Diffractive waveguide providing a retinal image

Information

  • Patent Grant
  • 11204540
  • Patent Number
    11,204,540
  • Date Filed
    Thursday, September 5, 2019
    5 years ago
  • Date Issued
    Tuesday, December 21, 2021
    3 years ago
Abstract
A projection display device comprising a light source and an SBG device having a multiplicity of separate SBG elements sandwiched between transparent substrates to which transparent electrodes have been applied. The substrates function as a light guide. A least one transparent electrode comprises a plurality of independently switchable transparent electrode elements, each electrode element substantially overlaying a unique SBG element. Each SBG element encodes image information to be projected on an image surface. Light coupled into the light guide undergoes total internal reflection until diffracted out to the light guide by an activated SBG element. The SBG diffracts light out of the light guide to form an image region on an image surface when subjected to an applied voltage via said transparent electrodes.
Description
BACKGROUND

This invention relates to a display device, and more particularly to a compact edge-illuminated projection display based on switchable Bragg gratings.


There is growing consumer demand for projection displays that can be built into mobile devices such as mobile telephones and hand-held computers. However, image sizes and resolutions required for typical applications such as internet browsing or viewing high definition films are already beyond the scope of display technologies currently available for use in mobile devices. New ultra compact projectors known as picoprojectors provide one solution to this problem. Many of the picoprojector designs considered to date rely on conventional flat panel display technologies such as Liquid Crystal Display (LCD) or Digital Light Processor (DLP) technology such as that developed by Texas Instruments (TX). Optical design limits the miniaturization possible with either approach, even when solid state lasers are used as the light source. An alternative approach is to scan the image using micro-optical-electrical-mechanical systems (MOEMS), essentially writing the image using a flying spot. Although MOEMS are much smaller than LCDs or DLPs they present complex opto-mechanical design problems. Very high scanning speeds, resolutions and the tight synchronization of mirror driver and laser modulation are needed in order to deliver high resolution images. Achieving the mechanical robustness required in portable applications is also a challenge. A further problem is that it is also difficult to correct laser speckle in scanned displays.


Desirably, display technologies for portable devices should be very compact with volumes of a few cubic centimeters. A thin form-factor is desirable for ease of integration into devices such as mobile telephones.


There is a requirement for a compact solid-state high-resolution data projection display with a thin form factor.


SUMMARY

It is an object of the present invention to provide compact solid-state high-resolution data projection display with a thin form factor.


A projection display device according to the principles of the invention comprises: a first light source emitting light of a first wavelength; a first SBG device comprising a multiplicity of separately switchable SBG elements disposed in a single layer; transparent substrates sandwiching the SBG device, said substrates together functioning as a first light guide; and a means for coupling the first wavelength light into the first light guide. The first wavelength light undergoes total internal reflection within the first light guide. Transparent electrodes are applied to opposing faces of the substrates. At least one of the transparent electrodes comprises a plurality of independently switchable transparent electrode elements. Each electrode element overlays a unique SBG element. Each SBG element in first SBG device diffracts first wavelength light to form an image region on an image surface when subjected to an applied voltage via the transparent electrodes.


In one embodiment of the invention the image surface is disposed in proximity to the display.


In one embodiment of the invention the image surface is disposed more than 25 centimeters from said display.


In one embodiment of the invention the image surface is disposed more than 50 centimeters from said display.


In one embodiment of the invention one image region comprises an image of a keyboard.


In one embodiment of the invention the image region is an image pixel.


In one embodiment of the invention an SBG element pre-distorts the shape of the image region.


In one embodiment of the invention the image surface is an optical diffusing material.


In one embodiment of the invention the image surface is the retina of an eye.


In one embodiment of the invention the image surface is a curved surface.


In one embodiment of the invention the display further comprises: at least one infrared source; means for directing infrared light from the infrared source towards the image surface and at least one infrared sensor operative to detect light scatter from an object disposed in proximity to the image surface. The infrared source may be a laser. The infrared sensor may comprise an image sensing array and lens.


In one embodiment of the invention the display further comprises: at least one infrared source; means for directing infrared light from the infrared source towards the image surface and at least one infrared sensor operative to detect light scatter from an object disposed in proximity to the image surface. The first SBG device contains at least one infrared diffracting SBG element operative to diffract infrared light from the infrared source towards the image surface when the infrared diffracting SBG element is subjected to an applied voltage via the transparent electrodes.


In one embodiment of the invention that provides full-colour imaging the display further comprises: second and third light sources emitting light of second and third wavelengths; second and third SBG devices each comprising a multiplicity of separately switchable SBG elements disposed in a single layer, the SBG elements of the first second and third SBG devices substantially overlapping each other; transparent substrates sandwiching the second SBG device, said substrates together functioning as a second light guide; transparent substrates sandwiching the third SBG device, said substrates together functioning as a third light guide; and means for coupling the first, second and third wavelength light into the first, second and third light guide. Transparent electrodes are applied to substrate faces in contact with the second and third SBG devices. At least one of the transparent electrodes in contact with the second and third SBG devices comprises a plurality of independently switchable transparent electrodes elements, each of the independently switchable electrodes substantially overlays a unique SBG element. The first, second and third wavelength light undergoes total internal reflection within the light guides, Each element of the second SBG device diffracts second wavelength light to form a second image region on an image surface when subjected to an applied voltage via the transparent electrodes. Each element of the third SBG device diffracts third wavelength light to form a third image region on an image surface when subjected to an applied voltage via the transparent electrodes. The first, second and third image regions substantially overlap.


In one embodiment of the invention that provides full colour imaging SBG elements in the first, second and third wavelength SBG devices are activated in bands. Each band comprises at least one row of SBG elements. Each band is continuously scrolled vertically. At least one band in each of the first, second and third SBG devices is activated at any instant with no overlap occurring between the first, second and third wavelength SBG device bands.


A more complete understanding of the invention can be obtained by considering the following detailed description in conjunction with the accompanying drawings wherein like index numerals indicate like parts. For purposes of clarity details relating to technical material that is known in the technical fields related to the invention have not been described in detail.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic side elevation view of one embodiment of the invention.



FIG. 2 is a schematic front elevation view of a detail of an SBG device in one embodiment of the invention.



FIGS. 3A and 3B are schematic side elevation views of one embodiment of the invention.



FIG. 4 is a schematic side elevation view of one embodiment of the invention.



FIG. 5 is a schematic plan view of the embodiment of the invention illustrated in FIG. 4.



FIG. 6 is a schematic side elevation view of one embodiment of the invention.



FIG. 7 is a schematic front elevation view of a scrolling SBG device in one embodiment of the invention.



FIG. 8 is a front elevation view of structured illumination provided by one embodiment of the invention.



FIG. 9 is a front elevation view of structured illumination provided by one embodiment of the invention.



FIG. 10 is a schematic side elevation view of one embodiment of the invention incorporating an infrared source and infrared detector.



FIG. 11 is a schematic plan view of one embodiment of the invention incorporating an infrared source and an infrared detector.



FIG. 12 is a schematic side elevation view of one embodiment of the invention incorporating an infrared source and an infrared detector.



FIG. 13 is a schematic plan view of an embodiment of the invention that provides a virtual keyboard.



FIG. 14 is a schematic side elevation vies of an embodiment of the invention that uses reflective SBGs.





DETAILED DESCRIPTION

It will apparent to those skilled in the art that the present invention may be practiced with some or all of the present invention as disclosed in the following description. For the purposes of explaining the invention well-known features of optical technology known to those skilled in the art of optical design and visual displays have been omitted or simplified in order not to obscure the basic principles of the invention.


Unless otherwise stated the term “on-axis” in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components used in the embodiments of the invention. In the following description the terms light, ray, beam and direction may be used interchangeably and in association with each other to indicate the direction of propagation of light energy along rectilinear trajectories.


Parts of the following description will be presented using terminology commonly employed by those skilled in the art of optical design.


It should also be noted that in the following description of the invention repeated usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment.


