol. 41, No. 22, Aug. 1, 2002, pp. 4585-4589. |
Gerritsen et al., “Application of Kogelnik's two-wave theory to deep, slanted, highly efficient, relief transmission gratings”, Applied Optics, Mar. 1, 1991, vol. 30; No. 7, pp. 807-814. |
Golub et al., “Bragg properties of efficient surface relief gratings in the Yesonance domain”, Optics Communications, Feb. 24, 2004, vol. 235, pp. 261-267, doi: 10.1016/j.optcom.2004.02.069. |
Jeong et al., “Memory Effect of Polymer Dispersed Liquid Crystal by Hybridization with Nanoclay”, express Polymer Letters, vol. 4, No. 1, 2010, pp. 39-46. |
Tondiglia et al., “Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals”, Advanced Materials, 2002, Published Online Nov. 8, 2001, vol. 14, No. 3, pp. 187-191. |
Yokomori, “Dielectric surface-re lief gratings with high diffraction efficiency”, Applied Optics, Jul. 15, 1984, vol. 23; No. 14, pp. 2303-2310. |
Number | Date | Country | |
---|---|---|---|
20200249484 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
61202996 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14999008 | Mar 2016 | US |
Child | 16854702 | US | |
Parent | 13998799 | Dec 2013 | US |
Child | 14999008 | US | |
Parent | 13317468 | Oct 2011 | US |
Child | 13998799 | US | |
Parent | PCT/GB2010/000835 | Apr 2010 | US |
Child | 13317468 | US |