The compact projection display disclosed in the present application is based on a diffractive optical device known as a Switchable Bragg Grating (SBG). A SBG is a Bragg grating recorded into a polymer dispersed liquid crystal (PDLC) mixture. Typically, SBG devices are fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between parallel glass plates. One or both glass plates support electrodes, typically transparent indium tin oxide films, for applying an electric field across the PDLC layer. A Bragg grating is then recorded by illuminating the liquid material with two mutually coherent laser beams, which interfere to form the desired grating structure. During the recording process, the monomers polymerize and the PDLC mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer. The alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating. The resulting Bragg grating can exhibit very high diffraction efficiency, which may be controlled by the magnitude of the electric field applied across the PDLC layer. In the absence of an applied electric field the SBG remains in its diffracting state. When an electric field is applied to the hologram via the electrodes, the natural orientation of the LC droplets is changed thus reducing the refractive index modulation of the fringes and causing the hologram diffraction efficiency to drop to very low levels. The diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range from essentially zero to near 100%. U.S. Pat. No. 5,942,157 by Sutherland et al. and U.S. Pat. No. 5,751,452 by Tanaka et al. describe monomer and liquid crystal material combinations suitable for fabricating ESBG devices.


In one embodiment of the invention illustrated in the schematic side elevation view of FIG. 1 there is provided an SBG array device comprising a pair of transparent substrates 11 and 12 and an SBG layer 20 sandwiched between the substrates. The two substrates 11 and 12 together form a light guide. The SBG layer comprises an array of individually switchable SBG elements. As will be discussed below the SBG elements may be switched using a range of spatio-temporal switching schemes, including any of the active matrix switching regimes used in conventional flat panel displays. Typically the substrates will be fabricated from optical glass such as BK7 or a high quality optical plastic.


Transparent electrodes, which are not shown in FIG. 1, are applied to both of the inner surfaces of the substrates and electrically coupled to a voltage generator (not illustrated). The electrodes are configured such that the applied electric field will be perpendicular to the substrates. Typically, the planar electrode configuration requires low voltages, in the range of 2 to 4 volts per μm. The electrodes would typically be fabricated from Indium Tin Oxide (ITO). Commercially available ITO typically has a coating resistance of typically 300-500 Ohm/sq. An exemplary ITO film used by the inventors is the N00X0325 film manufactured by Applied Films Corporation (Colorado). Typically, ITO films used with the present invention have a thickness of 100 Angstrom.


In one embodiment of the invention the electrode on one substrate surface is uniform and continuous, while the electrode on the opposing substrate surface is patterned to match the shapes of the SBG elements. In an alternative embodiment of the invention the electrodes may be identically patterned such that each SBG element is sandwiched by identical electrodes matching the shape of the SBG element. Desirably, the planar electrodes should be exactly aligned with the SBG elements for optimal switching of the symbols and the elimination of any image artefacts that may result from unswitched grating regions.


In practice the SBG elements will separated by very narrow grating-free regions which are essentially homogenous regions of PDLC that generally do not respond to applied electric fields. Such grating-free regions normally result from masking during fabrication of the SBG device.


Techniques for overcoming problems associated with such gaps are disclosed in PCT Application No PCT/US2006/043938 by Popovich et al, entitled “Method and Apparatus for Switching a PDLC device”, which is incorporated by reference herein in its entirety, may be used with the present invention. In most applications of the invention the effects on image quality of such gaps between SBG elements are not likely to be significant.


An SBG contains slanted fringes resulting from alternating liquid crystal rich regions and polymer rich (i.e. liquid crystal depleted) regions. SBGs may be configured to be transmissive or reflective according to the slant of the fringes. Reflection SBGs are characterized by fringes that are substantially parallel to the substrates. For the purposes of explaining the invention transmissive SBGs will be assumed in the following description. However, it should be clear that any of the embodiments of the invention may be practiced using either reflective or transmissive SBGs. With no electric field applied, the extraordinary axis of the liquid crystals generally aligns normal to the fringes. The grating thus exhibits high refractive index modulation and high diffraction efficiency for P-polarized light. When an electric field is applied to the SBG, the extraordinary axes of the liquid crystal molecules align parallel to the applied field and hence perpendicular to the substrate. Note that the electric field due to the planar electrodes is perpendicular to the substrate. In this state the grating exhibits lower refractive index modulation and lower diffraction efficiency for both S- and P-polarized light. Thus the grating region no longer diffracts light but rather acts like a transparent plate have little effect on incident light other than a small amount of absorption, scatter and Fresnel reflection loss at the grating-substrate interfaces.


The operation of a compact projection display according to the principles of the invention may be understood with reference to FIGS. 1-3. FIG. 2 shows a front elevation view of the SBG array. FIGS. 3A and 3B show side elevation views of the display. We consider the case in which one SBG element 22 is in its active or diffracting state and all other SBG elements such as the one indicated by 21 are in their passive or non diffracting states. Input light 1000 from a source 4 is optically coupled to the substrates 11 and 12 via an optical coupling device 3. Light admitted into the light guide undergoes TIR between the outer surfaces of the substrates 11,12.


Advantageously, the source is a solid state laser. Alternatively, the source may be a Light Emitting Diode (LED). However the broader spectral bandwidth of LEDs will result in some chromatic dispersion at the SBG elements. The coupling device may be a prism or a grating. The invention does not assume any particular method for coupling light into the substrates.


However, a method based on a grating is highly desirable from the perspective of minimizing the thickness of the display. To overcome laser speckle the display would advantageously also incorporate a despeckler such as the one disclosed in the PCT application PCT/IB2008/001909 with International Filing date 22 Jul. 2008 entitled “LASER ILLUMINATION DEVICES” which is incorporated by reference herein in its entirety. The invention may be applied with any other type of despeckler but preferably one based on solid state technology.


The input light 1000 is deflected into the ray direction 1001 by the coupling device 3. The deflection angle in the substrates should exceed the critical angle for the substrate medium to air interface. The ray now follows a TIR path constrained by the outer surfaces of the light guide provided by the substrates. Hence, the ray 1001 is totally internally reflected into the ray path indicated by 1001,1002,1003.


The grating in each SBG element encodes wave-front amplitude and phase modulation information such that that incident TIR light is diffracted to form a focused image region of predefined geometry and luminance distribution at the image surface 5. The light 1003 which impinges on the active SBG element 22 is diffracted towards the image surface 5 as the beam 1004. As indicated in FIG. 3, the diffracted light 1004 forms an image 1100 at the image surface 5. Light which does not impinge on the SBG element will hit the substrate-air interface at the critical angle and is therefore totally internally reflected and eventually collected at a beam stop, which is not illustrated. The invention does not assume any particular method for trapping non diffracted light.


The image surface 5 may a diffusing surface of any geometry and as indicated in FIGS. 3A and 3B may be tilted with respect to the display. In typical applications of the invention the image surface will be a plane. The image surface will most typically will be either parallel to or orthogonal to the grating plane. The image is formed without the need for an additional lens or any other optical element between the SBG array and the surface. Another important feature of the invention is that, since the SBG array elements each contain diffraction patterns, the resolution of the final projected images is much higher than the resolution of the array. The side elevation view of the display of FIG. 1 in which the source and coupling optics are omitted shows the formation of an image element 1100 on the surface 5 by the SBG element 22.


In one embodiment of the invention the image element may be a rectangular pixel having a luminance level determined by the voltage applied across the SBG element. By applying voltages to each SBG in the SBG array a pixelated image is provided over a predefined image area. An SBG element may be designed to provide pre-distortion of the image element geometry to compensate for the effects of off axis projection, such as key-stoning. The invention is not necessarily limited to pixelated display applications. In one embodiment of the invention the image element formed by a SBG element may have an intensity distribution within a predefined area. As will be explained below such an embodiment may be used to provide structured illumination for a range of applications.


The techniques for encoding such optical functions into an SBG are well known to those skilled in the design of Holographic Optical Elements (HOEs) and Diffractive Optical Elements (DOEs). The invention does not rely on any particular method of encoding optical functions into SBGs. Advantageously the SBG element is fabricated by first designing and fabricating a Computer Generated Hologram (CGH) with the required optical properties and then recording the CGH into the ESBG element. The above process is equivalent to forming a hologram of the CGH. The invention does not rely on any particular method for recording the CGH into the SBG.


Any holographic recording techniques known to those skilled in the art of holography may be used. It should be noted that the resulting SBG element is not identical in every respect to the CGH since properties of a CGH rely on its surface phase relief features while the optical characteristics of a Bragg grating such as an SBG rely on a complex three dimensional fringe distribution. The basic principles of computer generated holograms suitable for use in the present invention are discussed in an article entitled HASMAN E et al “Diffractive Optics: Design Realisation and Applications”, Fibre and Integrated Optics; 16:1-25, 1997.


It should be clear from consideration of FIGS. 1-3 that a display according to the principles of the invention will be transparent to external ambient light such as the light 1005 indicated in FIG. 1. Since the external light is broadband and incident over a wide range of angles only a small portion of it will be lost due to diffraction at active SBG elements. In other words only a very small portion of the external light will have incidence angles and wavelengths that satisfy the Bragg condition at the active SBG elements. The ex al light will also suffer small transmission loss due to Fresnel reflections, scatter and absorption.


Typically, the image surface is disposed between 25-100 centimetres from the display. However, the distances may be much greater depending on the application and the image brightness requirements. In certain embodiments of the invention the image surface may be very close to the display. In such embodiments the image and image surface may be integrated within a directly viewable display module. However, such embodiments will sacrifice the image magnifications obtained by projecting the image over a longer distance.


In one embodiment of the invention based on the embodiment illustrated in FIGS. 1-3 there is provided a colour projection display. The basic principles of the colour display are illustrated in FIGS. 4-5. Light from separate red green and blue sources is coupled into the light-guide formed by the substrates 11,12. Again the coupling optics, which are not illustrated, may comprise prisms or diffractive elements. Many alternative methods of coupling light from different colour sources into a light guide will be known to those skilled in the art. Desirably, the coupling optics are based on diffractive optical techniques to keep the display as thin as possible. The TIR angle for each colour is constrained such that the incidence angle for a particular colour light at a given SBG satisfy the Bragg condition for diffraction at a specified diffraction angle.


The red, green, blue light is presented sequentially. As indicated in the schematic side elevation view of FIG. 4, incident red, green, blue TIR rays 1003R, 1003G, 1003B at the SBG 22 are diffracted into the red, green, blue image light indicated by 1004R, 1004G, 1004B towards the image surface 5 forming the colour image element 1100. FIG. 5 shows a plan view of the display showing the a plan view of the diffracted beams indicated by 1005R, 1005G, 1005B. The lateral extent of the projected beam is indicated by the rays 1006A, 1006B. Note that in FIGS. 4-5 the separation of the beams has been exaggerated for the purposes of explanation.


Colour imaging may also be provided by stacking red, green, and blue SBG arrays of the type illustrated in FIGS. 1-3 and providing illumination from red, green and blue light sources.


Such embodiments of the invention will suffer from the problems of alignment and light transmission loss. In the embodiment of the invention illustrated in the schematic side elevation view of FIG. 6 there are provided red, green and blue diffracting SBG arrays 20,30,40. The SBG arrays are sandwiched between substrates 11,12,13,14,15,16. The substrates are stacked to form a single light guiding structure. Light from separate red, green and blue sources is coupled into the light-guide. Again the preferred coupling optics are based on diffractive optical techniques to keep the display as thin as possible. Since a separate SBG arrays is provided for each colour, the TIR angle may be the same for each colour. The red, green, blue light is presented simultaneously. Referring to FIG. 6 incident red, green and blue light 1006R, 1006G, 1006B at the active red, green, blue SBG elements 22,32,42 is diffracted into the beams 1007R, 1007G, 1007B forming a colour image element 1102 at the image surface 5. Note that the separation of the beams has again been exaggerated for the purposes of explanation.


In one embodiment of the invention the SBG elements may be switched using a switching scheme commonly referred to as “scrolling”. Conventional colour displays rely on providing a single display panel that is updated with red, green and blue picture information in turn and sequentially fully illuminated by red, green and blue illumination. Alternatively, three panel architectures provide separate red, green and blue image panels which are separately fully illuminated by red, green and blue light. Such displays suffer from the problems of having to update the entire red, green or blue images before illumination of the appropriate colour can be applied. In the case of three-panel displays the cost of the display may become prohibitive. A single panel scrolling color projection display system is characterized by a single light modulator panel having a raster of individual picture elements or pixels, which panel is illuminated by horizontally elongated red, green and blue illumination bars or stripes. The stripes are continuously scrolled vertically across the panel while the rows of pixels are synchronously addressed with display information corresponding to the color of the then incident stripe. The modulated scrolling red, green and blue stripes are then projected onto a display screen to produce a visually integrated full color display. Exemplary scrolling displays are disclosed in U.S. Pat. No. 5,410,370, entitled “Single panel color projection video display improved scanning” issued to P. Janssen on Mar. 25, 1994, and U.S. Pat. No. 5,416,514, entitled “Single panel color projection video display having control circuitry for synchronizing the color illumination system with reading/writing of the light valve” issued to P. Janssen et al. on May 16, 1995.


The principles of scrolling may be applied in the present invention by switching rows of SBG elements in sequence. A basic scrolling scheme for use with the present invention is illustrated in FIG. 7. The scrolling scheme may be implemented using the embodiment of FIG. 6. In each SBG device SBG elements are activated in bands comprising at least one row of SBG elements. The bands are continuously scrolled vertically, at least one band in each of the red green and blue SBG devices being activated at any instant, said bands in said first, second and third SBG devices not overlapping. FIG. 7 shows red, green and blue states indicated by symbols R,G,B at one instant in time. In each case, the diffracting rows or bands of SBG elements are shaded. Thus red SBG band 50R, green SBG band 50G and blue SBG band 50B are diffracting while red SBG pixel rows 51R, green SBG pixel rows 51G and blue SBG pixel rows 51B are not diffracting permitting TIR to proceed.


In a particular group of embodiments of the invention at least one SBG array element in any of the above described embodiments may provide structured infrared illumination using light from an infra red source. The infrared light would be injected into the light guide formed by the substrates in a similar fashion to the means used to introduce visible light in any of the above embodiments. The infrared source is typically a 780 nm laser. However other near-infrared sources may be used. The structure lighting may comprise parallel bars, concentric circles and other geometrical structures commonly used in the visualization and measurement of three-dimensional shapes. Examples of structures infrared lighting are provided in FIGS. 8-9. In the example shown in FIG. 8 the structured lighting 1010 comprises parallel bars and spaces 1011,1012. In the example shown in FIG. 9 the structure lighting 1020 comprises concentric circles 1021 separated by gaps 1022.



FIGS. 10-11 show an embodiment similar to the one of FIGS. 4-5 in which there is further provided at least one infrared sensor such as 7 and at least one infrared source such as 8. Advantageously, the sensor is a two dimensional infrared array. The infrared source illuminates the image surface 5 with the infrared beam indicated by 1100. The infrared sensor detects backscattered light from objects within a field of view indicated by 1200. The sensor is coupled to a processor which is in turn coupled to an image processor which is not illustrated. The optical system is illustrated in plan view in FIG. 11. Since the display is transparent one or both of the infrared sensor or source may be displayed on the opposite site of the display to the image surface as indicated in FIGS. 10-11. Alternatively, one or both of the infrared sensor or source may be disposed around the periphery of the display. In one embodiment of the invention a structured light pattern based on the ones illustrated in FIGS. 8-9 may be encoded within the SBG element. Alternatively, other structured lighting patterns may be used.


In one embodiment of the invention illustrated in the schematic side elevation view of FIG. 12 the infrared source may be coupled via the light guide to one or more dedicated SBG arrays elements contained in the SBG array. Totally internally reflected infrared light infrared light 1009 incident on an active infrared diffracted diffracting SBG element 23 is diffracted to provide the divergent infrared light beam 1101. In one embodiment of the invention a structured light pattern based one the ones illustrated in FIGS. 8-9 may be encoded within the SBG element. Alternatively, other structured lighting patterns may be used. In one embodiment of the invention more than one infrared diffracting SBG similar to the element 23 may be provided for the purpose of determining object range by triangulation. Such an implementation of the invention may be used to provide the instantaneous location of an object near the image surface. The invention does not rely on particular method for determining range from triangulation or determined the shape of an object using structured light. Tracking algorithms which are designed to determine the range or shape of an object by analyzing changes in sequential image frames recorded by a single sensor may also be used with the invention.


It will be clear from consideration of the above description that the invention may be used to provide more than one viewable image. In one embodiment of the invention based on the embodiments of FIGS. 10-12 there is provided a virtual computer keyboard projected by a single SBG element. The other SBG elements are used to project a live image, in other words an image that is updated on a frame-by-frame basis. One key with symbol A is indicated by 1102.


The infrared sensor 7 detects infrared light 1300 scattered from a finger 81 of the hand 8. An image processing system (not illustrated) determines whether the proximity of the finger to the key is sufficiently close for a key strike to have occurred. In other embodiments of the invention more than one SBG element may be used to project elements of the keyboard onto the image surface


The SGB arrays in any of the above described embodiments of the invention may use SBG elements configured as wither transmissive or reflective gratings. In the embodiment illustrated in the schematic side elevation view of FIG. 14 the SBG device 60 is based on reflection gratings.


TIR light indicated by 1040 is reflected by the active SBG element 24 of the SBG device into the beam 1041 towards the image surface 51 forming the image 1103.


The SGB arrays in any of the above described embodiments of the invention may incorporate SBG elements designed to diffract thermal infrared radiation.


The SGB arrays in any of the above described embodiments of the invention may incorporate SBG elements designed to diffract ultraviolet radiation.


In one embodiment of the invention the image surface is the retina of the human eye.


Although the invention has been described in relation to what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not limited to the disclosed arrangements but rather is intended to cover various modifications and equivalent constructions included within the spirit and scope of the invention.

Claims
  • 1. A transparent display for projecting image light onto a retina of an eye, said display comprising: a light source emitting light of a first wavelength;a lightguide supporting a first multiplicity of separately switchable Bragg grating (SBG) elements disposed in a single layer;a given multiplicity of SBG elements, each SBG element in the given multiplicity of SBG elements projecting an image region on an image surface viewable through said display by said eye; anda coupler for directing said first wavelength light into a total internal reflection path within said lightguide, each said switchable grating element of the first multiplicity having a diffracting state and a non-diffracting state;wherein each said SBG element of the first multiplicity in its diffracting state diffracts said first wavelength light to form a focused image region of predefined geometry and luminance distribution on said retina.
  • 2. The transparent display of claim 1, wherein said lightguide comprises a pair of transparent substrates sandwiching said single layer of switchable grating elements, wherein at least one transparent electrode for applying electric fields across said SBG elements are applied to each of the opposing faces of said transparent substrates, at least one said transparent electrode comprising a plurality of independently switchable transparent electrode elements, each of said independently switchable electrode elements substantially overlaying a unique SBG element.
  • 3. The transparent display of claim 1, wherein said diffracting state exists when no electric field is applied across said first multiplicity of SBG elements and said non diffracting state exists when an electric field is applied across said first multiplicity of SBG elements.
  • 4. The transparent display of claim 1, wherein said first multiplicity of elements encodes wavefront and phase information corresponding to said geometry and said luminance distribution.
  • 5. The transparent display of claim 1, wherein said image surface is at least one selected from the group of: a surface spatially displaced along a normal to a total internal reflection surface of said lightguide; a surface spatially displaced by more than 50 centimeters along a normal to a total internal reflection surface of said lightguide; a light diffusing surface; a surface tilted relative to a total internal reflection surface of said lightguide; and a curved surface.
  • 6. The transparent display of claim 1, wherein said image region comprises an image pixel.
  • 7. The transparent display of claim 1, wherein said image region comprises an image of a keyboard.
  • 8. The transparent display of claim 1, wherein said first multiplicity of SBG elements pre-distort the shape of said image region.
  • 9. The transparent display of claim 1, further comprising: at least one infrared source; at least one optical element for directing infrared light from said source towards said retina; and at least one infrared sensor operative to detect light scattered from a surface disposed in proximity to said retina.
  • 10. The transparent display of claim 9, configured to project structured illumination towards said retina.
  • 11. The transparent display of claim 9, configured to project illumination towards said retina and detect light scattered from a surface disposed in proximity to said retina and further comprising an image processor containing a tracking algorithm based on analyzing changes in sequential image frames recorded by said infrared sensor.
  • 12. The transparent display of claim 9, wherein said infrared sensor comprises an array of photodetectors.
  • 13. The transparent display of claim 9, wherein said first multiplicity of SBG elements contains at least one infrared diffracting SBG element operative to diffract infrared light from said infrared source towards said retina when said infrared diffracting SBG element is subjected to an applied voltage via transparent electrodes.
  • 14. The transparent display of claim 1, further comprising: a plurality of light sources emitting light of second and third wavelengths;second and third multiplicities of SBG elements disposed in substantially overlapping layers;each SBG element of said second multiplicity of SBG elements diffracting said second wavelength light to form a second focused image region of predefined geometry and luminance distribution on said retina when subjected to an applied voltage,each SBG element of said third multiplicity of SBG elements diffracting said third wavelength light to form a third focused image region of predefined geometry and luminance distribution on an image surface when subjected to an applied voltage,wherein said SBG elements of said second and third multiplicities of SBG elements encode wavefront and phase information corresponding to said geometry and said luminance distribution.
  • 15. The transparent display of claim 14, wherein said first image region, said second focused image region, and said third focused image region substantially overlap.
  • 16. The apparatus of claim 14, wherein each of said first, second and third multiplicities of SBG elements are configured in rows and columns of a rectangular array and are switched sequentially into their diffracting states in bands comprising at least one row of switchable grating elements, wherein at least one band of SBG elements in each of said given, second and third multiplicities of SBG elements is activated at any instant, wherein no overlap exists between said first, second and third wavelength SBG element bands.
  • 17. The transparent display of claim 1, further comprising a despeckler.
  • 18. The transparent display of claim 1, wherein said source is a laser.
  • 19. The transparent display of claim 1, wherein said coupler is one of either a grating or a prism.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/670,875 filed Aug. 7, 2017, which is a continuation of U.S. application Ser. No. 14/545,578 filed May 26, 2015, now U.S. Pat. No. 9,726,540, which is a continuation of U.S. application Ser. No. 13/506,389 filed Apr. 17, 2012, now U.S. Pat. No. 9,075,184, which is a continuation of U.S. application Ser. No. 15/770,485 filed Apr. 23, 2018, which is a national stage application under 35 USC 371 of PCT Application No. PCT/GB2010/001920 filed Oct. 7, 2010, which claims the benefit of U.S. Provisional Patent Application No. 61/272,601 filed on Oct. 9, 2009, the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (359)
Number Name Date Kind
4035068 Rawson Jul 1977 A
4765703 Suzuki et al. Aug 1988 A
4964701 Dorschner et al. Oct 1990 A
5009483 Rockwell et al. Apr 1991 A
5099343 Margerum et al. Mar 1992 A
5119454 McMahon et al. Jun 1992 A
5148302 Nagano et al. Sep 1992 A
5200861 Moskovich et al. Apr 1993 A
5218480 Moskovich et al. Jun 1993 A
5224198 Jachimowicz et al. Jun 1993 A
5241337 Betensky et al. Aug 1993 A
5251048 Doane et al. Oct 1993 A
5264950 West et al. Nov 1993 A
5268792 Kreitzer et al. Dec 1993 A
5296967 Moskovich et al. Mar 1994 A
5309283 Kreitzer et al. May 1994 A
5313330 Betensky May 1994 A
5315440 Betensky et al. May 1994 A
5329363 Moskovich et al. Jul 1994 A
5371626 Betensky Dec 1994 A
5418871 Revelli et al. May 1995 A
5428480 Betensky et al. Jun 1995 A
5452385 Izumi et al. Sep 1995 A
5455713 Kreitzer et al. Oct 1995 A
5465311 Caulfield et al. Nov 1995 A
5485313 Betensky Jan 1996 A
5493448 Betensky et al. Feb 1996 A
5499140 Betensky Mar 1996 A
5500769 Betensky Mar 1996 A
5532875 Betemsky Jul 1996 A
RE35310 Moskovich Aug 1996 E
5559637 Moskovich et al. Sep 1996 A
5576888 Betensky Nov 1996 A
5621529 Gordon et al. Apr 1997 A
5625495 Moskovich et al. Apr 1997 A
5677797 Betensky et al. Oct 1997 A
5686931 Fuenfschilling et al. Nov 1997 A
5706136 Okuyama et al. Jan 1998 A
5745301 Betensky et al. Apr 1998 A
5808804 Moskovich Sep 1998 A
5835661 Tai et al. Nov 1998 A
5841587 Moskovich et al. Nov 1998 A
5856842 Tedesco Jan 1999 A
5870228 Kreitzer et al. Feb 1999 A
5875012 Crawford et al. Feb 1999 A
5900987 Kreitzer et al. May 1999 A
5900989 Kreitzer May 1999 A
5930433 Williamson et al. Jul 1999 A
5936776 Kreitzer Aug 1999 A
5963375 Kreitzer Oct 1999 A
5969874 Moskovich Oct 1999 A
5969876 Kreitzer et al. Oct 1999 A
5973727 McGrew et al. Oct 1999 A
5986746 Metz et al. Nov 1999 A
6014187 Taketomi et al. Jan 2000 A
6023375 Kreitzer Feb 2000 A
6052540 Koyama Apr 2000 A
6094311 Moskovich Jul 2000 A
6097551 Kreitzer Aug 2000 A
6133971 Silverstein et al. Oct 2000 A
6141074 Bos et al. Oct 2000 A
6141154 Kreitzer et al. Oct 2000 A
6169594 Aye et al. Jan 2001 B1
6169613 Amitai et al. Jan 2001 B1
6169636 Kreitzer et al. Jan 2001 B1
6191887 Michaloski et al. Feb 2001 B1
6195209 Kreitzer et al. Feb 2001 B1
6297860 Moskovich et al. Oct 2001 B1
6301056 Kreitzer et al. Oct 2001 B1
6301057 Kreitzer et al. Oct 2001 B1
6324014 Moskovich et al. Nov 2001 B1
6411444 Moskovich et al. Jun 2002 B1
6414760 Lopez et al. Jul 2002 B1
6417971 Moskovich et al. Jul 2002 B1
6445512 Moskovich et al. Sep 2002 B1
6476974 Kreitzer et al. Nov 2002 B1
6504629 Popovich et al. Jan 2003 B1
6509937 Moskovich et al. Jan 2003 B1
6529336 Kreitzer et al. Mar 2003 B1
6563648 Gleckman et al. May 2003 B2
6563650 Moskovich et al. May 2003 B2
6567573 Domash et al. May 2003 B1
6577429 Kurtz et al. Jun 2003 B1
6594090 Kruschwitz et al. Jul 2003 B2
6597475 Shirakura et al. Jul 2003 B1
6600590 Roddy et al. Jul 2003 B2
6625381 Roddy et al. Sep 2003 B2
6738105 Hannah et al. May 2004 B1
6747781 Trisnadi et al. Jun 2004 B2
6791629 Moskovich et al. Sep 2004 B2
6791739 Ramanujan et al. Sep 2004 B2
6805490 Levola Oct 2004 B2
6825987 Repetto et al. Nov 2004 B2
6829095 Amitai Dec 2004 B2
6833955 Niv Dec 2004 B2
6847488 Travis Jan 2005 B2
6850210 Lipton et al. Feb 2005 B1
6853493 Kreitzer et al. Feb 2005 B2
6952435 Lai et al. Oct 2005 B2
6958868 Pender Oct 2005 B1
6975345 Lipton et al. Dec 2005 B1
7002753 Moskovich et al. Feb 2006 B2
7009773 Chaoulov et al. Mar 2006 B2
7019793 Moskovich et al. Mar 2006 B2
7021777 Amitai Apr 2006 B2
7068405 Sutherland et al. Jun 2006 B2
7123421 Moskovich et al. Oct 2006 B1
7133084 Moskovich et al. Nov 2006 B2
RE39424 Moskovich Dec 2006 E
7145729 Kreitzer et al. Dec 2006 B2
7149385 Parikka et al. Dec 2006 B2
7181108 Levola Feb 2007 B2
7206107 Levola Apr 2007 B2
7230770 Kreitzer et al. Jun 2007 B2
RE39911 Moskovich Nov 2007 E
7391573 Amitai Jun 2008 B2
7418170 Mukawa et al. Aug 2008 B2
7453612 Mukawa Nov 2008 B2
7457040 Amitai Nov 2008 B2
7477206 Cowan et al. Jan 2009 B2
7499217 Cakmakci et al. Mar 2009 B2
7511891 Messerschmidt et al. Mar 2009 B2
7577326 Amitai Aug 2009 B2
7589901 DeJong et al. Sep 2009 B2
7619739 Sutherland et al. Nov 2009 B1
7643214 Amitai Jan 2010 B2
7672055 Amitai Mar 2010 B2
7672549 Ghosh et al. Mar 2010 B2
7724443 Amitai May 2010 B2
7740387 Schultz et al. Jun 2010 B2
7747113 Mukawa et al. Jun 2010 B2
7751122 Amitai Jul 2010 B2
7751662 Kleemann et al. Jul 2010 B2
7764413 Levola Jul 2010 B2
7866869 Karakawa Jan 2011 B2
7884985 Amitai et al. Feb 2011 B2
7907342 Simmonds et al. Mar 2011 B2
7949214 DeJong et al. May 2011 B2
7969657 Cakmakci et al. Jun 2011 B2
8000020 Amitai et al. Aug 2011 B2
8018579 Krah Sep 2011 B1
8023783 Mukawa et al. Sep 2011 B2
8073296 Mukawa et al. Dec 2011 B2
8098439 Amitai et al. Jan 2012 B2
8107023 Simmonds et al. Jan 2012 B2
8107780 Simmonds Jan 2012 B2
8132948 Owen et al. Mar 2012 B2
8155489 Saarikko et al. Apr 2012 B2
8160411 Levola et al. Apr 2012 B2
8194325 Levola et al. Jun 2012 B2
8213065 Mukawa Jul 2012 B2
8213755 Mukawa et al. Jul 2012 B2
8220966 Mukawa Jul 2012 B2
8224133 Popovich et al. Jul 2012 B2
8233204 Robbins et al. Jul 2012 B1
8314993 Levola et al. Nov 2012 B2
8320032 Levola Nov 2012 B2
8325166 Akutsu et al. Dec 2012 B2
8351744 Travis et al. Jan 2013 B2
8354640 Hamre et al. Jan 2013 B2
8355610 Simmonds Jan 2013 B2
8369019 Baker et al. Feb 2013 B2
8376548 Schultz Feb 2013 B2
8382293 Phillips, III et al. Feb 2013 B2
8396339 Mukawa et al. Mar 2013 B2
8422840 Large Apr 2013 B2
8432614 Amitai Apr 2013 B2
8441731 Sprague May 2013 B2
8466953 Levola et al. Jun 2013 B2
8482858 Sprague Jul 2013 B2
8491136 Travis et al. Jul 2013 B2
8493662 Noui Jul 2013 B2
8520309 Sprague Aug 2013 B2
8547638 Levola Oct 2013 B2
8548290 Travers et al. Oct 2013 B2
8565560 Popovich et al. Oct 2013 B2
8582206 Travis Nov 2013 B2
8593734 Laakkonen Nov 2013 B2
8611014 Valera et al. Dec 2013 B2
8634120 Popovich et al. Jan 2014 B2
8639072 Popovich et al. Jan 2014 B2
8643948 Amitai et al. Feb 2014 B2
8649099 Schultz et al. Feb 2014 B2
8654420 Simmonds Feb 2014 B2
D701206 Luckey et al. Mar 2014 S
8698705 Burke et al. Apr 2014 B2
8731350 Lin et al. May 2014 B1
8736963 Robbins et al. May 2014 B2
8810913 Simmonds et al. Aug 2014 B2
8810914 Amitai Aug 2014 B2
8817350 Robbins et al. Aug 2014 B1
8824836 Sugiyama et al. Sep 2014 B2
8830584 Saarikko et al. Sep 2014 B2
8842368 Simmonds et al. Sep 2014 B2
8873149 Bohn et al. Oct 2014 B2
8873150 Amitai Oct 2014 B2
8885997 Nguyen et al. Nov 2014 B2
8903207 Brown et al. Dec 2014 B1
8913865 Bennett Dec 2014 B1
8917453 Bohn et al. Dec 2014 B2
8950867 MacNamara Feb 2015 B2
8965152 Simmonds Feb 2015 B2
8985803 Bohn et al. Mar 2015 B2
8989535 Robbins Mar 2015 B2
9019595 Jain Apr 2015 B2
9025253 Hadad et al. May 2015 B2
9075184 Popovich Jul 2015 B2
9081178 Simmonds et al. Jul 2015 B2
9164290 Robbins et al. Oct 2015 B2
9201270 Fattal et al. Dec 2015 B2
9274338 Robbins et al. Mar 2016 B2
9310566 Valera et al. Apr 2016 B2
9329325 Simmonds et al. May 2016 B2
9335604 Popovich May 2016 B2
9341846 Popovich et al. May 2016 B2
9372347 Levola et al. Jun 2016 B1
9377623 Robbins et al. Jun 2016 B2
9389415 Fattal et al. Jul 2016 B2
9400395 Travers et al. Jul 2016 B2
9423360 Kostamo et al. Aug 2016 B1
9431794 Jain Aug 2016 B2
9459451 Saarikko et al. Oct 2016 B2
9465213 Simmonds Oct 2016 B2
9494799 Robbins et al. Nov 2016 B2
9541383 Abovitz et al. Jan 2017 B2
9551874 Amitai et al. Jan 2017 B2
9551880 Amitai et al. Jan 2017 B2
9612403 Abovitz et al. Apr 2017 B2
9651368 Abovitz et al. May 2017 B2
9664824 Simmonds et al. May 2017 B2
9664910 Mansharof et al. May 2017 B2
9726540 Popovich Aug 2017 B2
9727772 Popovich et al. Aug 2017 B2
9746688 Popovich et al. Aug 2017 B2
10409144 Popovich Sep 2019 B2
10642058 Popovich et al. May 2020 B2
20010043163 Waldern et al. Nov 2001 A1
20020047837 Suyama et al. Apr 2002 A1
20020110077 Drobot et al. Aug 2002 A1
20030067685 Niv Apr 2003 A1
20030107809 Chen et al. Jun 2003 A1
20040004767 Song Jan 2004 A1
20040141217 Endo et al. Jul 2004 A1
20050105909 Stone May 2005 A1
20050180687 Amitai Aug 2005 A1
20050232530 Kekas et al. Oct 2005 A1
20070012777 Tsikos et al. Jan 2007 A1
20070041684 Popovich Feb 2007 A1
20070070859 Hirayama Mar 2007 A1
20070133089 Lipton et al. Jun 2007 A1
20080106779 Peterson et al. May 2008 A1
20080117289 Schowengerdt et al. May 2008 A1
20080143964 Cowan et al. Jun 2008 A1
20080198471 Amitai Aug 2008 A1
20080285137 Simmonds et al. Nov 2008 A1
20080297731 Powell et al. Dec 2008 A1
20080303895 Akka et al. Dec 2008 A1
20080304111 Queenan et al. Dec 2008 A1
20090052047 Amitai Feb 2009 A1
20090074356 Sanchez et al. Mar 2009 A1
20090128495 Kong et al. May 2009 A1
20090141324 Mukawa Jun 2009 A1
20090190222 Simmonds et al. Jul 2009 A1
20090303599 Levola Dec 2009 A1
20100039796 Mukawa Feb 2010 A1
20100053565 Mizushima et al. Mar 2010 A1
20100086256 Ben Bakir et al. Apr 2010 A1
20100097674 Kasazumi et al. Apr 2010 A1
20100097820 Owen et al. Apr 2010 A1
20100134534 Seesselberg et al. Jun 2010 A1
20100202725 Popovich Aug 2010 A1
20100246003 Simmonds et al. Sep 2010 A1
20100246004 Simmonds Sep 2010 A1
20100284085 Laakkonen Nov 2010 A1
20100284090 Simmonds et al. Nov 2010 A1
20100284180 Popovich et al. Nov 2010 A1
20100321781 Levola et al. Dec 2010 A1
20110026128 Baker et al. Feb 2011 A1
20110032706 Mukawa Feb 2011 A1
20110063604 Hamre et al. Mar 2011 A1
20110235179 Simmonds Sep 2011 A1
20110242661 Simmonds Oct 2011 A1
20110242670 Simmonds Oct 2011 A1
20110249309 McPheters et al. Oct 2011 A1
20120033306 Valera et al. Feb 2012 A1
20120044572 Simmonds et al. Feb 2012 A1
20120062850 Travis Mar 2012 A1
20120081789 Mukawa et al. Apr 2012 A1
20120120493 Simmonds et al. May 2012 A1
20120206811 Mukawa et al. Aug 2012 A1
20120207432 Travis et al. Aug 2012 A1
20120207434 Large et al. Aug 2012 A1
20120300311 Simmonds et al. Nov 2012 A1
20130016324 Travis Jan 2013 A1
20130021392 Travis Jan 2013 A1
20130021586 Lippey Jan 2013 A1
20130039619 Laughlin et al. Feb 2013 A1
20130044376 Valera et al. Feb 2013 A1
20130077049 Bohn Mar 2013 A1
20130163089 Bohn et al. Jun 2013 A1
20130229717 Amitai Sep 2013 A1
20130250430 Robbins et al. Sep 2013 A1
20130250431 Robbins et al. Sep 2013 A1
20130271731 Popovich et al. Oct 2013 A1
20130300997 Popovich et al. Nov 2013 A1
20130322810 Robbins Dec 2013 A1
20140003762 Macnamara Jan 2014 A1
20140064655 Nguyen et al. Mar 2014 A1
20140098010 Travis Apr 2014 A1
20140104665 Popovich et al. Apr 2014 A1
20140140653 Brown et al. May 2014 A1
20140140654 Brown et al. May 2014 A1
20140168735 Yuan et al. Jun 2014 A1
20140185286 Popovich et al. Jul 2014 A1
20140204455 Popovich et al. Jul 2014 A1
20140211322 Bohn et al. Jul 2014 A1
20140218801 Simmonds et al. Aug 2014 A1
20140232759 Simmonds et al. Aug 2014 A1
20140240834 Mason et al. Aug 2014 A1
20140267420 Schowengerdt et al. Sep 2014 A1
20140300947 Fattal et al. Oct 2014 A1
20140300966 Travers et al. Oct 2014 A1
20140375542 Robbins et al. Dec 2014 A1
20140375789 Lou et al. Dec 2014 A1
20140375790 Robbins et al. Dec 2014 A1
20150003796 Bennett Jan 2015 A1
20150010265 Popovich et al. Jan 2015 A1
20150016777 Abovitz et al. Jan 2015 A1
20150086163 Valera et al. Mar 2015 A1
20150125109 Robbins et al. May 2015 A1
20150160529 Popovich Jun 2015 A1
20150185475 Saarikko et al. Jul 2015 A1
20150235447 Abovitz et al. Aug 2015 A1
20150260994 Akutsu et al. Sep 2015 A1
20150268415 Schowengerdt et al. Sep 2015 A1
20150277375 Large et al. Oct 2015 A1
20160004090 Popovich et al. Jan 2016 A1
20160041387 Valera et al. Feb 2016 A1
20160077338 Robbins et al. Mar 2016 A1
20160085300 Robbins Mar 2016 A1
20160116739 TeKolste et al. Apr 2016 A1
20160231568 Saarikko et al. Aug 2016 A1
20160266398 Poon et al. Sep 2016 A1
20160299344 Dobschal et al. Oct 2016 A1
20160320536 Simmonds et al. Nov 2016 A1
20160327705 Simmonds et al. Nov 2016 A1
20160341964 Amitai et al. Nov 2016 A1
20170031171 Vallius et al. Feb 2017 A1
20170034435 Vallius et al. Feb 2017 A1
20170038579 Yeoh et al. Feb 2017 A1
20170102543 Vallius et al. Apr 2017 A1
20170123208 Vallius et al. May 2017 A1
20170131460 Lin et al. May 2017 A1
20170131546 Woltman et al. May 2017 A1
20170131551 Robbins et al. May 2017 A1
20170219841 Popovich et al. Aug 2017 A1
20170276940 Popovich Sep 2017 A1
20170299860 Juhola et al. Oct 2017 A1
20180275402 Popovich Sep 2018 A1
Foreign Referenced Citations (92)
Number Date Country
101103297 Jan 2008 CN
100492099 May 2009 CN
103562802 Feb 2014 CN
104040410 Sep 2014 CN
105074539 Nov 2015 CN
106716223 May 2017 CN
102012108424 Mar 2014 DE
0795775 Sep 1997 EP
1748305 Jan 2007 EP
2110701 Oct 2009 EP
2244114 Oct 2010 EP
2326983 Jun 2011 EP
1828832 May 2013 EP
2733517 May 2014 EP
1573369 Jul 2014 EP
2929378 Oct 2015 EP
2995986 Mar 2016 EP
2508661 Jun 2014 GB
2512077 Sep 2014 GB
2514658 Dec 2014 GB
1205793 Dec 2015 HK
1206101 Dec 2015 HK
2000056259 Feb 2000 JP
2000267042 Sep 2000 JP
2002122906 Apr 2002 JP
2002162598 Jun 2002 JP
2008112187 May 2008 JP
2009036955 Feb 2009 JP
2009211091 Sep 2009 JP
4367775 Nov 2009 JP
201314263 Apr 2013 TW
1997001133 Jan 1997 WO
1999009440 Feb 1999 WO
2000016136 Mar 2000 WO
2000023847 Apr 2000 WO
2002082168 Oct 2002 WO
2003081320 Oct 2003 WO
2005073798 Aug 2005 WO
2006064301 Jun 2006 WO
2006064325 Jun 2006 WO
2006064334 Jun 2006 WO
2006102073 Sep 2006 WO
2006132614 Dec 2006 WO
2006102073 Jan 2007 WO
2007015141 Feb 2007 WO
2007029032 Mar 2007 WO
2007130130 Nov 2007 WO
2007141587 Dec 2007 WO
2007141589 Dec 2007 WO
2009013597 Jan 2009 WO
2009077802 Jun 2009 WO
2009077803 Jun 2009 WO
2010023444 Mar 2010 WO
2010067114 Jun 2010 WO
2010104692 Sep 2010 WO
2010122330 Oct 2010 WO
2010125337 Nov 2010 WO
2011032005 Mar 2011 WO
2011042711 Apr 2011 WO
2011051660 May 2011 WO
2011055109 May 2011 WO
2011073673 Jun 2011 WO
2011107831 Sep 2011 WO
2011110821 Sep 2011 WO
2011131978 Oct 2011 WO
2013027004 Feb 2013 WO
2013102759 Jul 2013 WO
2014080155 May 2014 WO
2014091200 Jun 2014 WO
2014093601 Jun 2014 WO
2014100182 Jun 2014 WO
2014113506 Jul 2014 WO
2014116615 Jul 2014 WO
2014130383 Aug 2014 WO
2014144526 Sep 2014 WO
2014159621 Oct 2014 WO
2014179632 Nov 2014 WO
2014210349 Dec 2014 WO
2015006784 Jan 2015 WO
2015069553 May 2015 WO
2015145119 Oct 2015 WO
2016020643 Feb 2016 WO
2016046514 Mar 2016 WO
2016111706 Jul 2016 WO
2016111707 Jul 2016 WO
2016111708 Jul 2016 WO
2016111709 Jul 2016 WO
2016113534 Jul 2016 WO
2016122679 Aug 2016 WO
2017060665 Apr 2017 WO
2017162999 Sep 2017 WO
2017180403 Oct 2017 WO
Non-Patent Literature Citations (81)
Entry
US 9,488,474 B2, 11/2016, Abovitz et al. (withdrawn)
International Preliminary Report on Patentability for International Application PCT/US2018/056150, Report Issued on Apr. 21, 2020, dated Apr. 30, 2020, 6 Pgs.
International Search Report for PCT/GB2012/000677, completed by the European Patent Office dated Dec. 10, 2012, 4 pgs.
“LED 7-Segment Displays”, Lumex, uk.digikey.com, 2003, UK031, 36 pgs.
“Velodyne's HDL-64E: A High Definition Lidar Sensor for 3-D Applications”, High Definition Lidar, white paper, Oct. 2007, 7 pgs.
Arnold et al., “52.3: An Improved Polarizing Beamsplitter LCOS Projection Display Based on Wire-Grid Polarizers”, Society for Information Display, Jun. 2001, pp. 1282-1285.
Bergkvist, “Biospeckle-based Study of the Line Profile of Light Scattered in Strawberries”, Master Thesis, Lund Reports on Atomic Physics, LRAP-220, Lund 1997, pp. 1-62.
Bone, “Design Obstacles for LCOS Displays in Projection Applications “Optics architectures for LCOS are still evolving””, Aurora Systems Inc. Bay Area SID Seminar, Mar. 27, 2001, 22 pgs.
Buckley, “Pixtronix DMS technology for head-up displays”, Pixtronix, Inc. Jan. 2011, 4 pgs.
Buckley et al., “Rear-view virtual image displays”, in Proc. SID Conference 16th Annual Symposium on Vehicle Displays, Jan. 2009, 5 pgs.
Dainty, “Some statistical properties of random speckle patterns in coherent and partially coherent illumination”, Optica Acta, Mar. 12, 1970, vol. 17, No. 10, pp. 761-772.
Friedrich-Schiller, “Spatial Noise and Speckle”, Version 1.12.2011, Dec. 2011, Abbe School of Photonics, Jena, Germany, 27 pgs.
Gabor, “Laser Speckle and its Elimination”, BM Research and Development, Eliminating Speckle Noise, Sep. 1970, vol. 14, No. 5, pp. 509-514.
Goodman, “Some fundamental properties of speckle”, J. Opt. Soc. Am. Nov. 1976, vol. 66, No. 11, pp. 1145-1150.
Goodman, “Statistical Properties of Laser Speckle Patterns”, Applied Physics, 1975, vol. 9, Chapter 2, Laser Speckle and Related Phenomena, pp. 9-75.
Goodman et al., “Speckle Reduction by a Moving Diffuser in Laser Projection Displays”, The Optical Society of America, 2000, 15 pgs.
Harrold et al., “3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update”, Sharp Laboratories of Europe, Ltd. received May 21, 1999, 7 pgs.
Harthong et al., “Speckle phase averaging in high-resolution color holography”, J. Opt. Soc. Am. A, Feb. 1997, vol. 14, No. 2, pp. 405-409.
Kahn et al., “Private Line Report on Large Area Display”, Kahn International, Jan. 7, 2003, vol. 8, No. 10, 9 pgs.
Karp et al., “Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide”, Proc. of SPIE vol. 7407, 2009 SPIE, CCC code: 0277-786X/09, doi: 10.1117/12.826531, pp. 74070D-1-74070D-11.
Lowenthal et al., “Speckle Removal by a Slowly Moving Diffuser Associated with a Motionless Diffuser”, Journal of the Optical Society of America, Jul. 1971, vol. 61, No. 7, pp. 847-851.
Magarinos et al., “Wide Angle Color Holographic infinity optics display”, Air Force Systems Command, Brooks Air Force Base, Texas, AFHRL-TR-80-53, Mar. 1981, 100 pgs.
Riechert, “Speckle Reduction in Projection Systems”, Dissertation, University Karlsruhe, 2009, 178 pgs.
Sony Global, “Sony Releases the Transparent Lens Eyewear ‘SmartEyeglass Developer Edition’”, printed Oct. 19, 2017, Sony Global—News Releases, 5 pgs.
Sutherland et al., “Electrically switchable volume gratings in polymer-dispersed liquid crystals”, Applied Physics Letters, Feb. 28, 1994, vol. 64, No. 9, pp. 1074-1076.
Titus et al., “Efficient, Accurate Liquid Crystal Digital Light Deflector”, Proc. SPIE 3633, Diffractive and Holographic Technologies, Systems, and Spatial Light Modulators VI, 1 Jun. 1, 1999, doi: 10.1117/12.349334, 10 pgs.
Tiziani, “Physical Properties of Speckles”, Speckle Metrology, Chapter 2, Academic Press, Inc. 1978, pp. 5-9.
Trisnadi, “Hadamard Speckle Contrast Reduction”, Optics Letters, Jan. 1, 2004, vol. 29, No. 1, pp. 11-13.
Ushenko, “The Vector Structure of Laser Biospeckle Fields and Polarization Diagnostics of Collagen Skin Structures”, Laser Physics, 2000, vol. 10, No. 5, pp. 1143-1149.
Vita, “Switchable Bragg Gratings”, Thesis, Universita degli Studi di Napoli Federico II, Nov. 2005, 103 pgs.
Wang et al., “Speckle reduction in laser projection systems by diffractive optical elements”, Applied Optics, Apr. 1, 1998, vol. 37, No. 10, pp. 1770-1775.
Wei An, “Industrial Applications of Speckle Techniques”, Doctoral Thesis, Royal Institute of Technology, Department of Production Engineering, Chair of Industrial Metrology & Optics, Stockholm, Sweden 2002, 76 pgs.
Welde et al., “Investigation of methods for speckle contrast reduction”, Master of Science in Electronics, Jul. 2010, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 127 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2009/051676, issued Jun. 14, 2011, dated Jun. 23, 2011, 6 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2011/000349, issued Sep. 18, 2012, dated Sep. 27, 2012, 10 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2012/000677, issued Feb. 25, 2014, dated Mar. 6, 2014, 5 pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/011736, issued Jul. 21, 2015, dated Jul. 30, 2015, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/011736, completed Apr. 18, 2014, dated May 8, 2014, 10 pgs.
International Search Report and Written Opinion for International Application PCT/GB2009/051676, completed May 10, 2010, dated May 18, 2010, 7 pgs.
International Search Report for PCT/GB2011/000349, completed by the European Patent Office on Aug. 17, 2011, 4 pgs.
International Search Report for PCT/GB2012/000677, completed by the European Patent Office on Dec. 10, 2012, 4 pgs.
Written Opinion for International Application No. PCT/GB2011/000349, completed Aug. 17, 2011, dated Aug. 25, 2011, 9 pgs.
Written Opinion for International Application No. PCT/GB2012/000677, completed Dec. 10, 2012, dated Dec. 17, 2012, 4 pgs.
“BragGrate—Deflector: Transmitting Volume Bragg Grating for angular selection and magnification”, 2015, www.OptiGrate.com.
Al-Kalbani et al., “Ocular Microtremor laser speckle metrology”, Proc. of SPIE, 2009, vol. 7176 717606-1, 12 pgs.
An et al., “Speckle suppression in laser display using several partially coherent beams”, Optics Express, Jan. 5, 2009, vol. 17, No. 1, pp. 92-103.
Ayras et al., “Exit pupil expander with a large field of view based on diffractive optics”, Journal of the SID, May 18, 2009, 17/8, pp. 659-664.
Bleha et al. W P., “D-Ila Technology For High Resolution Projection Displays”, Sep. 10, 2003, Proceedings, vol. 5080, doi: 10.1117/12.497532, 11 pgs.
Bone, “Design Obstacles for LCOS Displays in Projection Applications ”Optics architectures for LOOS are still evolving“”, Aurora Systems Inc. Bay Area SID Seminar, Mar. 27, 2001, 22 pgs.
Bowley et al., “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals”, Applied Physics Letters, Jul. 2, 2001, vol. 79, No. 1, pp. 9-11.
Brown, “Waveguide Displays”, Rockwell Collins, 2015, 11 pgs.
Buckley, “Colour holographic laser projection technology for heads-up and instrument cluster displays”, Conference: Proc. SID Conference 14th Annual Symposium on Vehicle Displays, Jan. 2007, 5 pgs.
Buckley et al., “Full colour holographic laser projector HUD”, Light Blue Optics Ltd. Aug. 10, 2015, 5 pgs.
Ducharme, “Microlens diffusers for efficient laser speckle generation”, Optics Express, Oct. 29, 2007, vol. 15, No. 22, p. 14573-14579.
Funayama et al., “Proposal of a new type thin film light-waveguide display device using”, The International Conference on Electrical Engineering, 2008, No. P-044, 5 pgs.
Han et al., “Study of Holographic Waveguide Display System”, Advanced Photonics for Communications, 2014, 4 pgs.
Hoepfner et al., “LED Front Projection Goes Mainstream”, Luminus Devices, Inc. Projection Summit, 2008, 18 pgs.
Karp et al., “Planar micro-optic solar concentration using multiple imaging Tenses into a common slab waveguide”, Proc, of SPIE vol. 7407, 2009 SPIE, CCC code: 0277-786X/09, doi: 10.1117/12.826531, pp. 74070D-1-74070D-11.
Karp et al., “Planar micro-optic solar concentrator”, Optics Express, Jan. 18, 2010, vol. 18, No. 2, pp. 1122-1133.
Keuper et al., “26.1: RGB LED Illuminator for Pocket-Sized Projectors”, SID 04 DIGEST, 2004, ISSN/0004-0966X/04/3502, pp. 943-945.
Keuper et al., “P-126: Ultra-Compact LED based Image Projector for Portable Applications”, SID 03 DIGEST, 2003, ISSN/0003-0966X/03/3401-0713, pp. 713-715.
Li et al., “Dual Paraboloid Reflector and Polarization Recycling Systems for Projection Display”, Proceedings vol. 5002, Projection Displays IX, Mar. 28, 2003, doi: 10.1117/12.479585, 12 pgs.
Li et al., “Novel Projection Engine with Dual Paraboloid Reflector and Polarization Recovery Systems”, Wavien Inc. SPIE EI 5289-38, Jan. 21, 2004, 49 pgs.
Li et al., “Polymer crystallization/melting induced thermal switching in a series of holographically patterned Bragg reflectors”, Soft Matter, Jul. 11, 2005, vol. 1, pp. 238-242.
Lu et al., “Polarization switch using thick holographic polymer-dispersed liquid crystal grating”, Journal of Applied Physics, Feb. 1, 2004, vol. 95, No. 3, pp. 810-815.
Mach et al., “Switchable Bragg diffraction from liquid crystal in colloid-templated structures”, Europhysics Letters, Jun. 1, 2002, vol. 58, No. 5, pp. 679-685.
Miller, “Coupled Wave Theory and Waveguide Applications”, The Bell System Technical Journal, Short Hills, NJ, Feb. 2, 1954, 166 pgs.
Paolini et al., “High-Power LED Illuminators in Projection Displays”, Lumileds, Aug. 7, 2001, 19 pgs.
Qi et al., “P-111: Reflective Display Based on Total Internal Reflection and Grating-Grating Coupling”, Society for Information Display Digest, May 2003, pp. 648-651, DOI: 10.1889/1.1832359.
Schreiber et al., “Laser display with single-mirror MEMS scanner”, Journal of the SID 17/7, 2009, pp. 591-595.
Sutherland et al., “Bragg Gratings in an Acrylate Polymer Consisting of Periodic Polymer- Dispersed Liquid-Crystal Planes”, Chem. Mater. 1993, vol. 5, pp. 1533-1538.
Sutherland et al., “Electrically switchable vol. gratings in polymer-dispersed liquid crystals”, Applied Physics Letters, Feb. 28, 1994, vol. 64, No. 9, pp. 1074-1076.
Sutherland et al., “Enhancing the electro-optical properties of liquid crystal nanodroplets for switchable Bragg gratings”, Proc, of SPIE, 2008, vol. 7050, pp. 705003-1-705003-9, doi: 10.1117/12.792629.
Sutherland et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Hardened Materials Branch, AFRL-ML-WP-TP-2007-514, Jan. 2007, Wright-Patterson Air Force Base, OH, 18 pgs.
Trisnadi, “Speckle contrast reduction in laser projection displays”, Proc. SPIE 4657, 2002, 7 pgs.
Mta, “Switchable Bragg Gratings”, Thesis, Universita degli Studi di Napoli Federico II, Nov. 2005, 103 pgs.
Wang et al., “Liquid-crystal blazed-grating beam deflector”, Applied Optics, Dec. 10, 2000, vol. 39, No. 35, pp. 6545-6555.
Wofford et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Survivability and Sensor Materials Division, AFRL-ML-WP-TP-2007-551, Air Force Research Laboratory, Jan. 2007, Wright-Patterson Air Force Base, OH, 17 pgs.
Yaqoob et al., “High-speed two-dimensional laser scanner based on Bragg grating stored in photothermorefractive glass”, Applied Optics, Sep. 10, 2003, vol. 42, No. 26, pp. 5251-5262.
Yeralan et al., “Switchable Bragg grating devices for telecommunications applications”, Opt. Eng. Aug. 2012, vol. 41, No. 8, pp. 1774-1779.
Liu et al., “Realization and Optimization of Holographic Waveguide Display System”, Acta Optica Sinica, vol. 37, Issue 5, Issuing date-May 10, 2017, pp. 310-317.
Related Publications (1)
Number Date Country
20200033190 A1 Jan 2020 US
Provisional Applications (1)
Number Date Country
61272601 Oct 2009 US
Continuations (4)
Number Date Country
Parent 15670875 Aug 2017 US
Child 16561923 US
Parent 14545578 May 2015 US
Child 15670875 US
Parent 13506389 Apr 2012 US
Child 14545578 US
Parent 15770485 US
Child 13506389 US